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ABSTRACT

ThepKa values inproteinsgovern thepH-dependence
of protein stability and enzymatic activity. A large
number of mutagenesis experiments have been
carried out in the last three decades to re-engineer
the pH-activity and pH-stability profile of enzymes
and proteins. We have developed the pKD webserver
(http://polymerase.ucd.ie/pKa_Design), which pre-
dicts sets of point mutations that will change the
pKa values of a set of target residues in a given
direction, thus allowing for targeted re-design of the
pH-dependent characteristics of proteins. The server
provides the user with an interactive experience for
re-designing pKa values by pre-calculating DpKa

values from all feasible point mutations. Design
solutions are found in less than 10 min for a typical
design job for a medium-sized protein. Mutant DpKa

values calculated by the pKD web server are in
close agreement with those produced by comparing
results from full-fledged pKa calculation methods.

INTRODUCTION

The pH-dependence of enzymatic activity and protein stabil-
ity is of major importance for the biological function and
industrial application of enzymes and proteins. pH-dependent
protein characteristics have therefore been the subject of sig-
nificant research efforts over the last two decades [e.g. (1–8)].
The pH-dependence of protein characteristics is determined
by the pKa values of amino acid residues in the unfolded and
folded state of a protein. Consequently a growing number of
theoretical methods have been constructed for calculating the
pKa values of protein titratable groups (9–20), and presently
the best pKa calculation methods are accurate to within 0.5 pKa

units when benchmarked against experimentally determined
pKa values. The application of pKa calculation methods in
biology is limited to a relatively small number of studies
on catalytic mechanisms and ligand binding [e.g.
(2–4,13,21–27)], and there is thus much scope for a wider
application of pKa calculation methodology to biological

problems. To our knowledge pKa calculations have yet
to be used for designing proteins with novel pH-dependent
properties, although methods have been developed for dissect-
ing the contribution of charged groups to protein pKa values (25)
(J. E. Nielsen, manuscript submitted). These methods can, in
principle, be used for targeted re-design of protein pKa values.

To motivate research into designing proteins with novel
pH-dependent properties we have developed the pKDweb server
(http://polymerase.ucd.ie/pKa_Design), which interfaces with a
novel algorithm (B. M. Tynan-Connolly and J. E. Nielsen, manu-
script submitted) for re-designing protein pKa values. The web
server allows the user to specify a set of design criteria (target
residues, desired D pKa values, maximum number of mutations
and minimum distance between target residue and any mutation)
that specifies how the user want to change the pKa values of the
protein. The pKD web server subsequently calculates a number
of design solutions consisting of sets of point mutations predicted
to change the target pKa values as specified by the design criteria.
In addition to reporting the design solutions, the server produces
3D structural models of the proposed solutions and allows the
user to inspect the pKa values calculated from the wild-type
structure. The results and inputs of the pKD server can be ana-
lysed with a novel graphical interface (pKaTool) that facilitates
the analysis of protein pKa calculations and titration curves.
pKatool is freely available to academic researchers at http://
enzyme.ucd.ie/Science/pKa/pKaTool.

MATERIALS AND METHODS

The pKD server combines the functionality of a number of
software packages using Python scripts. Figure 1 shows an
overview of the functionality of the server and indicates where
other software packages are employed. The parameters for
the pKD pKa calculations are described in detail below.
The pKD server software is freely available to academic
researchers by contacting pka@ucd.ie, or in some cases by
download from http://enzyme.ucd.ie/Science/pKa.

Preparation of PDB files

PDB files are prepared for a pKD design by deleting all water
molecules and non-protein atoms.Missing protein atoms are rebuilt
using the position-specific rotamer libraries (28) inWHAT IF (29).
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Calculation of pKa values of the wild-type structure

The pKa values of the wild-type structure are calculated with the
WHAT IF pKa calculation package as described elsewhere (19),
except that a uniform dielectric constant of eight is used for the
protein, and that the neutral–charged, charged–neutral and
neutral–neutral interaction energies are calculated only for res-
idue pairs with an interaction energy greater than 10 kT. The
latter approximation is employed to speed up the pKa calculation
step for large structures and can introduce errors in the reported
pKa values for tightly coupled titratable groups. Users that find
this to be a problem for a particular structure should request a full
pKa calculation to be carried out by emailing pka@ucd.ie.

Modelling point mutations

Point mutations are modelled using position-specific rotamer
libraries as implemented in WHAT IF (28). We mutate only
residues that are at least 30% solvent exposed and fit well in
the wild-type structure as deemed by automatic inspection of
the rotamer library population. In addition we allow the
mutation of buried charged residues to neutral residues of a
similar size.

Finally we allow the user to exclude mutations at sites less
than a certain distance (user adjustable but recommended to be at
least 5s) from the residue whose pKa value is being redesigned.

Calculation of interaction energies for
single point mutations

The interaction energies between a point mutation and all other
residues are calculated using the WHAT IF pKa calculation
package as described above.

Calculation of D pKa values resulting from
point mutations

DpKa values are calculated using a Monte Carlo sampling
method (30) implemented as a C++ class, which is imported

into a python script. DpKa values arising from single mutations
are calculated by modifying the site–site interaction energy
matrix using energies derived from an explicit model of the
mutant protein structure. DpKa values arising from multiple
point mutations are calculated by modifying the site–site inter-
action energymatrix using energies calculated from single point
mutation models. Thus no explicit 3D modelling of multiple
point mutations takes place until the final solutions are found.
Nevertheless we have shown (B. M. Tynan-Connolly and
J. E. Nielsen, manuscript submitted) thatDpKa values calculated
in this way are in excellent agreement with the DpKa values
found by comparing the results of full-fledged pKa calculations
on wild-type and mutant protein structures, provided that only
a small fraction of protein residues are mutated.

Finding the optimal set of point mutations

The search for sets of point mutations that fulfil the design
criteria is initiated by selecting 20 sets of combinations of single
point mutations, whose cumulative DpKa values are closest to
the design criteria. Since DpKa values only sometimes can be
combined linearly (B. M. Tynan-Connolly and J. E. Nielsen,
manuscript submitted), we calculate a more realistic set of DpKa

values for each solution as described above. Finally we perform
a short Monte Carlo sampling to find solutions that do cannot be
found from a linear combination of individual DpKa values.

Scoring of design solutions

We apply a scoring function of the form

score ¼
X

ðpKadesired � pKaachievedÞ2 1

to identify the design solutions in agreement with the design
criteria. The sum in equation 1 is calculated over all pKa

criteria specified in the design setup phase. The function is
optimized to identify a specific pKa change rather than iden-
tifying the largest possible pKa change. Therefore, if one is
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Figure 1. The workflow of the pKD server. The server incorporates the functionality of the WHAT IF pKa calculation package (WIpKa), construction of point
mutations (WHAT IF) and the pKa_Design algorithm.
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interested in a maximum pKa change then one should specify
design criteria of ±20 to obtain solutions that yield the
maximum pKa shift possible for the residue in question.

RESULTS AND CONCLUSIONS

We have constructed a the pKD web server, which allows for
the re-design of protein pKa values by site-directed mutagen-
esis. Proteins with redesigned pKa values will display a change
in their pH-dependent characteristics, such as ligand binding,
stability and, for enzymes, catalytic rate, and the pKD server is
thus aimed at researchers who aim to understand or change the
pH-dependent properties of proteins.

The pKD webserver asks the user to select one or more
titratable groups for pKa value re-design. It must specify
how many mutations one is willing to construct and how
close these mutations can be to the titratable groups of interest.
Subsequently the pKD server predicts a set of point mutations
that will change the pKa values of the selected titratable groups
in the given direction, by the desired amount. Furthermore the
user is presented with a set of modelled 3D structures con-
taining the proposed mutations, which can be analysed using
pKaTool (J. E. Nielsen, manuscript submitted).

It is thus possible for the user to achieve an interactive,
in-depth understanding of the titrational behaviour of any
given protein using these two freely available software tools.
Future work will focus on integrating pKaTool and the pKD
server directly to allow for a desktop-based, convenient, inter-
active analysis facility of the titrational behaviour of wild-type
and mutant proteins.

Table 1 and Figure 2 show a typical design solution from
the pKD server, and illustrates that good agreement is obtained
between the DpKa values reported by the pKD server and those
predicted by a full-fledged pKa calculation packages. The pKD
server uses a full physical model of the pH-dependent beha-
viour of titratable groups, which ensures that effects arising
from differences in intrinsic pKa values and complicated
pair-wise electrostatic interaction networks are calculated as
accurately as possible. Therefore, the solutions calculated with
the pKD server are more physically realistic than solutions
obtained using the classic relation DpKa ¼ ðDF=ln 10Þ (8),
which is known to break down when multiple strong electro-
static interactions are present and when dealing with titratable
groups with perturbed intrinsic pKa values.

We have calculated design solutions for a large number of
protein structures and examined the dependence of the results
on the algorithm parameters, and we have found the algorithm
to reliably identify mutations that will change the pKa values
of target residues as judged by theoretical methods. We are

currently verifying these pKa shifts in the lab, and simultan-
eously continuing our theoretical studies on factors that influ-
ence the pH-dependent properties of proteins.

We believe that the pKD server will be of great benefit
to researchers that are interested in re-designing and under-
standing the pH-dependent characteristics of proteins, and we
furthermore hope that the server will encourage more experi-
ments aimed at understanding the complex links between
protein structures and their pH-dependent characteristics.
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