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Jdp2 downregulates Trp353 transcription to promote
leukaemogenesis in the context of 7rp53 heterozygosity

L van der Weyden', AG Rust'*, RE McIntyre', CD Robles-Espinoza', M del Castillo Velasco-Herrera', R Strogantsev?,
AC Ferguson-Smith?, S McCarthy', TM Keane', MJ Arends® and DJ Adams'

We performed a genetic screen in mice to identify candidate genes that are associated with leukaemogenesis in the context of
Trp53 heterozygosity. To do this we generated Trp53 heterozygous mice carrying the T2/Onc transposon and SBT7 transposase
alleles to allow transposon-mediated insertional mutagenesis to occur. From the resulting leukaemias/lymphomas that
developed in these mice, we identified nine loci that are potentially associated with tumour formation in the context of Trp53
heterozygosity, including AB041803 and the Jun dimerization protein 2 (Jdp2). We show that Jdp2 transcriptionally regulates the
Trp53 promoter, via an atypical AP-1 site, and that Jdp2 expression negatively regulates Trp53 expression levels. This study is

the first to identify a genetic mechanism for tumour formation in the context of Trp53 heterozygosity.
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INTRODUCTION

Genetic alterations of TP53 are frequent events in tumourigenesis
and promote genomic instability, impair apoptosis, and contribute
to aberrant self-renewal.'™* The spectrum of mutations that occur
in TP53 in human cancers is diverse. Missense mutations that
deregulate the DNA-binding domain are common, and prevent or
impair the transcriptional regulatory activity of TP53.2 Cytogenetic
alterations that delete or disrupt TP53 have also been reported, as
has epigenetic silencing due to methylation of the TP53
promoter.® In both carcinomas and haematopoietic malignancies,
TP53 mutation status has been shown to correlate with
prognosis.>® TP53 is generally considered a tumour-suppressor
gene,? with inactivation of both copies of the gene seen in many
tumours. Paradoxically, several studies have observed accelerated
tumourigenesis in Trp53 7/~ mice that develop tumours despite
retaining a wild-type copy of Trp53.”7'® Furthermore the analysis
of tumours from Li-Fraumeni patients with germline alterations of
TP53, suggest that a significant proportion may retain a wild-type
TP53 allele." ~ '3 Threshold levels of P53 are required for processes
such as suppression of apoptosis or induction of cell-cycle
arrest.'® In the context of TP53 heterozygosity it is possible that
transcriptional silencing of the wild-type TP53 allele by mechan-
isms such as promoter methylation, altered cis-regulation of the
gene that decreases transcription from the wild-type TP53 allele,
or post-translational modification of P53, decreases TP53 function
to a level such that tumourigenesis can occur. In this paper we set
out to identify, which somatically mutated genes can contribute to
tumour formation in the context of Trp53 heterozygosity. To do
this we used mice heterozygous for Trp53 (as well as Trp53 wild
type and null controls) to genetically dissect this phenomenon
focusing on leukaemogenesis as a model system. This analysis
allowed us to identify nine loci that are potentially associated with
tumour formation in the context of Trp53 heterozygosity. We show
that the Jun dimerization protein 2 (Jdp2) is a site frequently

targeted by transposon insertion events leading to upregulated
Jdp2 expression and a decrease in Trp53 expression levels. Further
we illustrate that Jdp2 regulates the Trp53 promoter via an atypical
AP-1 binding site. This study is the first to identify a genetic
mechanism for tumour formation in the context of Trp53
heterozygosity.

RESULTS AND DISCUSSION

Mouse lines carrying the mutant Trp53 allele, Trp53™, which
are null for Trp53,"> the SB (Sleeping Beauty) transposon array,
T2/0nc,'® and the SB transposase allele, Rosa26°®"" (see Dupuy
et al'’) were intercrossed to generate mice that were homo-
zygous, heterozygous or wild type for the Trp53™" allele (hereafter
referred to as Trp53~/~, Trp53 '~ or Trp53 ™/ mice, respectiveL\r/)
with or without SB transposition occurring (that is, on a 72/Onc™*’"9
Rosa26 *”*B"" or T2/0Onc ™", Rosa26 8" background, respec-
tively). These mice were aged until they became moribund, and,
as expected, SB transposition significantly accelerated tumour
latency in mice of all genotypes (Figure 1a). The predominant
tumour type of all genotypes was a widely disseminated CD3 " T-
cell lymphoma (Figures 1b and c). A number of solid tumours,
mainly undifferentiated sarcomas, were also observed, but only in
Trp53 7/~ or Trp53~/~ mice (Figures 1b and ).

Genomic DNA from 36 Trp53 7/ +, 116 Trp53 1/~ and 9 Trp53~/~
SB-induced leukaemic/lymphomic tissues (typically spleen, thy-
mus or lymph node) was extracted and subjected to a previously
described linker-mediated PCR approach'® to amplify barcoded
genomic fragments containing transposon-genome junction
sequences. These products were then pooled and sequenced on
the 454 platform, from which we generated 487586 uniquely
mapped sequence reads (approximately 3000 per tumour).
After merging overlapping reads originating from the same
sample and removing any on chromosome 1 (because SB

"The Wellcome Trust Sanger Institute, Cambridge, UK; 2Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK and *Department of
Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK. “These authors contributed equally to this work. Correspondence: Dr DJ Adams, Experimental
Cancer Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs, CB10 THH, UK. E-mail: da1@sanger.ac.uk

Received 28 August 2011; revised 22 December 2011; accepted 13 January 2012; published online 27 February 2012


http://dx.doi.org/10.1038/onc.2012.56
mailto:da1@sanger.ac.uk
http://www.nature.com/

Trp53 heterozygosity and Jdp2 in leukaemogenesis
L van der Weyden et al

398

100 +

a sesasssananas .
= P -er Trp53+/. T2/0Onc**
> Besess . . -m- TIp53 Rosa26"/SB11
% 80 4 i,‘ -u- TIP53"
o R TR "
£ 604 ... . - Tm53+,_ T2/0nc*™
§ Y 00 —p- Trp53_/ Rosa26+/SB11
£ 40 4 . = T1P537"
=2 "EEEE TR
.E L LN [ ]
3
5 20 -
a
0 v L) L L
0 10 20 30 40 50 60 70 80 90
Age (weeks)
b tumor type Trp53*/* Trp53* Trp53”
Lymphoma (total) 36 (90%) 116 (89%) 9 (90%)
B-cell (CD45R") 0 3 0
T-cell (CD37) 32 80 7
Double positive 4 11 1
Double negative 0 17 1
Solid tumours (total) 0 (0%) 9 (7%) 5 (50%)

Undifferentiated sarcoma 0 5 5
Osteogenic sarcoma

Pancreatic carcinoma

Harderian gland adenocarcinoma

o O o
—_

0
0
0

—_

Figure 1. Loss of Trp53 promotes tumourigenesis. (a) Kaplan-Meier curves showing the tumour latency in Trp53 7/, Trp53™/~ and Trp53~/~
mice on a transposon ﬁumping’ background (that is, T2/0nc ™" Rosa*”*®"" solid lines) and ‘non-jumping’ control background (that is,
T20nct’"; Rosa26*7*8"" dashed lines). Curve comparison using the log-rank (Mantel-Cox) test: P<0.0001 for Trp53*/* vs Trp53+/~ vs
Trp53~/~ mice on a ‘jumping’ background. (b) Categorisation of the malignancies developed by the Trp53 /", Trp53 "/~ and Trp53~~ mice on
a ‘jJumping’ background according to the tumour type. Several mice had multiple tumour types. Numbers in brackets represent the per-
centage of mice developing a specific tumour type as a proportion of the genotype. (c) Representative photomicrographs of formalin-fixed,
hematoxylin- and eosin-stained sections of (i) thymic lymphoma, (ii) splenic lymphoma, (iii) undifferentiated sarcoma and (iv) osteosarcoma.
Representative photomicrographs of immunohistochemically-stained liver sections infiltrated by lymphomas of (v) B-cell origin (CD45R ™) or
(vi) T-cell origin (CD3 ™). Immunohistochemistry was performed on formalin-fixed, paraffin-embedded tissue sections that had undergone
antigen retrieval (microwaving in high pH citrate buffer for 3 x 5min) using rabbit anti-human polyclonal CD3 antibody (Dako, Ely, UK)
and rat anti-mouse/human monoclonal B220/CD45R antibody (BD Biosciences, Oxford, UK). The immunohistochemical signal was detected
using a secondary biotinylated goat anti-rabbit or anti-rat antibody (Vector Laboratories, Burlingame, CA, USA), using the Vectorstain Elite ABC
kit (Vector Laboratories) according to the manufacturer’s instructions. All sections shown are representative and images are at x 400
magnification.

transposons frequently reintegrate into regions adjacent to the 3t/

in Trp5 , Trp53™/~ and Trp53~~ tumours, respectively,
donor locus—a phenomenon known as ‘local hopping’'®), we

(P<0.05 on a chromosome-adjusted scale; Figure 2 and Supple-

obtained 7538 (Trp53 /"), 21975 (Trp53*/~) and 1829 (Trp53~/")
unique, non-redundant insertion sites (for the respective tumour
genotypes indicated in brackets). Using a previously described
Gaussian Kernel Convolution statistical method for determining
common insertion sites (CISs),'®?° we identified 42, 63 and 9 CISs
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mentary Table 1). Many of these genes have been previously
implicated in the pathogenesis of T-cell lymphomagenesis/
leukaemogenesis, including NOTCH1, PTEN and IKZF1 (reviewed
in Demarest et al?!). There were 12 CIS genes in common
between the Trp53 /" and Trp53 ™/~ tumours, specifically Mecom

© 2013 Macmillan Publishers Limited



Figure 2. Analysis of common insertion sites. A Circos plot showing
the common insertion sites (CISs) called in tumours from Trp53+/T
(black), Trp53 7/~ (blue) and Trp53~~ (red) mice. Lines crossing the
circle indicate statistically significant co-occurring mutations with
the thickness of the line indicating the level of significance. All tu-
mour DNA was extracted using GenePure kits (Qiagen, Sussex, UK)
and transposon insertion site sequences were generated on the 454
platform (Roche, West Sussex, UK), as described previously.>® Pro-
cessing of 454 reads, identification of insertion sites, and the
Gaussian Kernel Convolution statistical methods used to identify
CISs have been described previously.">?° The P-value for each CIS
was calculated using an adjusted-by-genome cutoff of P<0.05. A
complete list of the CISs is given in Supplementary Table 1.

(Mds1 and Evil complex locus), Myb, Notch1, Stat5b, Erg, Ikzf1, Raf1,
Rasgrp1, Zmiz1, Pten, AB041803 and II2rb. Given that eight of these
genes have also been identified as CISs in leukaemias/lymphomas
from T2/0Onc;Rosa26-SB11 mice on a wild-type background (Myb,
Notch1, Erg, Ikzf1, Rasgrp1, Zmiz1, Pten and AB041803),* they likely
represent genes involved in lymphomagenesis/leukemogenesis in
general, and do not contribute to promotion of tumourigenesis in
the context of Trp53 heterozygosity.

A CIS gene that was found in the Trp53"/~ and Trp53~/~
tumours, but not Trp53™/" tumours, was Rapgef6. The Rapl
guanine nucleotide exchange factor RAPGEF6 (also known as
PDZGEF2) has a critical role in the maturation of adherens
junctions.”® Although no immediate role for RAPGEF6 in
tumourigenesis is evident, it has been shown to form protein
complexes that result in the activation of Rap1A and control of cell
adhesion/migration.?** Interestingly, apart from Rapgef6, the CIS
genes found in the Trp53~/~ tumours were not found in tumours
of the other genotypes. These included genes Usp42 (ubiquitin
specific peptidase 42) and Wdr33 (WD repeat-containing protein
33). Although little is known about Wdr33 gene, Usp42 gene has
been recently identified as a fusion partner of RUNXT in three
cases of myeloid neoplasia, and the associated upregulated
expression of USP42 suggests a role of this deubiquitinating
enzyme in the pathogenesis of this leukaemia.?®

There were also four CISs that were found to co-occur in tumours
(Figure 2), specifically Notch1 and Pten, Notch1 and Ikzf1, Pten and
Ikzf1 and Pten and Akt2 in Trp53™/~ tumours. These genes have
all been previously implicated in the pathogenesis of T-ALL.>"*’
Our results are in keeping with the literature, as there is evidence
for genetic co-operation of these genes in development of T-ALL.
For example, loss of lkzf1, a direct repressor of Notch target genes,
and suppression of p53-mediated apoptosis are essential for

© 2013 Macmillan Publishers Limited

Trp53 heterozygosity and Jdp2 in leukaemogenesis
L van der Weyden et al

pg)

development of T-ALL and PTEN inactivation can compensate
for some Notch-mediated processes in T-ALL2' In addition,
retroviral insertional mutagenesis recently identified Ikzf1, Kras®'?°
and Notchl as a novel genetic pathway in T-lineage leukaemo-
genesis.?®

Quantitative PCR was performed on all tumours from Trp53 7/~
mice to identify those that had retained a wild-type copy of Trp53
and those that carried two copies of the targeted Trp53™" allele
(presumably having lost the wild-type allele by mitotic recombi-
nation; Figure 3a). From the 111 Trp53"/~ tumours analysed, we
identified 40 that had retained a wild-type Trp53 allele (defined
as having a normalised wild-type allele content of >0.28 and a
Trp537" allele content of <0.7) and 27 tumours that carried two
targeted Trp53™" alleles and no wild-type allele signal (defined
as having a normalised wild-type allele content of <0.1 and a
Trp53™" allele content of >0.8). To determine if there were any
somatic mutations in the intact wild-type copy of Trp53, genomic
DNA from all 111 Trp53 "/~ tumours (as well as some tail samples
to facilitate the identification of somatic mutations) underwent
Trp53 sequencing on the lllumina platform (lllumina, San Diego,
CA, USA) to scan for point mutations (using the primers shown in
Supplementary Table 2). Paired-end sequencing of PCR amplified
fragments was followed by base-calling with SAMTOOLS mpile-
up,”® which identified three possible mutations, specifically
MMU11:69400422 (T-C), MMU11:69403089 (G-A) and MMU11:
69403110 (G-A) in single tumours. All other tumours appeared to
have retained the wild-type Trp53 allele. A further two sequence
changes at MMU11:69401065 and MMU11:69401996 were dis-
covered in 22 and 44 of the samples, respectively, and are
therefore likely to be germline variants (as these mice were on a
mixed C57BL/6J-129Sv background and the sequencing data was
compared with the C57BL/6J reference genome). These data
suggest point mutations of the wild-type Trp53 are infrequent in
our model.

Taking the insertion sites found in tumours from Trp53 "/~ mice,
we performed CIS analysis in two ways. First, the tumours were
divided into two groups: those that had either retained a wild-
type copy of Trp53 or those that had lost the wild-type copy to
identify the CISs that were unique and common to each group
(Figure 3b). We found a set of nine CIS loci enriched in Trp53+/‘
mice that developed tumours despite retaining a wild-type copy
of the gene, including AB041803, Akt2, Eras, lkzf1, Jdp2, Myb,
Rapgef6 and two intergenic regions. Second, we pooled the
insertion sites from both groups together and then distinguished
genotype-specific CISs using a P-value generated by Fisher's Exact
test analysis.>® Using this more ‘stringent’ method of CIS calling,
we identified two CISs that were ‘enriched’ in Trp53 "/~ tumours
that had retained a wild-type copy of Trp53, specifically AB041803
and Jdp2. Little is known about AB041803 and as yet no role in
tumourigenesis is evident. In addition, it was also found to be a
CIS in leukaemia/lymphoma of wild-type mice (Supplementary
Table 1).2? Thus we focused on Jdp2.

Transcription factor JDP2 (also known as JUNDM2) is an AP-1
repressor protein®' that has a paradoxical role in tumour
formation. Overexpression of Jdp2 has been shown to potentiate
hepatocellular carcinoma in mice®*? and retroviral insertions
predicted to activate the gene have been reported in mouse
lymphoma models.>*?** In contrast, downregulation of JDP2 has
been associated with a poor prognosis in pancreatic cancer.>® Loss
of Jdp2 has also been associated with resistance to replicative
senescence,***” and Jdp2 expression has been shown to suppress
cell-cycle progression by downregulation of cyclin-A2.3® However,
hypomethylation of the Jdp2 promoter or upregulation of Jdp2
expression in common myeloid progenitors and in granulocyte-
macrophage progenitors has led to suggestions that it functions
as a regulator of myelopoiesis.>® Here, we find that transposon
insertions in the Jdp2 promoter occur exclusively in tumours from
Trp537/~ mice that retain a wild-type allele of Trp53. These
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insertions clustered in the promoter of Jdp2 (Figure 3c) and were
mostly orientated so that the transposon was inserted in the
same transcriptional orientation as the gene, suggesting that
these insertions were functioning to drive overexpression (with a
single insertion orientated on the reverse strand relative to the
gene, which may represent an enhancer insertion*®). RT-PCR on
RNA from these tumours showed splicing of the T20nc transposon
splice donor site directly onto Jdp2 exons 2 and/or 3 (Supplemen-
tary Figure 1). Indeed insertions in this exact location have been
shown to activate Jdp2 expression,>* and consistent with this, gPCR
on RNA from tumours containing insertions in Jdp2 showed a trend
towards having higher expression levels of Jdp2 and lower
expression levels of Trp53, relative to Trp53 7/~ tumours with no
insertions in Jdp2 (randomly selected from mice on this study that
had not lost the Trp53 allele by mitotic recombination; Figure 3d).

Oncogene (2013) 397 -402

Co-transfection of JDP2 cDNA in an overexpression vector
with a mouse Trp53 proximal promoter construct in murine
NIH3T3 (Figure 3e) and human HEK293T cells (data not shown)
resulted in significant repression of Trp53 promoter activity,
confirming that overexpression of JDP2 functions directly on
the Trp53 promoter to repress Trp53 expression. The ability of
JDP2 to repress transcription of the p53 promoter is reported to
occur via its binding to an atypical AP-1 site, termed the PF-1 site,
in the p53 promoter.*’ When we mutated (deleted) this binding
site in the proximal Trp53 promoter, this completely abrogated the
suppressive effects of JDP2 (Figure 3e), confirming that over-
expression of JDP2 mediates repression of Trp53 through the PF-1
site in the proximal promoter. Furthermore, overexpression of
JDP2 in HEK293T cells was shown to repress endogenous TP53
expression (Figure 3f).
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Figure 3. Identification of driver mutations associated with loss of Trp53 by mitotic recombination or with the retention of a wild-type copy of
Trp53. (a) SYBR Green quantitative real-time PCR (ABI, Carlsbad, CA, USA) was performed on tumour genomic DNA to quantify the relative
proportions of Trp53 wild-type and Trp53™" alleles in genomic DNA extracted from the leukaemias/lymphomas and data were normalised to
the single-copy genes f-Actin and Gapdh (primers are detailed in Supplementary Table 3). Red triangles represent tumours from Trp53 7/~
mice, blue squares represent tumours from Trp53 "/~ mice and black circles represent tumours from Trp53"/" mice. Of the tumours from
Trp53™/~ mice: open squares are those that have retained a wild-type copy of Trp53, closed dark blue squares are those that have lost the
wild-type Trp53 allele by mitotic recombination (MR) and closed light blue squares are those with a mixture of Trp53+/~ and Trp53~~ cells and
thus were excluded from further analyses. (b). Common insertion sites (CISs) were identified in tumours from Trp53 ™/~ mice that had retained
a wild-type copy of Trp53 (dotted blue circle) and those that had lost the wild-type copy (solid blue circle) as described previously.'®?° CISs
were called using a genome wide cut-off of P<0.05. Asterisk indicates the CIS was also found in the other genotype/circle, but below the
P <0.05 cut-off. Double asterisk indicates the CISs were in intergenic regions (that is, not located within + 150K base pairs of a gene and were
given the label ‘CIS’ followed by the chromosome and the peak location of the Gaussian kernel; there were two regions for ‘tumours retaining
a wild-type copy of Trp53: CIS7:37317163_15k and CIS5:75854217_15k, and one for ‘tumours without a wild-type copy of Trp53"
ClIS7:37322632_15k) (c). Location and orientation of the transposon insertions (blue triangles) associated with the Jdp2 CIS (the exons of Jdp2
are represented as boxes). One tumour was found to harbour multiple independent transposon insertion events (indicated with dotted lines).
(d). Quantitative PCR (qPCR) was performed on five tumours containing insertions in Jdp2 and nine randomly selected Trp53"/~ T-cell
tumours (without insertions in Jdp2). RNA was extracted using the RNeasy Minikit (Qiagen), DNAse-treated (Turbo DNase, Ambion, War-
rington, UK) and reverse transcribed (RNA to cDNA EcoDry Random Hexamers, Clontech, Mountain View, CA, USA) according to the man-
ufacturer’s instructions. Quantitative PCR was performed in triplicate using SYBR Green PCR MasterMix (Applied Biosystems, Carlsbad, CA,
USA) and the CT for Trp53 and Jdp2 were normalized to the ‘control’ (average of five housekeeping genes: Gapdh, f-Actin, Hprt1, Rpl32 and
Rpl13a) using the 2°<" method.*? Primers used for qPCR are given in Supplementary Table 4. (e). Transient overexpression of JDP2 in NIH3T3
cells resulted in a significant repression of Trp53 proximal promoter activity. The 375 bp mouse Trp53 proximal promoter (Trp53-Luc) was PCR
amplified from tail genomic DNA (using primers: F: 5-AAAAAAAAGGTACCGGTCCACTTACGATAAAAAC-3' and R: 5-AAAAAAAAAA-
GATCTGGTCCCAATGAACTGAAGCT-3') and cloned into the pGL3-BASIC vector (Promega, Southhampton, UK). The mutated mouse Trp53
proximal promoter in which the 7 bp PF-1 site (5'-TGACTCT-3’) was removed (mutTrp53-Luc) was synthesized (GeneArt-Invitrogen, Paisley, UK)
and cloned into the pGL3-BASIC vector. A full-length human JDP2 cDNA was obtained from Origene (Rockville, MD, USA). NIH3T3 cells grown
in 96-well plates were transfected with (i) either 100 ng Trp53-Luc (black lines) or mutTrp53-Luc (grey lines), (i) 20 ng pRL-SV40 (an internal
control reporter; Promega) and (iii) either 50 ng JDP2 cDNA or empty vector according to the manufacturer’s instructions (Lipofectamine 2000;
Invitrogen). Firefly and Renilla luciferase were measured 50h later using the Dual-Luciferase Reporter Assay System according to the
manufacturer’s instructions (Promega). The firefly light units were normalised to the Renilla light units. All data were normalised to the average
value of the ‘control’ transfection (Luc vector plus empty vector) and were presented as fold-change relative to the control. Experiments were
performed in triplicate on at least three independent occasions and the data analysed by two-tailed Student’s t-test. (f). Transient over-
expression of JDP2 in HEK293T cells represses TRP53 expression. HEK293T cells (Gryphon Eco, Allele Biotechnology, San Diego, CA, USA) were
seeded in 12-well plates and transfected with 2 ug Myc-DDK-tagged ORF clone of JDP2 (pCMV6Entry; Origene) or empty vector, according to
the manufacturers’ instructions (Lipofectamine 2000, Invitrogen). Experiments were performed in triplicate. RNA was extracted 48 h post-
transfection and reverse transcribed as described above. Quantitative PCR was performed in triplicate using SYBR Green PCR MasterMix
(Applied Biosystems) and the CT for TP53 and JDP2 were normalized as described above. Primers used for qPCR are given in Supplementary
Table 4.

In conclusion, we show that overexpression of Jdp2 in tumours
that are heterozygous for Trp53 precludes the need for loss of the
wild-type allele of Trp53 during the process of leukaemogenesis.
Jdp2 overexpression is the first genetic mechanism that has been
identified as being responsible for tumour formation in the
context of Trp53 heterozygosity.
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