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Smoking is associated with quantifiable
differences in the human lung DNA virome
and metabolome
Ann C. Gregory1, Matthew B. Sullivan1,2, Leopoldo N. Segal3 and Brian C. Keller4*

Abstract

Background: The role of commensal viruses in humans is poorly understood, and the impact of the virome on
lung health and smoking-related disease is particularly understudied.

Methods: Genetic material from acellular bronchoalveolar lavage fluid was sequenced to identify and quantify viral
members of the lower respiratory tract which were compared against concurrent bronchoalveolar lavage bacterial,
metabolite, cytokine and cellular profiles, and clinical data. Twenty smoker and 10 nonsmoker participants with no
significant comorbidities were studied.

Results: Viruses that infect bacteria (phages) represented the vast majority of viruses in the lung. Though bacterial
communities were statistically indistinguishable across smokers and nonsmokers as observed in previous studies,
lung viromes and metabolic profiles were significantly different between groups. Statistical analyses revealed that
changes in viral communities correlate most with changes in levels of arachidonic acid and IL-8, both potentially
relevant for chronic obstructive pulmonary disease (COPD) pathogenesis based on prior studies.

Conclusions: Our assessment of human lung DNA viral communities reveals that commensal viruses are present in
the lower respiratory tract and differ between smokers and nonsmokers. The associations between viral populations
and local immune and metabolic tone suggest a significant role for virome-host interaction in smoking related lung
disease.
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Background
Smoking is the leading cause of chronic obstructive
pulmonary disease (COPD) and the third highest cause
of death globally [1, 2]. Despite the clear associated risk,
only a fraction of smokers eventually develop COPD [2,
3]. What causes some smokers, and not others, to
develop COPD remains unknown and an area of active
research [2–5]. Recent work examining the lung bacter-
iome of individuals with moderate to severe COPD
revealed decreased bacterial diversity compared to non-
smokers [6–11]. As a result, it has been proposed that
changes in lung-resident bacterial communities may lead
to COPD [4–8]. However, respiratory tract bacterial

communities of individuals with mild COPD, “healthy”
smokers, and nonsmokers are not significantly different
[8, 11–13], suggesting that factors other than commensal
bacteria may trigger COPD development.
To date, few studies have examined lung viral commu-

nities where the vast majority of viruses have been iden-
tified as bacteriophages [14–18]. Phages impact bacterial
communities through direct and indirect interactions.
Though phage ecological roles are unknown in the lung,
their activities are relatively well-documented in the
oceans where they regulate bacterial population sizes, di-
versity, metabolic outputs, and gene flow [19–24]. In
humans, phages may stimulate the immune system lead-
ing to immune-mediated microbial competition [25], tax
the immune system enabling opportunistic infection
[26], or work symbiotically at human mucosal surfaces
providing a source of additional immunity [27]. Thus,
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changing lung viral communities could alter the bacter-
iome leading to dysbiosis and disease progression in
pre-affected (e.g., COPD) individuals [6–8]. Here we uti-
lized a historical cohort to explore the impact of smoking
on the lung microenvironment with specific focus on the
role of double-stranded DNA (dsDNA) viruses. To do
this, we applied a quantitative sample-to-sequence dsDNA
viral metagenomic processing pipeline [28] that maintains
relative abundances between samples and used these data
as a baseline to compare and ecologically contextualize
lung viromes in relation to lung bacteriomes, metabo-
lomes, and immunologic profiles of “healthy” smokers and
nonsmokers.

Methods
Sample collection and processing
Between 2010 and 2013, bronchoalveolar lavage (BAL) fluid
was collected from 30 asymptomatic subjects (10 non-
smokers, 14 former smokers, and 6 current smokers) as
part of previous studies evaluating the lower airway bacter-
iome and inflammation [29, 30]. Briefly, bronchoscopy was
performed via nasal approach and avoiding suctioning until
the scope was positioned for sampling. Sequential BAL was
collected from the lingula and right middle lobe, combined,
and processed. Metabolites and cytokine numbers were
measured as previously described [29, 30], and identified
metabolites were reported if present in ≥50% of the sam-
ples. Intensity data were mean-centered and divided by the
standard deviation using MetaboAnalyst [31]. For in vivo
cytokines, 39 cytokines were measured with a Luminex
200IS (Luminext Corp, Austin, TX) using Human Cytokine
Panel I (Millipore, Billerica, MA). Data were analyzed with
MasterPlex TM QT software (version 1–2, MiraiBio, Inc.
Alameda, CA).

16S rRNA gene sequencing
The 16S rRNA gene sequencing dataset collected as part
of [30] was analyzed in the context of smoking status. The
creation of this dataset has been previously described [30].
Briefly, acellular BAL was obtained after centrifugation at
500 x g for 10 min at 4 °C followed by DNA extraction via
ion exchange column (Qiagen). Additionally, DNA was
extracted from pre-bronchoscopy saline to determine the
level of background microbial contamination. The V4 re-
gion of the bacterial 16S rRNA gene was amplified in du-
plicate reactions, using primer set 515F/806R, which
nearly universally amplifies bacterial and archaeal 16S
rRNA genes [32, 33]. Each unique barcoded amplicon was
generated in pairs of 25 μl reactions with the following re-
action conditions: 11 μl Polymerase Chain Reaction
(PCR)-grade H2O, 10 μl Hot Master Mix (5 Prime Cat#
2200410), 2 μl of forward and reverse barcoded primer
(5 μM) and 2 μl template DNA. Reactions were run on a
C1000 Touch Thermal Cycler (Bio-Rad) with the

following cycling conditions: initial denaturing at 94 °C for
3 min followed by 35 cycles of denaturation at 94 °C for
45 s, annealing at 58 °C for 1 min, and extension at 72 °C
for 90 s, with a final extension of 10 min at 72 °C. 16S
rRNA gene amplicons were sequenced with Illumina
MiSeq and analyzed using QIIME. Using this dataset, we
normalized absolute operational taxonomic unit (OTU)
sequence counts to obtain the relative abundances of
the microbiota in each sample. These relative abun-
dances at 97% OTU similarity and each of the 5 higher
taxonomic levels (phylum, class, order, family, genus)
were tested for univariate associations with clinical
variables. The ade4 package in R was used to construct
Principal Coordinate Analysis (PCoA) based on
weighted UniFrac distances [34, 35].

Shotgun sequencing
DNA extracted from the same acellular BAL samples de-
scribed above was sheared with a Covaris E210
Focused-ultrasonicator. Libraries were constructed with
the NEBNext Ultra DNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, MA) and sequenced
with Illumina MiSeq. Reads were QC’d and trimmed
using BBDuk (BBtools package) [36], de-duplicated, and
aligned to the human genome (95% identity) with
BBMap [36]. Following processing, each virome had on
average > 1 million reads (Additional file 1: Table S1).
Cross-assembly of all 30 viromes using SPAdes [37] as-
sembled no viral contigs > 500 bp. Consequently, to de-
termine if viruses were present in a sample, reads were
aligned using Bowtie2 [38] to a custom viral database
composed of Viral RefSeq release 78, the VirSorter data-
base [39], 23 core gut phages [36–40], and the crAssph-
age genome (GenBank Accession #JQ995537). Viruses
with reads aligned at ≥95% percent identity [41, 42] to a
consecutive 200 bp stretch of the genome were consid-
ered present in the lung virome. Median coverage was
normalized to decontaminated virome read numbers to
determine viral relative abundances. While 16S rRNA
data was available from saline control samples from earl-
ier studies [29, 30], insufficient amounts of saline and
oral rinse control specimens remained for repeat testing
by shotgun sequencing.

Statistics
Ecological diversity statistics were performed using
vegan in R [43]. Statistical outliers were evaluated using
“pcout” in the mvoutlier package [44]. Bray-Curtis dis-
tances were calculated with and without outliers and
were statistically ordinated using PCoA; bivariate ellipses
were fit to the ordination using “ordiellipse” based on
smoking status, race, and gender, and centroids were
assessed to be significantly different using the “envfit”
functions in vegan. Mantel’s tests using a spearman
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correlation were used to correlate viral Bray-Curtis dis-
tances. Differentially abundant viral populations across
smokers and nonsmokers were determined with Meta-
stats [45, 46]. For metabolic data, bacterial and viral
abundances were vector-fit to the PCoA (“envfit” func-
tion). A total of 9999 permutations were used for all vec-
tor and centroid fitting, and Mantel’s tests were used to
further confirm the correlations between changes in
metabolic data and changes in bacterial and viral abun-
dances. These vector fittings and Mantel’s test p-values
were Bonferroni-corrected. To determine if viral pneu-
motypes existed, the SPIEC-EASI package [47] was ap-
plied using the Meinshausen and Bühlmann (MB)
method to infer associations between viral populations.
A batch file of all bioinformatics parameters and code
can be found on iVirus in Cyverse (/iplant/shared/
iVirus/Lung_Virome).

Results
Cohort
In a previous study, we explored the association between
the lower airway bacteriome and inflammation in
healthy, asymptomatic individuals. Utilizing this histor-
ical cohort [30], we selected 30 subjects (20 current or
former smokers and 10 nonsmokers, Table 1) for which
sufficient BAL sample remained for additional virome

analysis to analyze the relationship between smoking
and the lower airway microenvironment. As previously
described [29], nonsmokers were enrolled from the NYU
CTSI-sponsored Healthy Volunteers Bronchoscopy
Cohort, characterized by subjects with no significant
smoking history, normal spirometry, and absence of pul-
monary, cardiovascular, renal, or endocrine disease.
Smokers were enrolled from the NYU Early Detection
Research Network (EDRN, 5U01CA086137–13), a longi-
tudinal cohort consisting of approximately 2000 subjects
with substantial smoking history (43.8 ± 24.3 pack-years).
Smoking status was obtained during clinical interview
screenings. Smokers and nonsmokers were similar in
height, weight and gender distribution, whereas older,
white participants were over-represented among
smokers. In terms of lung function, smokers and non-
smokers had normal forced vital capacity (FVC), forced
expiratory volume in 1 s (FEV1), and diffusing capacity
of the lungs for carbon monoxide (DLCO), whereas
smokers had lower mean FEV1/FVC ratios.

Composition of the lung Virome
DNA was extracted from acellular BAL and sequenced
with Illumina MiSeq. Despite removing reads mapping
to the human genome at > 95% identity, many contam-
inating human reads remained. Of the almost 35 million

Table 1 Participant characteristics

Demographics Smokers (n = 20) Nonsmokers (n = 10) Statistical Differences

Age, yr 63.7 (58.5–67.2) 36.2 (28.3–41.9) p < 0.00001

Gender p < 0.3980b

Male 13 (65%) 8 (80%)

Female 7 (35%) 2 (20%)

Height, cm 172.7 (165.1–179.1) 176.5 (173.4–181.6) p < 0.3125

Weight, kg 79.8 (69.4–91.6) 85.5 (75.1–101.2) p < 0.6560

Race p < 0.0037b

White 19 (95%) 5 (50%)

Other 1 (5%) 5 (50%)

Pulmonary Function Testinga

FVC (% Predicted) 96.9 (90.2–102.8) 96.0 (90.0–103.7) p < 0.8337

FEV1 (% Predicted) 94.1 (86.7–104.2) 97.1 (86.2–103.4) p < 0.9840

FEV1/FVC 71.7 (69.9–78.4) 83.5 (77.7–84.3) p < 0.0220

DLCO (% Predicted) 91.0 (79.3–99.0) 94.0 (82.0–98.0) p < 0.4593

BAL Immune Cell Counts (%)

Macrophages 90.8 (87.8–94.8) 90.8 (86.0–93.5) p < 0.9840

Lymphocytes 6.2 (3.9–8.7) 6.6 (5.1–11.5) p < 0.5552

Neutrophils 1.8 (1.3–2.9) 1.3 (1.2–1.6) p < 0.1645

Eosinophils 0.3 (0.1–0.6) 0.2 (0.1–0.3) p < 0.2670

Data is given in counts or median values and interquartile ranges. All comparisons are Mann-Whitney U-test results unless noted. aData based on NHANES
predicted values. bChi-squared analysis
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reads following human decontamination across all 30
samples, only 9730 reads (0.03% of total reads) mapped
to our curated viral database (Additional file 1: Table
S1). In total, these reads mapped to 247 different viral
populations (Fig. 1). All but one of the viruses detected
were found in the Viral RefSeq or VirSorter [39] data-
bases. One virus classified as a core gut virus [40] was
detected in the lung of two individuals.
Only three eukaryotic DNA viruses were detected in

the acellular BAL samples (Fig. 1). These included
human herpesvirus 8, human adenovirus 2, and human
papillomavirus type 4. All eukaryotic viruses were
present in only one or two subject’s lung viromes.
Similar to previous findings [14–17], the majority of

lung viruses (> 85% of mean viral community abun-
dances) identified in our study were bacteriophages. The
identified phages are predicted to infect a broad array of
bacterial phyla based on the hosts of reference viruses in
Viral RefSeq and VirSorter [39] with 37% infecting Pro-
teobacteria, 36% Firmicutes, 23% Actinobacteria, 3%
Bacteriodetes, 1% Fusobacteria, and < 1% Tenericutes
(Additional file 2: Figure S1A). Of the Proteobacteria
hosts, the majority included Neisseria, Escherichia, Aci-
netobacter, and Burkholderia (Additional file 2: Figure
S1B). Among the Firmicutes and Actinobacteria hosts,
the majority belong to a single genus, with 60% from the
genus Streptococcus and 78% from the genus Propioni-
bacterium, respectively (Additional file 2: Figure S1C,
D). All of the Bacteriodetes hosts that could be anno-
tated (5 out of 6) belonged to the genus Prevotella, while
Leptotrichia and Spiroplasma were the only genera iden-
tified from the phyla Fusobacteria and Tenericutes,
respectively.
Phage abundances were summed based on host genera

across all 30 lung viromes to create the total virome.

Based on percentages of the total virome, Propionibacter-
ium phages were the most abundant across the 30 lung
viromes, making up 29% of the total viral community
(Additional file 3: Figure S2). The next most abundant
phages were Streptococcus, Burkholderia, Escherichia, and
Bacillus phages, each making up > 10% of the mean viral
community (Additional file 3: Figure S2). Lastly, phages
infecting the genera Acinetobacter, Neisseria, Mannhei-
mia, Staphylococcus, Gardnerella, and Shigella made up
> 2% and phages infecting the genera Bartonella, Lactoba-
cillus, Methylbacterium, Salmonella, Streptomyces, Prevo-
tella, Veillonella, and Eubacterium made up > 1% of total
viral community (Additional file 3: Figure S2).

Absence of viral Pneumotypes
Previous work in the human gut identified three distinct
microbial enterotypes based on co-occurrence of micro-
bial populations and predominance of specific microbial
groups [48]. Using the same samples as used in the
current study, we previously identified lower respiratory
tract bacterial pneumotypes through hierarchical cluster-
ing and PCoA analysis of bacterial communities based on
16S rRNA abundances [29, 30]. Bacterial pneumotypes
were present irrespective of smoking status. Similarly, we
used hierarchical clustering of viral population abun-
dances to evaluate for viral pneumotypes (Fig. 1; hierarch-
ical clustering of viral communities by individual subject
not shown) but found no clear clusters. To further assess
if viral pneumotypes were present in our samples, we used
SPIEC-EASI which forms a co-occurrence network based
on correlations between viral populations (Additional file 4:
Figure S3). If distinct viral pneumotypes existed across
our samples, we should see clear separation of viral popu-
lations into clustered groups. We thus conclude that we
could not find distinct viral pneumotypes in our cohort.

Fig. 1 Identity and relative abundances of viruses in the smoker and nonsmoker lung. Heatmap of relative abundances of the 247 viral populations
based on median normalized coverage for each virome. Each row shows the viral community composition of smokers and nonsmokers, also identified
by bacterial pneumotype as determined in [26, 27]. Each column represents a distinct viral population coded by host phylum, virus type, and database
in which the viral genome can be found. The dendrogram above the heatmap shows hierarchical clustering of viral populations based on abundances
across the different viral communities. BPT = background predominant taxa, SPT = supraglottic predominant taxa, NA = not assessed
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Lung Virome comparisons between smokers and
nonsmokers
We next assessed lung virome composition by smoking
status. While a large fraction of the viral populations de-
tected across the 30 samples were shared between
smokers and nonsmokers (29%), there were clear differ-
ences between abundances of certain phage groups in
smoker and nonsmoker viromes. Prevotella phages were
at least two-fold higher in the smoker virome, whereas
in the nonsmoker virome, Lactobacillus and Gardnerella
phages were 10-fold more abundant. Across individuals,
statistical analyses of differentially abundant viral popu-
lations using Metastats [45, 46], a tool designed to han-
dle sparse counts, revealed similar results. Prevotella
phages (Metastats: p = 0.02) were significantly increased
among smokers while Lactobacillus and Gardnerella
phages (Metastats: p = 0.001, both) were significantly
increased among nonsmokers (Fig. 2). Furthermore,
phages infecting Actinomyces, Aeromonas, Capnocyto-
phaga, Haemophilus, Rodoferax, and Xanthomonas were
also increased among smokers, and phages infecting
Enhydrobacter and Morganella were increased among
nonsmokers (Metastats: p < 0.05).
Some rare viral populations were unique to smoker or

nonsmoker total viral communities (Additional file 5:
Figure S4). For example, Actinomyces, Capnocytophaga,
Haemophilus and Rhodoferax phages were found only in
smokers, and Enhydrobacter, Enterobacter, Holospora,
Morganella, and Spiroplasma phages were found only in
nonsmokers. Eukaryotic DNA viruses were only found
in the lungs of smokers (Additional file 5: Figure S4).

Ecological comparisons between smokers and
nonsmokers
We next examined the lung virome ecology of smokers
and nonsmokers. Ecological α diversity measures of rich-
ness, biodiversity (Shannon’s H), and evenness (Peilou’s
J) (Fig. 3a) were significantly different (Mann-Whitney
U-test; p < 0.01) between smoker and nonsmoker vir-
omes with smokers exhibiting lower values in all ana-
lyzed metrics. Further, viral community structure (β
diversity) was significantly fit by smoking status (Fig. 3b,
Bray-Curtis distances, bivariate ellipse fitting (BEF): r2 ≥
0.32, p ≤ 0.02). Because some effects of smoking are re-
versible upon cessation, we performed a subgroup ana-
lysis of viral communities from current and former
smokers and found no significant virome differences
(BEF: p = 1.00). We also tested whether viral communi-
ties could be fit based on their paired bacterial pneumo-
types [29, 30] and found no significant association
between viral communities and bacterial pneumotypes
(BEF: r2 ≥ 0.17, p ≤ 0.14). Finally, we tested if, within
smoker and nonsmoker viral communities, there was
significant fitting based on their paired bacterial pneu-
motype and again found no significant fitting (BEF:
within smoker: r2 ≥ 0.12, p ≤ 0.10; within nonsmoker:
r2 ≥ 0.34, p ≤ 0.20).
Since differences in age and race were noted among the

smoker and nonsmoker groups, we tested whether these
variables affect the β diversity distribution of the samples.
Age was not significantly correlated to Bray-Curtis bacter-
ial and viral community distances (Mantel’s test; bacteria:
r = − 0.04, p < 0.71; virus: r = − 0.001, p < 0.46). Race also

Fig. 2 Differentially abundant phage types between smokers and nonsmokers. All statistically significant (Metastats, 1000 permutations, p < 0.05)
phage differences based on changes in relative abundances are shown
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did not significantly explain the variance across all 30
bacterial or viral communities (BEF: bacterial: r2 ≥ 0.08,
p ≤ 0.74; viral: r2 ≥ 0.08, p ≤ 0.61 for race).
Previous studies demonstrated changes in the lung bac-

teriome in moderate to severe COPD [7, 13], but no dif-
ferences were found in lung bacterial community
structure in healthy smokers without COPD compared to
nonsmokers [12]. Consistent with this, and in contrast to
the lung virome, we found no significant differences in
bacterial α diversity (richness, Mann-Whitney U-test,
p < 0.15; evenness, Peilou’s J: Mann-Whitney U-test,
p < 0.50) and only a slight difference based on Shan-
non index (Mann-Whitney U-test; p < 0.05) (Fig. 3c).
Differences in bacterial β diversity were noted, but
these differences were not explained by smoking sta-
tus (Fig. 3d, BEF: r2 ≥ 0.01, p ≤ 0.67). Instead, bacter-
ial communities in our study were previously found
to separate based on pneumotypes [29, 30]. Given
these results, it was not surprising that bacterial and
viral Bray-Curtis distances did not correlate (Mantel’s
r = 0.09, p < 0.06).
Low biomass specimens, such as BAL fluid, are at risk

of confounding from environmental contamination [49].

To address this, we examined bacteriome differences be-
tween pre-bronchoscopy control saline samples from
smokers and nonsmokers and found no significant
differences (Additional file 6: Figure S5). No Propioni-
bacterium bacteria, common reagent and laboratory
contaminants, were detectable within the background.
In a subgroup of subjects, we previously demonstrated a
lack of upper airway carryover into these lower airways
specimens (reported in Fig. 2 of [29]).

Metabolic differences between smokers and nonsmokers
To assess the impact of smoking on cellular activities at
the functional level, we compared the lung BAL metabo-
lomes of smokers and nonsmokers. In total, we identified
83 distinct metabolites and assessed their abundances
across individual smokers and nonsmokers (Fig. 4a). Most
metabolites were significantly different between smokers
and nonsmokers (Bonferroni corrected Mann-Whitney
U-test, p < 0.05). These included metabolites involved in
multiple metabolic pathways; among the top differences,
fatty acid and carboxylic acid metabolites were signifi-
cantly elevated in smokers.

Fig. 3 Biodiversity Metrics for Viruses & Bacteria. a, c Richness, diversity (Shannon’s H), and evenness (Peilou’s J) of smoker (blue bars) and
nonsmoker (red bars) viral and bacterial communities, respectively. b, d PCoA of Bray-Curtis distances between viral and bacterial communities,
respectively. Smoking status was factor fit to the PCoA plot, with blue and red ellipses represents smoking and nonsmoking statuses, respectively
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Hierarchical clustering by metabolic profile showed
strong clustering of nonsmokers, with nonsmokers hav-
ing lower metabolite levels than smokers for all metabo-
lites except citric acid. Smoker metabolic profiles also
clustered, but with greater variation (Fig. 4a). Metabolic
profile Bray-Curtis distances supported the hierarchical
clustering and demonstrated significant fitting by smok-
ing status, with low variance among nonsmokers and
more variance among smokers (Fig. 4b, BEF: r2 ≥ 0.56,
p ≤ 0.0001).
We next evaluated whether distinct bacterial or viral

populations may be associated with metabolic profile

differences by vector fitting all bacterial and viral abun-
dances to the metabolite Bray-Curtis distances (Fig. 4b).
Because PCoA are non-planar, we also ran regressions be-
tween Bray-Curtis distances of the bacterial and viral
population abundances and the metabolite data converted
into Euclidean distances using Mantel’s tests. Following
Bonferroni correction, three populations emerged as sig-
nificantly associated with metabolic profile differences
(Fig. 4b, p < 0.05); all three populations were viruses. Sur-
prisingly, no changes in bacterial abundances were signifi-
cantly associated with metabolic differences between
smokers and nonsmokers. Changes in the abundances of

Fig. 4 Comparison of smoker and nonsmoker BAL metabolites. a Heatmap of examined metabolites in BAL fluid. Each row shows the ion
intensity for a specific metabolite. Metabolites are grouped based on metabolic pathways. Each column shows the BAL fluid metabolic profiles
of smokers and nonsmokers, also identified by bacterial pneumotype as determined in [25, 26]. Progression from white to blue to yellow to red
indicate increased metabolite content. Asterisks indicate significantly different metabolites between smokers and nonsmokers as assessed by
Bonferroni corrected Mann-Whitney U-test (* = p < 0.05, ** = p < 0.01, *** = p < 0.001) (b) PCoA of Bray-Curtis distances between different
metabolic profiles. Smoking status and bacterial and viral abundances were factor and vector fit to the PCoA plot, respectively. Blue and red
ellipses represent factor fitting of smoking and nonsmoking status, respectively. Black vector arrows denote significant vector fitting of bacterial
and viral populations based on 9999 permutations and following Bonferroni correction (p < 0.05). The gray vector arrows denote significant
vector fitting of bacterial and viral populations based on 9999 permutations and significant Mantel test results following Bonferroni correction
(p < 0.05). BPT = background predominant taxa, SPT = supraglottic predominant taxa
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the Proteobacteria phages, Shigella boydii phage and
Burkholderia pseudomallei phage, were associated with a
metabolic shift towards smokers, while an Actinobacteria
phage, Gardnerella vaginalis phage, appeared to influence
metabolic differences in nonsmokers.

Associations between viruses and the pulmonary
environment
Understanding how viruses and the pulmonary environ-
ment impact each other is important for determining the
impact of viruses in the lung. We first evaluated what me-
tabolites, immune cells, cytokines, or bacterial populations
might be linked to changes in viral community structure.
In total, 15 different metabolites, 11 immune cells and
cytokines, and 32 different bacterial populations (Fig. 5)
correlated with viral community dissimilarity distances
(Mantel’s test, p < 0.05, Mantel’s r > 0.2). Interestingly,
56% of the bacterial populations correlated with the
smoker virome were Proteobacteria, further supporting
the role of Proteobacteria and their phages in alterations
of host-associated ecosystems [50]. Out of the 26 metabo-
lites, immune cells, and cytokines, arachidonic acid and
IL-8 (Fig. 5 top left and top right, respectively) had the
highest association with virus community separation
based on dissimilarity (r2 > 0.3), and arachidonic acid and
IL-8 levels were highest in smokers. No significant

differences in IL-8 or arachidonic acid levels were
observed between current and former smokers (Mann-
Whitney U-test, IL-8 p = 0.48, arachidonic acid p = 0.13).

Discussion
In this first study of the effects of smoking on the lung
DNA virome, we found that, in contrast to the lung bac-
teriome, smoking was associated with significant
changes in the lung virome and metabolome. Overall,
smokers exhibited a contraction of the lung virome, evi-
denced by lower numbers of viral populations and al-
tered viral ecology. Virome differences between smokers
and nonsmokers remained significant even after ac-
counting for age difference between the groups. We
hypothesize this altered viral ecology may drive changes
in the BAL metabolome between smokers and non-
smokers. Alternatively, changes in the lung metabolic
profiles of smokers may lead to downstream effects on
the virome, though we consider this less likely as early
metabolic changes would presumably also impact bacter-
ial ecology, a link we failed to identify in this study.
Key to our analyses was the ability to quantitatively

identify and enumerate viral populations in the lung.
While sequence-based 16S rRNA amplification has en-
abled the rapid quantitative characterization of bacterial

Fig. 5 Linkage of Viral Community Changes with the Lung Microenvironment. (bottom) Metabolites, immune cells and cytokines, and bacterial
populations with significant correlations (Mantel’s test; r > 0.15; p < 0.05) to the Bray-Curtis distances between different viral communities. Of the
metabolites, immune cells and cytokines, arachidonic acid (top left) and IL-8 (top right) had the highest association (r2 > 0.3) with separation of
viral communities based on Bray-Curtis dissimilarity represented by PC1

Gregory et al. Respiratory Research  (2018) 19:174 Page 8 of 13



communities within the lung [51], the identification and
enumeration of respiratory viruses has been much
slower due to the lack of a single universal viral marker
gene and the difficulty in obtaining sufficient viral bio-
mass from airway samples to sequence without amplifi-
cation. As a result, all lung virome studies to date have
used multiple displacement amplification (MDA) to in-
crease viral DNA yield [14–17]. While this amplification
step is useful for amplifying single-stranded DNA vi-
ruses, it has both systematic and stochastic biases and
results in a non-quantitative representation of commu-
nity members that varies as much as 10,000-fold from
the original [52].
Environmental samples often have low biomass and, as

a result, low input DNA, especially in aquatic environ-
ments. As a result, most research on producing quanti-
tative viral metagenomes has been done with marine
samples, which has shown that samples with as low as
100 femtograms of starting DNA are quantitative if
MDA is not used [28, 53–55]. Our lung metagenomes
were produced using the DNA-to-sequence pipeline
used to produce quantitative marine viromes.
It is important to note that in other systems, re-

duced microbial diversity is associated with dysbiosis
[56]. In the lungs of smokers, such dysbiosis might
lead to COPD progression. Previous studies demon-
strated differences in the bacteriome of patients with
advanced COPD compared to healthy controls [7, 13],
however no differences were observed between healthy
smokers and nonsmokers [12] suggesting that bacter-
ial dysbiosis may not be responsible for COPD disease
progression. In contrast, we found that viral diversity
was significantly lower in the lungs of healthy
smokers, and this viral dysbiosis was associated almost
exclusively with changes in phage ecology. We
propose that smoking leads to early effects on the lung
virome, and specifically the phageome, which may
influence and drive later changes in the bacteriome
during progression to COPD. It remains to be deter-
mined whether microbial changes lead to disease
progression or whether disease progression provides
the niche for alterations in the lung microbiome.
Well-controlled, longitudinal studies are needed to ad-
dress this important question.
In the gut, alterations in the number and composition

of Proteobacteria is hypothesized to be a signature of
dysbiosis and disease [50]. Our corollary finding of asso-
ciations between two Proteobacterial phages and meta-
bolic changes in smokers parallels these gut findings.
Given that Proteobacteria changes were not associated
with metabolic differences, we hypothesize that in-
creased numbers of Proteobacteria phages may alter
metabolic output within their bacterial hosts during
infection.

Previously, we described the presence of bacterial pneu-
motypes in the lungs of healthy volunteers, thought to be
related to the degree of silent aspiration of supraglottic
taxa. Using these same specimens, we failed to identify
unique viral pneumotypes. Nonetheless, the presence of
rare viruses such as Spiroplasma phage and human
herpesvirus 8, appear to enable colonization by new,
closely related common virus types and, thus, may be im-
portant for establishing viral pneumotypes (Additional file
4: Figure S3) as has been proposed for bacteria [57, 58].
Analyses of more lung viromes are necessary, however, to
clarify the existence of, or lack thereof, viral pneumotypes.
Consistent with prior studies [14, 16–18], the vast ma-

jority of viruses identified in our lower airway samples
were phages. Nonsmoker viromes were enriched with
Lactobacillus and Gardnerella phages while smoker vir-
omes were enriched with Prevotella phages. Prior in
vitro work has suggested that a byproduct of cigarette
smoke induces Lactobacillus phages [59]. However, there
are about 4000 compounds in cigarette smoke [60],
some of which may induce phage while others may sup-
press phage, though research in this area is lacking. In
our study, the majority of smokers were former smokers
and therefore, not recently exposed to cigarette smoke.
Additionally, we observed an increased relative abun-
dance of Lactobacillus phages in the context of the en-
tire DNA virome of nonsmokers. It is possible that
bacteria, phages, or host factors may influence phage in-
duction in the lung microenvironment, as previously
demonstrated in co-culture studies of lysogenic bacteria
and human epithelial cells [61], factors difficult to model
with an ex vivo experiment.
Interestingly, we did not observe crAssphage, a virus

found ubiquitously in the human gut and vagina and on
the skin [62], in our airway samples, nor did we identify
single-stranded DNA anelloviruses. In fact, in our cohort
of healthy smokers and nonsmokers, we identified very
few eukaryotic DNA viruses in total. The absence of
crAssphage may be niche-specific, as it also was not
identified in other lung virome studies [14–16]. The ab-
sence of anelloviruses in our study may be related to the
healthy status of our subjects or to differences in sample
preparation and sequence analysis compared to other
studies. Anelloviruses have primarily been identified
in immunocompromised subjects (lung transplant,
HIV or deceased organ donors) using MDA-amplified
viromes [14, 17].
We did, however, identify high abundances of Propi-

onibacterium phage across all 30 lung BAL samples.
Notably, Propionibacterium spp. bacteria were previously
noted in these samples when 16S rRNA gene sequencing
was performed with 454 sequencing of the V1-V2 region
[29], but not with Illumina MiSeq sequencing of the V4
region [30], indicating that bacteriome comparisons
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between studies sequencing different regions of the 16S
rRNA gene should be made with caution. While the V4
region is excellent at amplifying bacterial and archaeal
16S rRNA genes [32, 33], it has been shown to be less
specific for Propionibacterium spp. [63]. Our virome
data is consistent with the 454 sequencing of V1-V2 [29]
which linked Propionibacterium spp. to the “background
predominant taxa” bacterial pneumotype as suggested by
other studies [49]. Due to the low biomass nature of the
lower airways and factors associated with BAL collec-
tion, the presence of background taxa in these types of
samples is inevitable. However, Propionibacterium spp.
bacteria have been identified in diseased lungs of sub-
jects with bronchiectasis [64] and sarcoidosis [65] as well
as in metagenomic studies of lung tissue and extracellu-
lar vesicles [9, 66, 67]. In healthy lungs, the data on Pro-
pionibacterium spp. bacteria in BAL is conflicting [12,
29, 30, 68]. If Propionibacterium phage, like Propionibac-
terium spp. bacteria, represent background, it is import-
ant to note that these sequences were found in all
samples and were not associated with separation of the
virome between smokers and nonsmokers.
We note that changes in phageome composition were

not reflected in bacteriome changes. There are several
potential explanations for this phenomenon. First, it is
impossible to know if the viral nucleic acid and bacterial
16S rRNA genes being sequenced represent live or dead
microorganisms. Second, viral reference databases, in
general, lack robustness, increasing the challenge of
properly aligning and assigning taxonomy to short
stretches of viral nucleic acid. To improve the likelihood
of identifying viral taxa, we combined multiple viral ref-
erence databases into a single, custom database. How-
ever, the compositional nature of the relative abundance
data will be highly impacted by gaps in the reference
database used for annotation. Third, phage-bacteria net-
works are unique to individuals, vary across body sites
and are impacted by environmental factors as recently
shown in a network-based analytical model by Hannigan
et al. [69]. Therefore, it will be important to continue to
consider not only the composition of the microbiome
(bacteriome, virome, mycobiome), but also the dynamic
interactions between those constituents and with the
surrounding environment in future studies.
It is still unclear why some smokers progress to COPD

while others remain unaffected, though there is evidence
that byproducts of lipoxygenation of arachidonic acid,
leukotrienes and lipoxins are important for COPD
pathogenesis [70]. Recent studies have also implicated
IL-8 as an important potential marker of COPD patho-
genesis [71, 72]. Interestingly, of all metabolites and cy-
tokines studied, we observed the strongest association
between arachidonic acid and IL-8 and changes in the
smoker lung virome. Thus, monitoring specific phage

groups or the whole viral community could be import-
ant for predicting trends in arachidonic acid and IL-8
and the progression of the smoker lung to COPD.
Whether this is a direct interaction or not remains to be
determined, but these observations provide a novel path-
way of exploration for future studies.
There are several limitations to our study. Statistical

power was low in our analyses due to a relatively small sam-
ple size. However, due to the invasiveness of the lower air-
way sampling and cost restraints of our multi-omic
approach, particularly in regards to high-throughput next
generation sequencing of the virome, we were limited to a
cohort of 30 subjects. Nonetheless, our cohort size is in line
with current gut virome studies, which do not require an in-
vasive procedure for sample collection. In total, there are 20
gut virome studies with unique datasets [40, 73–91]. Of
these studies, the mean number of participants is 35 and the
median 20. While smaller than recent lung bacteriome stud-
ies, this is the largest study to date to analyze the combined
DNA virome, bacteriome and metabolome of BAL fluid. A
larger cohort would allow for investigation of the potential
role of other important covariates, such as gender, ethnicity,
and age, on the lower airway virome. Our study was a
cross-sectional analysis of the lower airway microenviron-
ment in smokers and nonsmokers and does not allow for
the analysis of trends over time nor the characterization of
microbiome changes in relation to COPD progression. In-
deed, the lower FEV1/FVC ratio observed among smokers
may be related to early inflammatory airway dysfunction
present at a stage where smokers do not meet COPD cri-
teria [72, 92, 93]. Future longitudinal studies are greatly
needed to evaluate whether changes in the lower airway vir-
ome have an impact on chronic inflammatory airway dys-
function among smokers. We were also limited by
availability of historical specimens as we did not have access
to matched oral rinse or pre-bronchoscopy saline control
samples of sufficient quantity for shotgun sequencing,
thereby precluding characterization of the supraglottic or sa-
line virome. Finally, due to technical constraints, we
assessed the acellular BAL DNA virome. Shotgun metage-
nomics sequences all nucleic acid in a sample, and despite
the use of acellular BAL to reduce human genomic contam-
ination, the virome sequence space made up only a tiny
fraction of all sequences. Further, in low biomass samples,
even small increases in host genomic material will quickly
swamp low viral signal. Technical advances in BAL virome
purification or enrichment, removal of contaminating host
and bacterial nucleic acid, and deeper, more affordable se-
quencing technologies should be a focus moving forward,
thereby allowing more detailed analysis of the lung virome.

Conclusions
In summary, our findings provide a foundational glimpse
into the ecological interplay between viruses, bacteria,
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metabolites, and immune cells that likely impact the
lung microenvironment and ultimately, perhaps, pro-
gression from smoking to COPD. We show that, in con-
trast to the lung bacteriome, the DNA viromes and
metabolomes of smokers and nonsmokers are signifi-
cantly different. We hypothesize that changes in the
metabolic output of Proteobacteria in the lungs driven
by their phages could potentially be a biomarker for the
smoker metabolic disease state. Further, while we cannot
disentangle whether arachidonic acid and IL-8 cause al-
terations in the lung virome or if virome changes cause
increases in arachidonic acid and IL-8, these findings
suggest that monitoring the lung virome of smokers may
be important for assessing the “tipping point” in transi-
tioning from a healthy lung environment to COPD.
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