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Abstract: The incidence of cholangiocellular carcinoma (CCA) is rising worldwide. As there are no
specific early symptoms or specific markers of CCA, it is often diagnosed in later inoperable stages.
Accumulating evidence underlines the importance of radiation therapy in the induction of antitumor
immunity. The surface protein composition on extracellular vesicles (EVs) relates to originating
cells and thus may play a role in vesicle function. We assessed immune profiles of EVs and their
immune origin in patients with inoperable CCA prior and after selective internal radiotherapy (SIRT).
A total of 47 CCA patients receiving SIRT and 12 healthy volunteers (HV) were included. Blood
was withdrawn before therapy (pre T) and after T. EVs were purified from plasma by cluster of
differentiation (CD)9-, CD63-, and CD81-immunobead isolation. To detect differently abundant
surface markers, dynamic range and EVs input quality were assessed. A total of 37 EVs surface
markers were measured by flow cytometry and correlated either with the administered activity dose
(MBq) or with the interval until death (month). EVs phenotyping identified lymphocytes, B cells,
NK cells, platelets, endothelial cells, leukocyte activation, B cell activation, T and B cell adhesion
markers, stem/progenitor cells, and antigen-presenting cells (APC) as EVs-parenteral cells. CD4 and
CD8 significantly declined, while other markers significantly increased in CCA patients pre T vs.
HV. Platelets-deriving EVs significantly decreased, normalizing to levels of HV but still significantly
increasing vs. HV post SIRT. B cells-deriving EVs significantly increased pre T vs. HV, positively
correlating with administered activity dose. MHCII and CD40 EVs significantly increased pre SIRT
and negatively correlated with administered activity dose, while EVs from antigen presenting cells
and CD49e pre SIRT positively correlated with survival time after therapy. Increased levels of CD24
and CD44 in cancer pre T were significantly decreased post T. Among the heterogeneity of EVs that
was demonstrated, in particular, B cells-deriving, MHCII, and CD40 positive or APC-deriving EVs
need to be further studied for their diagnostic or prognostic relevance in clinical scenarios.

Keywords: CCA; EVs; biomarker; MHC; diagnosis; prognosis

1. Introduction

Cholangiocellular carcinoma (CCA) is a heterogenous group of epithelial malignancies
of the intra- and extrahepatic bile ducts or the bile gland. Since its classification is based
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on the anatomic location with regards to the liver, three subtypes can be stratified: intra-
hepatic, perihilar (Klatskin tumor), and distal extrahepatic [1]. CCA has a rising incidence
worldwide which is mainly caused by its risk factors such as liver cirrhosis and obesity [1].
Intrahepatic CCA is the second most common primary liver cancer after hepatocellular
carcinoma [1]. The five-year survival rate ranges between 7 and 20%, which estimates
the outcome rather poorly [2]. Since symptoms mostly appear late, and due to the lack of
reliable biomarkers, CCA is often diagnosed in the late cancer phase. Although carbohy-
drate antigen 19-9 and carcinoembryonic antigen is a common routine practice towards
the diagnosis, they have low sensitivity and specificity with respect to detecting CCA in
early stages [3]. On the other hand, the prognosis is very poor, as a late diagnosis bears a
limited potential and extent of surgical resection and only a palliative therapy setting is
possible [4,5]. Apart from the combination of cisplatin and gemcitabine, there is no “gold
standard” chemotherapy regimen with strong evidence [6,7]. Therefore, there is an urgent
need for novel diagnostic and therapeutic approaches towards the early detection and
beneficial management of CCA.

An effective therapy approach that can also be applied in later stages of the disease,
beside the use of checkpoint-inhibitors, is the selective internal radiation therapy (SIRT)
which is a minimal invasive radio ablative therapy [8,9]. In SIRT, radioactive material
(e.g., microspheres loaded with the radioisotope Yttrium-90) is delivered directly into the
tumor’s bloodstream via an arterial catheter. The radiation leads to necrosis of the tumor
tissue and invasion of immune cells [10]. It still remains controversial if, due to the immune
response to a therapy, an abscopal effect (which describes immune cells getting primed
by undergoing tumor cells, subsequently “attacking” out-of-the-field metastasis) can be
observed [11]. This highlights the unique role of the immune system and intercellular
communication in cancer diagnosis, therapy, and especially in ablative therapy procedures.

Extracellular vesicles (EVs), important mediators of cell-cell-communication, are mi-
croparticles with a size from 30 to 10,000 nm enclosed by a lipid bilayer that can be released
by almost all types of cells, including cancer cells [12]. EVs contain intracellular products
of their origin cells such as microRNA, messenger RNA (mRNA), deoxyribonucleic acids
(DNA), and proteins, which are also functional in the recipient cells [13]. They have re-
cently emerged as promising biomarkers and therapeutic targets in cancer research [14].
EVs can be classified into three main categories: exosomes, microvesicles, and apoptotic
bodies [12]. The distinct type of EVs can be identified and isolated based of their surface
antigens. Accordingly, cluster of differentiation proteins (CD)9, CD63, and CD81 expressed
on exosomes are frequently applied for their isolation and characterization [15–17]. There
is emerging evidence that circulating EVs play an important role in carcinogenesis and
tumor microenvironment [18]. It was shown that different expression of proteins, lipids, or
nucleic acids in EVs from cancer patients compared to healthy subjects often mirrors the
type of cancer [19]. Webber et al. demonstrated that exosomes produced by cancer cells
could transmit information to normal stromal fibroblasts and trigger a cellular response.
Their work showed that transforming growth factor beta (TGFβ)1 expressed at the exosome
surface induced differentiation from fibroblasts to tumor-promoting myofibroblasts which
act pro-angiogenetic [20,21]. Furthermore, it was shown that the levels of circulating exo-
somes had a promising diagnostic potential in the context of pancreatic, hepatocellular, and
ovarian carcinoma [22,23]. Also, the count of circulating exosomes has been demonstrated
as a prognostic marker for lung cancer patients in a meta-analysis [24]. The expression of
surface antigens, notably CD105 and CD146 on EVs had a significant prognostic potential
in metastatic colorectal cancer [25]. There is evidence that EVs also play a role in origin and
progression of CCA. Therefore, it can also be considered that their levels in the circulation of
patients and surface proteins can also be useful as diagnostic and prognostic markers [26].

Hence, there is an urgent need for the discovery of novel diagnostic and prognostic
biomarkers and therapeutic targets towards the fast detection and management of CCA
therapeutic regimes. Here, we performed a multiplexed phenotyping of EVs determining
their immune profiles and their immune origin in patients with inoperable CCA prior and
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after SIRT with the aim to identify new molecular players that could be used as biomarkers
and eventually therapeutic targets in future. EVs were purified from plasma by CD9−,
CD63−, and CD81−immunobead isolation, and the results demonstrate that multiple cell
types associated with the circulatory system contribute to the heterogeneity of EVs before
and after therapy. Moreover, they may be applied as diagnostic and/or prognostic markers.

2. Materials and Methods
2.1. Ethics

This study was performed in the University Hospital of University Magdeburg with
institutional ethics committee approval (SWARM RAD298), in accordance with the Declara-
tion of Helsinki. All patients included gave written informed consent.

2.2. Study Settings and Population

Forty-seven patients (male n = 27, female n = 20, median age 71.00 (60.50–78.50) years
undergoing selective internal radiotherapy of CCA. Forty-four patients had intrahepatic
CCA. One patient had extrahepatic CCA. Two patients had CCA combined with an-
other tumor entity (prostate carcinoma, hepatocellular carcinoma). Inclusion criteria were:
(i) patient with CCA, (ii) indication for radioembolization (RE)/SIRT, (iii) chemotherapy
and cortisone therapy paused for minimum two week before admission, (iv) >18 years of
age. Exclusion criteria were (i) live expectancy < 3 months, (ii) hepatic tumor load > 70%,
(iii) chronic infections, (iv) pronounced ascites, (v) contraindications for angiography,
MRI contrast medium (Gd-EOB-DTPA), X-ray contrast medium, MRI and CT, (vi) severe
cardiovascular diseases (NYHA III/IV), (vii) thrombotic or embolic events in the last
6 months (stroke/TIA), (viii) immunosuppression (e.g., in Z.n. transplantation) or HIV, es-
pecially cortisone long-term therapy, and (ix) autoimmune diseases or chronic inflammatory
bowel diseases.

2.3. Technique of 90Y-Radioembolization

A detailed description of RE/ SIRT was previously provided [27]. RE was performed
using Yttrium-90 (90Y) resin microspheres (SIR-Spheres®, Sirtex Medical, Lane Cove,
Australia). Before RE the hepatic arterial tree and the arterial feeders to the gastrointestinal
tract were identified via angiography. The gastroduodenal and right gastric arteries as
any other gastrointestinal tract feeders were embolized via coils or plugs to isolate the
hepatic arterial blood supply. In the next step 99mTc-MAA (150 MBq, 99mTc-LyoMAA,
Covidien, Neustadt/Donau, Germany) was delivered into the left and right hepatic artery
and a gamma camera (E.CAM 180, Siemens, Erlangen, Germany) determined the extent of
hepatopulmonary shunting and tumor covering. A SPECT scan of the upper abdomen was
performed to identify nontarget extrahepatic seeding of 99mTc-MAA. Activity of 90Y resin
microspheres was calculated by the body surface area (BSA) method. Up to 2 weeks later,
90Y resin microspheres were delivered selectively into the hepatic arteries via a temporary
transfemoral catheter placed selective in the left and right hepatic artery.

2.4. Data Acquisition and Blood Sampling

The laboratory evaluation one day prior to SIRT and two days after SIRT was per-
formed. Blood samples were collected in ethylenediaminetetraacetic acid (EDTA) tubes
(Becton Vacutainer, Becton Dickinson Diagnostics, Aalst, Belgium) and citrate tubes (Becton
Vacutainer) before (pre T) and after (post T) SIRT. After blood drawing, EDTA-blood was
kept vertically on room temperature avoiding agitation. In the case of multiple SIRTs,
plasma was also drawn before and after the following therapies. Blood was centrifuged
at 2000× g for 15 min at 4 ◦C and plasma was stored at −80 ◦C until the EVs isolation
and sample analysis (Figure 1). Twelve healthy volunteers served as controls. Blood
counts (leukocytes, erythrocytes, red cell distribution width, thrombocytes, neutrophil
granulocytes, immature granulocytes, eosinophil granulocytes, basophil granulocytes,
lymphocytes and monocytes) were determined in the university hospital clinical routine
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as well as the coagulation parameters (quick value, international normalized ratio (INR),
partial thromboplastin time (PTT) and thrombin time), clinical chemistry (creatinine, urea,
uric acid, bilirubin, albumin, alanine aminotransferase, aspartate aminotransferase, al-
kaline phosphatase and gamma-glutamyl transferase) and c-reactive protein (CRP) pre
SIRT. Blood was collected in serum tubes (clinical chemistry and CRP) and EDTA tubes
(blood count).
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Figure 1. Schematic illustration of the experimental workflow. Cholangiocellular carcinoma (CCA)
patients received a liver MRI according to the clinical standards. Blood samples were taken before
(pre T) and after (post T) selective internal radiation therapy (SIRT). Extracellular vesicles (EVs) were
isolated from plasma using CD9+, CD63+, and CD81+ exosome markers in the immune-bead isolation.
The isolated EVs populations are distinguishable by flow cytometry (FACS). The presence of EVs
was assessed by western blotting, and in addition to the characterization of EVs, their morphology
was analyzed by scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA).

2.5. EV Isolation

EV isolation was performed using magnetic-activated cell sorting (MACS). For the
isolation one ml plasma sample was pre-cleared by dilution in 1 mL phosphate buffered
saline (PBS) buffer (Thermo Fisher Scientific, Waltham, MA, USA) and repeated centrifuga-
tion was performed (2000× g for 30 min and 10,000× g for 45 min at room temperature).
The pre-cleared samples w ere incubated with 50 µL magnetic labelled beads (Exosome
Isolation Kit Pan, human, #130-110-912, Miltenyi Biotec, Bergisch Gladbach, Germany) and
incubated for one hour at room temperature. After incubation the samples were loaded
into magnetic columns (µ Columns with plungers, #130-110-905, Miltenyi Biotec), which
were placed in a thermoMACS separator (#130-091-136, Miltenyi Biotec), equilibrated with
100 µL of equilibration buffer (Exosome Isolation Kit Pan, human, #130-110-912, Miltenyi
Biotec) and rinsed three times with isolation buffer (Exosome Isolation Kit Pan, human,
#130-110-912, Miltenyi Biotec). After the sample run through the columns, the columns
were washed four times with 200 µL of isolation buffer. This way the magnetic labelled
EVs sticked to the columns and were separated from the waste. After the samples and the
isolation buffer completely passed the columns, they were placed in 1.5 mL tubes, 100 µL
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of isolation buffer were added and the EVs were flushed out in the tubes. After isolation
the samples were stored at −80 ◦C.

2.6. EV Measurement via FACS

The isolated EVs were incubated with MACSPlex Exosome capture beads, deriving
from MACSPlex Exosome kit (#130-108-813, Miltenyi Biotec) and incubated overnight on
an orbital shaker (450 rpm, room temperature). At the next day one ml of MACSPlex buffer
was added (MACSPlex Exosome kit, #130-108-813, Miltenyi Biotec) and the sample was
centrifuged (3000× g, 5 min, room temperature). One ml of the supernatant was discarded
and 135 µL were left in the tube. To the leftover 15 µL of MACSPlex Exosome detection
reagent mastermix, consisting of 5 µL detection reagent for CD9, 5 µL detection reagent for
CD63 and 5 µL detection reagent for CD81 (MACSPlex Exosome kit, #130-108-813, Miltenyi
Biotec), were added. The sample was incubated at room temperature for one hour and after
that centrifuged at 3000× g and room temperature for 5 min. Following the centrifugation
one ml of supernatant was discarded and one ml of MACSPlex buffer was added. The
following 15 min the sample was incubated in the dark on an orbital shaker (450 rpm).
The incubated sample was centrifuged at 3000× g for 5 min at room temperature. One ml
of supernatant was discarded. The leftover was and studied via FACS. Data assessed by
flow cytometry were normalized to control markers provided in the assay as suggested by
the manufacturer, and APC median signal intensities between the groups were compared.
Western blot results were normalized to baseline TSG101 expression and then referred
to HV.

2.7. Western Blotting

The total protein concentration of MACS-isolated EVs was quantified using Lowry
Protein Assay [28]. 10 µg of the EV fractions were lysed directly by sodium dodecyl sulfate
(SDS) sample buffer (200 mM Tris-HCL (pH 6.8); 10% SDS; 0.4% bromophenol blue; 40%
glycerol) and was separated by SDS (12%) gel electrophoresis (SDS-PAGE). For the detection
of CD9 and TSG101 signal the EV fraction proteins were transferred onto 0.45 µm PVDF-
membranes (Cytiva, 10600023, Marlborough, MA, USA). Membranes were blocked with
5% milk powder and 0.1% Tween in Tris-Buffered Saline (TBS) for 1 h at room, followed by
primary antibody incubation overnight at 4 ◦C. The horseradish peroxidase (HRP)-coupled
secondary antibodies were incubated for 1 h at room temperature. Subsequently, enhanced
chemiluminescence (Millipore WBKLS0500, Merck KGaA, Burlington, MA, USA) detection
and visualization were implemented and detected by Octoplus QPLEX imager from NH
DyeAgnostics (Halle, Germany). For semi-quantitative analysis of western blot signals,
ImageJ software was used. The following antibodies were applied: CD9 (1:1000 Purified
mouse monoclonal anti-human, Mouse IgG1, κ, 312102 Biolegend, San Diego, CA, USA),
TSG101 (1:200 tsg 101 mouse monoclonal antibody, sc-136111, Santa Cruz, Dallas, USA),
goat-anti-mouse-HRP (1:1000 dilution, polyclonal, ab205719, Abcam, Cambridge, UK).

2.8. Dynamic Light Scattering

The Size of the EVs was assessed by Zetasizer Nano (Zetasizer Nano, ZEN 3600
Malvern Instruments Ltd., Malvern, UK). The extracted EV fractions were diluted 1:100
using sterile filtered PBS and measured in polystyrene cuvette (67.745, Sarstedt AG &
Co. KG, Nümbrecht, Germany). For reproducibility and standardization of the EV size,
the parameter values were used as follows; a material refraction index of blood EVs of
1.39 and a dispersant refraction index of water of 1.330 [29]. The samples were incubated
for 180 s and measured while temperature was controlled at 25 ◦C. The Zetasizer Nano
used a laser wavelength of 632.8 nm at a 90◦ fixed angle. The size or homogeneity of
the EVs was recognized through the diameter and the intensity in per cent, respectively.
Each measurement with DLS was conducted with 10 acquisitions of 5 s; the diameter was
measured between 1 and 10,000 nm. The measurement settings were adjusted and tested
with carboxylated polystyrene calibration particles (Calibration Particles—qNano, Izon
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Science Ltd., Lyon, France) between 70 and 400 nm. N represents the number of EV samples
from each patient sample, and n represents the number of collected data (HV: n = 3, n = 9,
TP: n = 3, n = 9).

2.9. Scanning Electron Microscopy Analysis

In preparation for SEM, coverslips (Thermo Fischer Scientific Inc.) were cleaned
with acetone, ethanol, and ultrapure water and then coated with 100 µg/mL poly-D-lysine
(Millipore A003E, Merck KgaA) solution for 24 h at 4 ◦C [30]. The EV samples were adhered
to poly-D-lysine coated glass coverslips and incubated overnight [31]. After washing with
DPBS the EVs were then fixed with 4% formaldehyde and incubated for 2 h at room
temperature. After washing with PBS and water followed by gradual dehydration from
70% to 100% ethanol in water with a 10% concentration increment step every 5 min [30]. The
EV samples were then coated with gold (<10 mm) to increase the image contrast, enhance
the electric conductivity, and avoid surface charging. The coated coverslips were mounted
(sample facing upwards) on the microscope slide. The images were captured by the
Scanning Electron Microscope (FEI Scios DualBeam equipped with an EDAX EDS system,
Thermo Fischer Scientific Inc.) at 10–12 KeV voltages 10,000× and 35,000× resolution.

2.10. Statistics

GraphPad Prism 6.0 software (GraphPad Software Inc. San Diego, CA, USA) was
used to perform the statistical analysis. The normality of all data was verified by the
Kolmogorov-Smirnov test. Data are given as mean ± standard error of the mean or as
otherwise indicated. The differences between the healthy volunteers versus tumor patients
were determined by the non-parametric Mann-Whitney test. The statistically significant
differences between the EVs in patients before versus after therapy were assessed by the
nonparametric Wilcoxon matched-pairs signed rank test. The correlation analyses were
performed by determining the Spearman correlation significance and Spearman r. A p value
below 0.05 was considered statistically significant.

3. Results
3.1. Data Description
3.1.1. Patient Cohort

A total of 47 Patients (20 female, 27 male) with a median age of 71 years were included.
Total liver volume (median: 1888 cm3), tumor volume (median: 379.5 cm3), tumor fraction
(median: 21.19%), and administrated activity dose (median: 1055 MBq) were raised. The
median values of albumin, alanine aminotransferase, aspartate aminotransferase, quick
valve, INR, PTT, thrombin time were within the standard range. Median values of alkaline
phosphatase, gamma-glutamyl transferase, and CRP were increased (Table 1).

Table 1. Baseline characteristics and standard laboratory parameter. Median value with 75% per-
centile is given. Abbreviations: INR, international normalized ration; PTT, partial thromboplas-
tin time.

Variables n = 47

Age [median (range)] 71.00 (60.50–78.50)
Gender (female, n) 20
Total liver volume (cm3) [median (range)] 1888 (1434–2629)
Tumor volume (cm3) [median (range)] 379.50 (117.40–619.60)
Tumor fraction (%) [median (range)] 21.19 (9.09–26.62)
Administered activity dose (MBq) [median (range)] 1055.00 (871.30–1461.00)
Creatinine (umol/L) [median (range)] 69.00 (54.50–86.00)
Urea (mmol/L) [median (range)] 5.00 (3.90–6.50)
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Table 1. Cont.

Variables n = 47

Uric acid (umol/L) [median (range)] 294.50 (239.30–335.80)
Bilirubin (umol/L) [median (range)] 6.85 (5.17–11.78)
Albumin (g/L) [median (range)] 39.90 (37.90–43.30)
Alanine aminotransferase (umol/s·L) [median (range)] 0.32 (0.25–0.59)
Aspartate aminotransferase (umol/s·L) [median (range)] 0.59 (0.45–0.79)
Alkaline phosphatase (umol/s·L) [median (range)] 2.60 (1.75–4.24)
Gamma-glutamyl transferase (umol/s·L) [median (range)] 2.04 (1.89–5.79)
Quick value (%) [median (range)] 91.50 (81.75–96.75)
INR [median (range)] 1.045 (1.020–1.115)
PTT (sec.) [median (range)] 27.30 (26.30–29.98)
Thrombin time (sec.) [median (range)] 16.65 (15.70–17.43)
C-reactive protein (mg/L) [median (range)] 8.75 (5.75–28.35)

3.1.2. Immune Cell Status

The included patients showed a tendency to increased leukocyte numbers and neu-
trophil granulocytes after therapy. Counts of erythrocytes and thrombocytes were signifi-
cantly decreased after SIRT vs. pre T (p < 0.05, Table 2). The percentage of lymphocytes and
monocytes decreased post T vs. pre T, however this was not significant.

Table 2. Complete blood counts one day before (pre T) and two days (post T) after selective inter-
nal radiotherapy radioembolization. Median value with 75% percentile is given. Nonparametric
Wilcoxon matched-pairs signed rank test was performed and a p value below 0.05 was considered
statistically significant.

Variables Pre T Post T p Value

Leukocytes (Gpt/L) [median (range)] 7.34 (6.13–9.85) 9.62 (5.85–12.10) 0.2305
Erythrocytes (Tpt/L) [median (range)] 4.06 (3.76–4.40) 3.89 (3.61–4.31) 0.0001
red cell distribution width (%) [median (range)] 14.45 (13.18–15.33) 14.30 (13.45–15.85) 0.5723
Thrombocytes (Gpt/L) [median (range)] 217.00 (150.30–278.00) 201.00 (130.50–246.50) <0.0001
Neutrophil granulocytes (%) [median (range)] 74.70 (66.55–80.00) 76.50 (66.93–81.75) 0.3750
Neutrophil granulocytes (Gpt/L) [median (range)] 5.42 (4.53–7.68) 6.58 (4.15–9.88) 0.7422
Immature granulocytes (%) [median (range)] 0.00 (0.00–0.01) 0.01 (0.00–0.23) 0.5000
Immature granulocytes (Gpt/L) [median (range)] 0.04 (0.02–0.06) 0.11 (0.04–0.14) 0.6875
Eosinophil granulocytes (%) [median (range)] 1.00 (0.53–2.00) 1.00 (0.00–1.80) 0.5000
Eosinophil granulocytes (Gpt/L) [median (range)] 0.07 (0.04–0.16) 0.04 (0.01–0.07) 0.5625
Basophil granulocytes (%) [median (range)] 0.65 (0.00–1.00) 0.30 (0.00–1.00) 0.7500
Basophil granulocytes (Gpt/L) [median (range)] 0.04 (0.02–0.06) 0.03 (0.02–0.04) 0.1250
Lymphocytes (%) [median (range)] 16.40 (10.25–20.30) 12.00 (9.00–19.80) 0.1563
Lymphocytes (Gpt/L) [median (range)] 1.19 (0.75–1.75) 1.18 (0.67–1.64) 0.1953
Monocytes (%) [median (range)] 9.00 (6.70–11.00) 8.00 (7.60–8.50) 0.8750
Monocytes (Gpt/L) [median (range)] 0.67 (0.43–0.92) 0.68 (0.45–1.00) 0.2500

3.1.3. Verification of Isolated EVs

The average diameter of isolated EVs measured with DLS showed EVs in the expected
range of 30–250 nm of small EVs and exosomes. It was revealed that the average diameter
of EVs from HV was 76.3 nm. In comparison, those from the TP was 85.8 nm (Figure 2A).
Furthermore, the morphology and size of exosomes were verified by scanning electron
microscopy (Figure 2B). The results confirmed the sphere-shaped vesicles, the same as the
known morphology of exosomes and small EVs. CD81, CD9 and CD63 were found in
samples from HV and TP after Macs Isolation (Figure 1). There were no significant changes
in expression levels of CD9-, CD81-, or CD63-positive EVs among HV and TP (data not
shown). Similarly, the Western blot protein analysis of EVs samples showed a positive CD9
signal as well as a positive TSG101 signal as internal controls (Figure 2C).
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Figure 2. Assessment of the quality of isolated extracellular vesicles (EVs) from healthy volunteers
(HV) and tumor patients (TP) one day before (pre T) and two days (post T) after selective internal
radiotherapy radioembolization. (A) Representative DLS- size distribution profile of calibration
nanoparticles and isolated EVs collected in HV and TP. (B) Scanning electron microscopy image of
of isolated EVs. The scale bar represents 2 µm, (10,000×; AccV. 10 kV) and 500 nm (35,000×; AccV.
12 kV) respectively. (C) Representative western blot assessing the protein content of isolated EVs
from plasma of three different HV or TP (1–3) using genuine EVs markers CD9 and TSG101.

3.1.4. Immune Origin of EVs

The immune origin of EVs was assessed as representatively shown in Figure 3.
CD4, CD8, CD44, and CD69 are typically expressed on the surface of lymphocytes [32].

CD4 and CD8 presence on EVs was significantly reduced in TP pre T vs. HV (p < 0.05,
Figure 4A). CD8 was significantly increased in TP post T vs. HV (p < 0.05, Figure 4A). CD44
was significantly enhanced in TP both pre T as well as post T vs. HV (p < 0.05, Figure 4A).
However, CD44 was significantly reduced post T vs. pre T in TP (p < 0.05, Figure 4A). CD69
was significantly increased in TP pre T vs. HV (p < 0.05), while there was no significant
difference in TP post T vs. HV (Figure 4A).

CD19 is typically expressed on the surface of B cells [33]. CD19 was significantly
enhanced in TP both pre T as well as post T vs. HV (p < 0.05, Figure 4B).

As marker of natural killer (NK) cells [33], CD56 was significantly enhanced in TP
both pre T as well as post T vs. HV (p < 0.05, Figure 4C).

CD41b, CD42a, and CD62P are expressed on the surface of platelets [33]. All three
markers were significantly increased in TP pre T as well as post T vs. HV, respectively
(p < 0.05, Figure 4D). After SIRT, CD42a and CD62P were significantly reduced in TP vs.
pre T (p < 0.05, Figure 4D).
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Figure 3. Representative flow cytometric gating strategy for extracellular vesicles (EVs) is shown for
healthy volunteers and tumor patients (TP). Analysis examples show exclusion of doublets and no
bead events, (left) discrimination of differently labelled bead populations (middle), and measure-
ment of signal intensities of the single bead populations (right). The positive bead populations are
highlighted in colours.
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Figure 4. Expression of cluster of differentiation (CD) surface proteins on isolated extracellular
vesicles (EVs) specific for lymphocytes (A), B cells (B), NK cells (C) and platelets (D). The EVs derived
from healthy volunteers (HV) and cholangiocellular carcinoma (CCA) tumor patients (TP) before (pre
T) and after (post T) receiving a selective internal radiation therapy. The mean fluorescent intensity
(MFI) is given as mean ± standard error of the mean. * p < 0.05 vs. indicated group.
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3.1.5. Immune Activation Markers on EVs

Expression of several specific antigens as, e.g., MHC II, CD14, CD29, CD40, CD49e,
or HLA-ABC is associated with leukocyte activation (22,24–26). CCA patients showed
significantly increased levels of MHC II, CD14, CD29, CD40, and HLA-ABC on EVs in TP
both pre T and post T compared to HV (p < 0.05, Figure 5A). HLA-ABC expression on EVs
was significantly reduced in TP post T vs. TP pre T (p > 0.05, Figure 5A).
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Figure 5. Expression of cluster of differentiation (CD) surface proteins on isolated extracellular
vesicles (EVs) specific for leukocyte activation (A), B cells (B), endothelial cells (C), and T and B
cell adhesion markers (D). The EVs derived from healthy volunteers (HV) and cholangiocellular
carcinoma (CCA) tumor patients (TP) before (pre T) and after (post T) receiving a selective internal
radiation therapy. The mean fluorescent intensity (MFI) is given as mean ± standard error of the
mean. * p < 0.05 vs. indicated group.

CD86 as a typical marker of activated B-cells [33] is significantly increased in TP both
pre T as well as post T vs. HV, respectively (p > 0.05, Figure 5B).

As CD31, CD105 and CD146 are typically expressed on endothelial cells [32], they
were clustered to detect potential EVs originating from endothelia. CD31 and CD105 were
significantly increased in TP pre T vs. HV, while the SIRT was associated with significantly
reduced expression levels of CD31 and CD105 on EVs in TP post T vs. TP pre T and vs. HV,
respectively (p < 0.05, Figure 5C).

Further markers that are involved in processes of T and B cell activation and adhesion
to endothelia such as CD2, CD11c, CD29, or CD209 were analyzed [22]. CD29, CD31,
CD42a, CD62P were significantly increased in TP pre T as well as post T vs. HV (p > 0.05,
Figure 5D). Other measured markers on EVs have shown a tendency to be increasingly
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expressed on EVs. However, those changes were not significant. CD42a and CD62P were
significantly decreased in TP post T vs. pre T (p < 0.05, Figure 5D).

3.1.6. Expression of Tumor Markers on EVs

CD142, also known as tissue factor (TF) plays a role in hemostasis and inflamma-
tion [34]. Its expression was significantly increased on EVs deriving from TP pre T as well
as post T compared to HV (p < 0.05, Figure 6A). SIRT reduced CD142 expression on EVs,
however, this change was not significant (Figure 6A).
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Figure 6. Expression of cluster of differentiation (CD) surface proteins on isolated extracellular
vesicles (EVs) specific for tissue factor (A), stem cells/progenitor marker (B), and “don’t eat me
signals” (C). The EVs derived from healthy volunteers (HV) and cholangiocellular carcinoma (CCA)
tumor patients (TP) before (pre T) and after (post T) receiving a selective internal radiation therapy.
The mean fluorescent intensity (MFI) is given as mean ± standard error of the mean. * p < 0.05 vs.
indicated group.

CD133 is a marker for stem cells and progenitor cells [35]. Comparable to CD142,
CD133 expression on EVs was significantly higher in TP both pre T as well as post T vs.
HV (p < 0.05, Figure 6B).

CD24 and CD44 expression has been described in tumors before, and they are involved
in tumor survival and growth [36]. While CD24 showed a tendency to a higher expression
in EVs in TP pre T as well as post T vs. HV, CD44 expression on EVs was significantly
increased in TP pre T as well as post T vs. HV (p < 0.05, Figure 6C). SIRT reduced CD24 as
well as CD44 presence on EVs in TP post T as compared the samples originating from TP
pre T (p < 0.05, Figure 6C).

3.1.7. Correlation Analyses of the Expression Markers on EVs with the Administered
Activity Dose as Well as Interval until Death

Correlation analyses has shown significant positive correlations in the expression levels
of B cell markers CD19 and CD20 on EVs deriving from TP pre T with the administered
activity dose (MBq) (CD19: Spearman r = 0.3776, p < 0.05; CD20: Spearman r = 0.3790,
p < 0.05, Table 3).
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Table 3. The correlation analyses between the parameters of the immune system assessed on extra-
cellular vesicles (EVs) either with the administered activity dose (MBq) or with the interval until
death (month) were performed by determining the Spearman correlation significance and Spearman
r. Expression levels of cluster of differentiation (CD) proteins on the surface of EVs isolated from
cholangiocellular carcinoma patients (CCA) one day before (pre T) and two days (post T) selective
internal radiotherapy radioembolization were used. A p value below 0.05 was considered statistically
significant. Abbreviations: HLA, human leukocyte antigen; MHC, major histocompatibility complex.

Parameter Administered Activity
Dose (MBq)

Interval until
Death (Month)

Immune System EVs Time Point r p Value r p Value

Lymphocytes

CD4 pre T 0.0446 0.8252 0.4290 0.1879
post T −0.0933 0.6956 0.1317 0.7168

CD8 pre T −0.1500 0.4125 0.0100 0.9719
post T −0.0498 0.8259 0.3174 0.3148

CD44 pre T −0.0357 0.8488 −0.0942 0.7384
post T 0.2063 0.3571 −0.1360 0.6735

CD69 pre T 0.0462 0.8051 −0.1122 0.6905
post T 0.0271 0.9047 0.1284 0.6909

B cells

CD19 pre T 0.3776 0.0331 0.0978 0.7287
post T −0.1689 0.4523 0.0653 0.8487

CD20 pre T 0.3790 0.0355 −0.2679 0.3158
post T 0.0409 0.8602 0.1640 0.6105

NK cells

CD2 pre T 0.0205 0.9174 −0.2235 0.4424
post T −0.2465 0.2568 0.1705 0.6162

CD8 pre T −0.1500 0.4125 0.0100 0.9719
post T −0.0498 0.8259 0.3174 0.3148

CD56 pre T −0.1662 0.3148 0.2597 0.3699
post T −0.1617 0.4958 0.3016 0.3971

Platelets

CD41b pre T −0.2308 0.2117 0.4734 0.0873
post T 0.0858 0.7192 0.0700 0.8381

CD42a pre T −0.1941 0.9058 −0.0060 0.9825
post T −0.0518 0.8333 −0.0183 0.9600

CD62P pre T −0.0993 0.6223 0.1600 0.5848
post T −0.2948 0.2070 −0.1213 0.7225

Leukocyte activation

CD45 pre T −0.2652 0.1358 0.0849 0.7546
post T −0.4881 0.0181 0.1177 0.7157

MHC II pre T −0.4718 0.0064 0.5483 0.0227
post T −0.3708 0.1075 −0.0340 0.9258

CD14 pre T 0.2318 0.2263 0.0673 0.8270
post T −0.0627 0.7817 0.1498 0.6422

CD29 pre T 0.0181 0.0477 0.1152 0.6950
post T −0.4287 0.0525 0.1446 0.6715

CD40 pre T −0.3594 0.0400 0.3061 0.2490
post T −0.2248 0.3145 0.1336 0.6952

CD49e pre T −0.3289 0.0616 0.5506 0.0271
post T 0.0628 0.7760 0.1819 0.5716

HLA-ABC pre T −0.1789 0.3355 0.0377 0.8983
post T −0.1430 0.5591 −0.0322 0.9252

B cell activation CD86 pre T −0.0369 0.8463 0.5185 0.0575
post T 0.2559 0.2504 0.0321 0.9211

Endothelial cells

CD31 pre T −0.1417 0.1342 0.2048 0.5021
post T 0.0448 0.8470 −0.2567 0.4205

CD105 pre T 0.2721 0.1533 0.1248 0.6845
post T −0.0624 0.7937 −0.0886 0.7956

CD146 pre T 0.1045 0.5759 0.0453 0.6845
post T −0.2027 0.3781 0.3811 0.2216
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Table 3. Cont.

Parameter Administered Activity
Dose (MBq)

Interval until
Death (Month)

Immune System EVs Time Point r p Value r p Value

T and B cell adhesion markers

CD2 pre T 0.020 0.9174 −0.2235 0.4424
post T −0.2465 0.2568 0.1705 0.6162

CD11c pre T −0.2713 0.1267 −0.0729 0.7884
post T −0.4952 0.0163 0.3815 0.2210

CD29 pre T 0.0181 0.0477 0.1152 0.6950
post T −0.4287 0.0525 0.1446 0.6715

CD31 pre T −0.1417 0.5401 0.2048 0.5021
post T 0.0448 0.8470 −0.2567 0.4205

CD42a pre T −0.1941 0.2791 −0.0060 0.9825
post T −0.0518 0.8333 −0.0183 0.9600

CD146 pre T 0.1045 0.5759 0.0453 0.8727
post T −0.2027 0.3781 0.3811 0.2216

CD209 pre T 0.4003 0.0232 −0.4524 0.0785
post T −0.0554 0.8067 −0.0392 0.9037

Tissue Factor CD142 pre T 0.3579 0.0443 −0.2336 0.3838
post T −0.0209 0.9265 0.2318 0.4685

“Don’t eat me signal”

CD24 pre T −0.0095 0.9596 −0.2595 0.3502
post T −0.1191 0.5883 0.1287 0.7060

CD44 pre T −0.0357 0.8488 −0.0942 0.7384
post T 0.2063 0.3571 −0.1360 0.6735

Stem cell/progenitor marker CD133 pre T 0.1882 0.3106 0.2249 0.4204
post T 0.0527 0.8206 0.3540 0.2854

EVs expression levels of CD45 that is present in various isoforms on all differentiated
hematopoietic cells have shown a significant negative correlation in TP post T with the
administered activity dose (Spearman r = −0.4881, p < 0.05, Table 3). Expression of MHC
II that is normally found on professional antigen-presenting cells has shown a significant
negative correlation in TP pre T with the administered activity dose (Spearman r = −0.4718,
p < 0.05, Table 3). CD29 expression on EVs in TP pre T has shown a significant positive
correlation with the administered activity dose (Spearman r = 0.0181, p < 0.05, Table 3).

CD40 that is found on antigen-presenting cells and required for their activation showed
a significant negative correlation in TP pre T with the administered activity dose (Spearman
r = −0.3594, p < 0.05, Table 3).

CD11c typically expressed on leukocytes has shown a significant negative correlation
in TP post T with the administered activity dose (Spearman r = −0.4952, p < 0.05, Table 3).

CD209 that is present on the surface of both macrophages and dendritic cells and
involved in endothelial adhesion and activation of CD4+ T cells, has shown a significant
positive correlation in TP pre T with the administered activity dose (Spearman r = 0.4003,
p < 0.05, Table 3).

The TF CD142 that is also present in subendothelial tissue and leukocytes has shown
a significant positive correlation in TP pre T with the administered activity dose (Spearman
r = 0.3579, p < 0.05, Table 3).

MHC II on EVs originating from TP pre T has shown a significant positive correlation
in TP pre T with the interval until death (Spearman r = 0.5483, p < 0.05, Table 3).

CD49e that is involved in adhesion processes and cell-surface mediated signaling has
shown a significant positive correlation in TP pre T with the interval until death (Spearman
r = 0.5506, p < 0.05, Table 3).

3.1.8. Exemplary Confirmation of Flow Cytometry Data by Western Blot

CD42a and internal control for EVs TSG101 were analyzed by western blot to ex-
emplary verify the results obtained by flow cytometric analyses (Figure 7). As shown in
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Figure 4D, also in western blot protein expression analysis (Figure 7A), and subsequent
normalization to TSG101 in HV, CD42a was significantly increased in TP pre T as well
as post T vs. HV, respectively (p < 0.05, Figure 7B). After SIRT, CD42a was significantly
reduced in TP vs. pre T (p < 0.05, Figure 7B).
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Figure 7. Representative protein expression of the cluster of differentiation (CD)42a and internal
control TSG101 in western blot analysis (A), and relative changes in the protein expression levels of
CD42a (B) in isolated EVs. The EVs derived from healthy volunteers (HV) and cholangiocellular
carcinoma (CCA) tumor patients (TP) before (pre T) and after (post T) receiving a selective internal
radiation therapy. The mean fluorescent intensity (MFI) is given as mean ± standard error of the
mean. * p < 0.05 vs. indicated group.

4. Discussion

CCA is a heterogenous group of epithelial malignancies of the intra- and extrahepatic
bile ducts or the bile gland [4]. It shows a rising incidence worldwide and thus is becoming
more and more clinically relevant [1]. The only curative approach to the treatment of CCA
is liver resection. Due to the advanced stage, only about one third of CCAs are resectable at
diagnosis [2]. Even if a resection of the liver can be performed, recurrence rates of up to
60% are seen [37]. Reasons for this include, for example, microscopic liver metastases [38].
An effective non-curative therapy approach, which can also be performed in the later
stages and improve the overall survival is SIRT [8]. Against this clinical background, it is
obvious that it is of enormous importance to improve the diagnosis of CCA and to enable
early detection, just as it is important to improve therapeutic approaches and strategies.
A promising approach to this is the determination of EVs in the circulation of CCA patients.
As they play an important role in tumor microenvironment and are, for example, important
for angiogenesis [18,21,39], several studies were able to reported their diagnostic and
prognostic potential [22,24,25].

Thus, our study provides novel insights regarding the characterization and origin of
EVs in patients with inoperable CCA prior and after SIRT. Furthermore, their correlations
with clinical parameters were identified. To enable an easy and fast screening of multiple
surface proteins on EVs, different capture antibody beads were combined to assess the
markers by flow cytometry. In addition to the characterization of EVs, we aimed to visualize
the morphology of EVs by scanning electron microscopy. Furthermore, nanoparticle
tracking analysis allowed us to determine the size of the isolated and analyzed EVs. The
isolated EVs have shown a size distribution of at least 100 nm. For safe EVs isolation, CD9,
CD63, and CD81, which are typically highly expressed on exosomes were applied [12].
We found that multiple cell types associated with the circulatory system contribute to
the heterogeneity of EVs in CCA, and moreover may be potentially applied as diagnostic
as well as prognostic markers (something which needs to be further elaborated in larger
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studies). The detected EVs profile indicated that different subsets of leukocytes including
T cells and antigen presenting cells but also endothelial cells and platelets release EVs in
CCA patients, and that this release is modified after SIRT.

Since it has been shown that EVs are involved in multisystemic signaling mediating
regeneration and long-term adaptive responses [40,41], based on our findings as well, it is
reasonable to assume that SIRT of the liver could have systemic implications on the immune
system. In a recent study, a decrease in CD4 and CD8 carrying EVs was demonstrated,
while the number of CD69 carrying EVs in the circulation of CCA patients was increased
compared to HVs. CD4 and CD8 are typical markers for T cells and CD69 is a activation
marker for T cells [42]. Gerwing et al. were also able to show a decrease of T helper
cell derived EVs (CD4 positive) and a parallel increase of cytotoxic T cell derived EVs
in an in vivo tumor model [43]. This underlines the hypothesis that the distribution of
EVs in cancer might follow a specific pattern that may be suitable for diagnostic and
prognostic applications. In line with this, Oba et al. suggested T cell derived EVs as a
marker for the activity of several T cell subsets [44]. Specifically, in CCA patients raised
levels of circulating CD19 and CD20 expressing EVs as typical B cell markers [45] were
demonstrated. In line with this report, our data also indicate that CCA patients show
increased levels of B cell derived EVs in circulation. Interestingly, our data also indicate an
increased activation of B cells in CCA patients, since CD86 a marker for the activity of B
cells and monocytes [46,47] was enhanced. SIRT did not significantly change the CD19 and
CD86 presence on circulating EVs, but the observed tendency to an increase as well as the
significant positive correlation of CD19 and CD20 with the clinically administered activity
dose clearly indicate that B cell activation in SIRT might have relevant clinical impact and
should be further elaborated in future studies. Specific patterns were also visible in the
expression profiles of potentially NK cell derived EVs. CD2 is expressed on NK and T cells
and plays an important role in their activation [48,49], while CD56 is a marker for their
cytotoxicity [50]. CD56 expressing EVs in the circulation of CCA patients were enhanced
compared to HVs, and not specifically changed by SIRT. There are ongoing approaches to
apply NK cell stimulating substances in the therapy of CCA [51]. However, our current
data do not reflect a significant relevance of SIRT as a potential stimulating factor of those
cells or their enhanced communication via EVs in CCA patients. It is known that persistent
antigen and inflammatory stimulation can cause T cell exhaustion, and thus that CD4 and
CD8 T cells play a key role in the clearance of intracellular pathogens and tumors [52–54].
In this context they are part of the tumor infiltrating leukocytes in CCA [55]. An infiltration
of CD8 T cells in the CCA is associated with higher survival and lower recurrence after
surgery [56]. Also a greater level of circulating CD4 T cells is associated with a prolonged
overall survival in patients with intrahepatic CCA undergoing radiation [57]. In our cohort
of CCA patients, CD4 and CD8 expressing EVs were significantly reduced as compared
with healthy volunteers, while SIRT reversed this effect. Since their expression levels
did not correlate with the clinical outcome, the relevance of these SIRT induced changes
remains unanswered. However, several other leukocyte activation markers that have been
associated with the patient outcome [58–60] are significantly enhanced in CCA patients.
Notably MHC II and HLA-ABC which are important for T cell activation [59,61] were
strongly enhanced on circulating EVs from CCA patients. Furthermore, MHC II expression
on EVs showed a negative correlation with the administered activity dose during SIRT as
well as a positive correlation with the interval until death. SIRT strongly reduced the HLA-
ABC presence on the EVs. It is known that HLA-ABC is crucial for proper presentation of
specific antigens on the cancer cell surface for recognition by cytotoxic CD8 T cells [62], and
that full activation of CD8 T cells requires both expression of HLA-ABC and expression
of the T cell costimulatory molecule CD80 or CD86. In our study, CD8 expression on EVs
was enhanced by SIRT, while HLA-ABC was reduced and CD86 remained enhanced, thus,
whether SIRT has a positive or negative impact on the local expression of these factors
directly in CCA cannot be answered and remains to be investigated. Comparable to the
HLA-ABC expression, CD29 was also enhanced on circulating EVs from CCA patients



Cells 2022, 11, 2309 16 of 21

and markedly reduced by SIRT. Considering that CD29 is also expressed on CCA tumor
cell lines [63] und can be used as a cancer stem cell marker [64,65], it has to be further
investigated whether the CD29 expressing EVs originate from activated leukocytes or tumor
cells. The fact that CD29 prior SIRT positively correlated with the administered activity dose
might support rather the local deliberation of CD29 loaded EVs and post SIRT observed
changes in CCA patients. Beside leukocyte activation markers there were also changes in
other endothelial as well as T and B cell adhesion markers, which were increased in CCA
and significantly reduced by SIRT. As example, increased levels of circulating endothelial
cell derived EVs expressing CD31, CD105 and CD146 [17,66] were detected in CCA patients.
In line with our report, Brocco et al. described increased levels of CD31 positive EVs in
non-hematological cancer patients [67]. Also it was shown that CD105 and CD146 positive
EVs can play a role in the metastasis of breast cancer [68,69]. Interestingly, SIRT reduced
CD105 expression on circulating EVs in CCA patients. In general, this study demonstrates
a specific immune profile on circulating EVs from CCA patients including specific cell,
activation and adhesion markers. However, identifying the specific origin of EVS as well as
pre and post SIRT profiles of EVs in correlation with specific clinical outcome suggest an
utmost clinical relevance of further studies.

Also, EVs expressing the platelet associated surface markers CD41b, CD42a, and
CD62P [17,70] were increased in CCA patients and all together strongly reduced after SIRT.
As platelets and platelet-derived messengers play an important role in the progression of
CCA [71,72], our data indicate a beneficial impact of SIRT in CCA. However, a prognostic
potential suspected in platelet derived EVs was not confirmed by this study. A possible
positive effect of SIRT in CCA patients is supported by the assessment of CD24 and
CD44 that can be expressed by tumor cells and play an important role in their adhesion,
survival and growth [36]. It was shown before that increased CD24 expression on CCA
cells is associated with tumor invasion, disease progression, lymph node metastasis and
reduced overall survival. Therefore, CD24 expression on CCA cells has been suggested
repeatedly as a prognostic marker for the outcome of CCA patients [73–75]. Another
potential marker is CD44, which is associated with post-operative CCA recurrence in
patients who were undergoing a surgical resection [76]. CD44 also plays a crucial role in
proliferation, migration and invasion of the CCA [77]. Thus, our data showing enhanced
expression of CD24 and CD44 on EVs from CCA patients is in line with these reports.
Moreover, our data indicate a direct effect of SIRT in reducing CD24 and CD44 expression
of EVs. Considering that tumor released EVs play a role in the prognosis and diagnosis of
several tumor, our data indicate that SIRT induced EVs release in CCA might have a great
importance. As CCA cells use EVs to interact with surrounding mesenchymal stem cells to
modulate the microenvironment and enhance the tumor growth [78], it can be postulated
that the reduction of these cell interactions via CD24 and CD44 loaded EVs after SIRT may
reduce tumor growth and progression. Another finding supports a positive effect of SIRT
in CCA patients. CD133, a surface marker expressed on stem cells and tumor progenitor
cells [79], has been identified as a marker for tumor invasion, intrahepatic, and lymph node
metastasis. Therefore, it is considered as a possible prognostic marker for worse outcome
in CCA patients playing an important role in the communication of tumor cells with their
surrounding [80,81]. Our data are in line with those reports, since CD133 expression on
circulating EVs was significantly increased. The tendency to decreased CD133 expressing
EVs after SIRT may indicate a reduced local communication of the tumor via EVs after
SIRT. Similar expression pattern was observed for CD142 (TF) which is associated with
intensification of inflammation and immunological processes during liver cirrhosis [34]. As
Tseng et al. showed that CD142 expressing macrovesicles are associated with metastasis
in lung cancer [82], the use of CD142 expressing EVs as an prognostic factor needs to be
further investigated.

In the underlying study, the EVs surface markers were correlated with the adminis-
tered activity dose (MBq) or with the interval until death. However, the application of
EVs markers for possible diagnostic or predictive purposes in the clinics should imply
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correlations with additional clinical parameters in future and larger studies. As example,
in the underlying study, we can provide the UICC (Union for International Cancer Control)
stages, but unfortunately we do not have the complete data set of all included patients. Of
the patients included, 0 were in stage I, 3 were in stage II, 4 were in stage IIIa, 3 were in stage
IIIb and 23 were in stage IV at the start of therapy. The stages of the remaining patients are
unknown. Also, the response to therapy should be considered in further studies, as of the
patients included in the underlying study, 7 received chemotherapy after SIRT, 14 received
a following SIRT, one received a TACE, 4 an ablation, 5 received none of these therapies,
and the follow-up of the remaining cohort is unknown. Thus, these important issues should
be considered in future cohorts to provide reliable evidence for clinical correlations.

5. Conclusions

In conclusion, we provide evidence that multiple cell types associated with the cir-
culatory system contribute to the heterogeneity of EVs in CCA. This study suggests a
complex EVs signaling network with implications in tumor antigen response, vascular
functionality, immune modulation (including innate and adaptive immunity), platelet
function and regeneration. Since heterogeneous changes are induced by SIRT, of which
some are associated with improved outcomes in cancer, the severe impairment of cellular
EVs in cancer signaling mechanisms and tissue crosstalk as well as mode of action in target
cells regarding the clinical impact should be assessed in future studies. Identification of the
underlying mechanisms associated with possible benefits of the applied clinical therapy
approach such as SIRT may translate into future diagnostic and/or therapeutic applications
of EVs.
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