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Abstract
Hearing loss, the most common neurological disorder and the fourth leading cause of years lived with disability,
can have profound effects on quality of life. The impact of this ‘‘invisible disability,’’ with significant consequences,
economic and personal, is most substantial in low- and middle-income countries, where >80% of affected
people live. Given the importance of hearing for communication, enjoyment, and safety, with up to 500 million
affected globally at a cost of nearly $800 billion/year, research on new approaches toward prevention and treat-
ment is attracting increased attention. The consequences of noise pollution are largely preventable, but irrevers-
ible hearing loss can result from aging, disease, or drug side effects. Once damage occurs, treatment relies on
hearing aids and cochlear implants. Preventing, delaying, or reducing some degree of hearing loss may be pos-
sible by avoiding excessive noise and addressing major contributory factors such as cardiovascular risk. However,
given the magnitude of the problem, these interventions alone are unlikely to be sufficient. Recent advances in
understanding principal mechanisms that govern hearing function, together with new drug discovery para-
digms designed to identify efficacious therapies, bode well for pharmaceutical intervention. This review surveys
various causes of loss of auditory function and discusses potential neurological underpinnings, including mito-
chondrial dysfunction. Mitochondria mitigate cell protection, survival, and function and may succumb to cumu-
lative degradation of energy production and performance; the end result is cell death. Energy-demanding
neurons and vestibulocochlear hair cells are vulnerable to mitochondrial dysfunction, and hearing impairment
and deafness are characteristic of neurodegenerative mitochondrial disease phenotypes. Beyond acting as cel-
lular powerhouses, mitochondria regulate immune responses to infections, and studies of this phenomenon
have aided in identifying nuclear factor kappa B and nuclear factor erythroid 2-related factor 2/antioxidant re-
sponse element signaling as targets for discovery of otologic drugs, respectively, suppressing or upregulating
these pathways. Treatment with free radical scavenging antioxidants is one therapeutic approach, with lipoic
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acid and corresponding carnitine esters exhibiting improved biodistribution and other features showing prom-
ise. These compounds are also histone deacetylase (HDAC) inhibitors, adding epigenetic modulation to the
mechanistic milieu through which they act. These data suggest that new drugs targeting mitochondrial dysfunc-
tion and modulating epigenetic pathways via HDAC inhibition or other mechanisms hold great promise.
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Background
Vision is the pre-eminent sensory means by which we
navigate the world around us,1 while the ability to
hear endows us with the power of voice communica-
tion. It enriches our lives with the sound of music and
alerts us to imminent danger that can be heard although
perhaps not seen. The Greek physician-philosopher
Alcmaeon of Croton2–5 and his two protagonist follow-
ers, Praxagoras of Kos3,6 and the great Alexandrian phy-
sician of Chalcedon,7 Herophilus,2,3 propounded that
hearing is a construct of the brain, where external
sound channeled to it through the ears (transduced
into sensorineural signals) is interpreted.6

Hearing loss is the most common neurological disor-
der affecting people worldwide.8 The World Health
Organization (WHO) estimates that the annual cost
of unaddressed hearing loss is in the range of $750–
790 billion globally.9 In the ‘‘Global Burden of Disease,’’
impaired hearing represents the fourth leading cause of
disability worldwide.10–12 About 5–7% of the world’s
population (*360–500 million people) has a hearing
disability12,13 that is severe enough in more than 80%
of people older than 85 years to interfere with their
ability to communicate effectively.10 In children, im-
paired hearing can impinge on their academic poten-
tial and social development13 with lifelong adverse
consequences.14 Hearing loss due to mechanical (con-
ductive) and/or anatomical issues in the outer and/or
middle ear (Fig. 1) is less prevalent than that resulting
from dysfunction in the cochlea and/or the auditory
nerves (sensorineural) in the inner ear or a mixture
of conductive and sensorineural components.10,15

Although the array of techniques used in the diagno-
sis of sensorineural hearing loss (SNHL, the predomi-
nant form of hearing loss worldwide) is progressively
being expanded and refined,14 developing therapeutics
to treat the onset of SNHL is proving to be considerably
more difficult to realize13,14—thus placing a premium
emphasis on prevention.12,16 A compelling case for pre-
vention is noise-induced hearing loss (NIHL), one of
the most common types of SNHL.17,18 Noise pollution
is a growing health problem around the world.19–22

For example, in the United States alone, it is estimated
that more than 25% of the adult population has measur-
able hearing loss caused by exposure to harmful noise.10

Irreversible hearing loss can also be the product of dis-
ease12,16,23,24 and is often an unfortunate side effect of
the aminoglycoside antibiotics25–30 and platin-based an-
ticancer drugs.10,27,28,30–36 Regrettably, once damage has
occurred, hearing aids and cochlear implantation are the
only compensatory options presently available for af-
fected individuals.37

There is a substantial and growing worldwide unmet
medical need for a pharmaceutical approach to treating
hearing impairment.38,39 SNHL results from damage
to the organ of Corti (Fig. 1), causing the degeneration
of spiral ganglion neurons due to excessive injury and/
or untoward death of cochlear hair cells in the inner
ear,10,40,41 in most cases caused by internal or external
pathologic factors, including infectious or inflammatory
processes, ototoxic drugs, noise overstimulation, as well
as the normal aging process.13,16,25,40,42 Unexpectedly, a
recent meta-analysis of numerous epidemiological studies
exposed a possible link between presbycusis (also known
as age-related hearing loss, ARHL) and cognitive decline,
cognitive impairment, and dementia—suggesting that
ARHL may be a relevant biomarker and a targetable
modifiable risk factor for dementia.43–46 However, given
that advanced age itself is a leading risk factor for demen-
tia,1,47–49 the meta-analysis correlation is not surprising.

Mitochondrial Dysfunction in Hearing Loss
Mitochondria mitigate cell protection, survival, and func-
tion1,50–52 (Hoffman ME, Augsburger BN, Foradori CD,
et al. Neuroprotective effects of carnitinoid compounds
in rodent cellular and in vivo models of mitochon-
drial complex I dysfunction. 2018; submitted) and,
over time, they succumb to an increasing cumulative
degradation of their cellular energy production and
performance—driving the cell toward death (apo-
ptosis) and/or premature senescence (Hoffman et al.,
submitted).40,47,48,53–59 Energy-demanding cells such as
neurons and the vestibulocochlear hair cells (Fig. 1)
are especially vulnerable to mitochondrial dysfunction60,61
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and, consequently, hearing impairment/deafness is a
characteristic clinical symptom of several neurodegener-
ative mitochondrial disease phenotypes.24,25,44,62–66

Focusing on the genetic basis of hearing loss, it is
worth noting that many mutations in the mitochon-
drial genome (mitochondrial DNA, mtDNA), as well
as in the nuclear genome (nuclear DNA, nDNA), are

known to cause hearing deficits (Table 1).24,62,63,65–67

Alterations in certain regions of mtDNA associated
with deafness are also associated with a host of other
disorders, such as myopathy including cardiomyopa-
thy, diabetes, and parkinsonism.68–72

In addition, mitochondria are key regulators of
our innate and adaptive immune responses to viral

FIG. 1. Anatomy of the human ear. (a) The outer ear includes the ear lobe and auditory canal; middle ear,
the tympanic membrane and cavity; the inner ear, the hearing (cochlea) and balance (vestibular system)
organs and the attached associated nerves connecting to the brain. (Figure reproduced from Chittka L,
Brockmann A. Perception space—the final frontier. PLoS Biol. 2005;3(4):e137. CC BY 2.5 (https://creative
commons.org/licenses/by/2.5/deed.en), via Wikimedia Commons. Original File URL: https://commons
.wikimedia.org/wiki/File:Anatomy_of_the_Human_Ear_en.svg) (b) Expanded cross section of the cochlea
(organ of Corti) showing the outer and inner hair cells, and the spiral ganglion of the cochlear nerve.
(Cochlea-crosssection.png. CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/), via Wiki-
media Commons. Original File URL: https://commons.wikimedia.org/wiki/File:Organ_of_corti.svg)

Table 1. Representative Mitochondrial Disorders Associated with Hearing Impairment/Deafness

Disease Abbreviation mtDNA/RNAa
Defect, presence of symptom,

sign or finding, and other notes

Aminoglycoside-induced deafness AID Mutation in rRNA Also associated with Parkinson’s disease
Kearns-Sayre syndrome KSS Large-scale deletions Possible presence of sensorineural hearing loss
Mitochondrial encephalomyopathy,

lactic acidosis, and stroke-like episodes
MELAS Mutation in tRNA

Maternally inherited deafness and diabetes MIDD Mutation in RNA Phenotypically and genotypically heterogeneous
Mohr-Tranebjaerg syndrome MTS Mutations in nDNA Causes defects in mitochondrial protein

import machinery
Myoclonic epilepsy with ragged red fibers MERFF Mutation in tRNA
Neuropathy, ataxia, and retinitis pigmentosa NARP Mutation in mRNA Possible presence of sensorineural hearing loss
Progressive external ophthalmoplegia PEO Multiple deletions Ophthalmoplegia is a clinical hallmark of

multiple deletions in mtDNA

aUnless otherwise noted.
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infections.50,73–76 Often overlooked among the many
causes of impaired hearing, including deafness, is
virus-induced hearing loss.77–79 Although the mecha-
nisms of hearing loss/deafness associated with viral in-
fections remain largely undefined,78,80 viral infections
activate a cascade of mitochondrial antiviral innate im-
mune responses that include nuclear factor kappa B
(NF-jB)50,75,76,80,81 and nuclear factor erythroid 2-
related factor 2 (Nrf2)/antioxidant response element
(ARE) signaling pathways.1,50,76

Unmitigated oxidative stress (which is primarily
caused by mitochondrial dysfunction) and epigeneti-
cally altered expression of genes sensing oxidative stress
are significant contributors to the pathogenicity of
neurodegenerative disorders (Hoffman et al., submit-
ted).47,52,54,76,82,83 While a full understanding of these
pathways awaits further study, it seems clear that epige-
netics plays a significant role. Mammalian vestibuloco-
chlear hair cells are a stress-sensitive, nonregenerative cell
type and, like the retinal cells of the eye,1 are not replaced
when they are injured or die.10,13,14,29,57,60,82,84–86 Interest-
ingly, emerging research indicates we selectively amplify
directional sound in a noisy environment by uncon-
sciously utilizing eye–ear coordination to integrate visual
cues with the auditory information.87,88 Assessing vision
and oculomotor function is essential in the diagnostic
evaluation of vestibulocochlear auditory impairments,89

particularly in patients with idiopathic etiology.90,91

a-Lipoic Acid, L-Carnitine, and Butyrate
Impressive advances in gene therapy8,14,92–94 and re-
generative medicine are making inroads toward regen-
erating hair cells with the aim of reversing hearing

loss.41,95 Some of the achievements demonstrate thera-
peutic potential,8,86 but a clinical application is still a
long way off.24,39 In the more immediate future, shield-
ing hair cells from oxidative damage and/or rescuing
injured hair cells from falling into apoptosis by phar-
macological treatment with free radical scavenging an-
tioxidant compounds portend a promising therapeutic
approach.13,14,29,30,57,96–99

Upregulating Nrf2/ARE gene expression pathways
and/or suppressing NF-jB signaling are cogent targets
for pharmaceutical intervention strategies.34 Many nat-
ural and synthetic compounds are known inhibitors of
NF-jB signaling100—butyric acid (butyrate)50,101–105

and a-lipoic acid (5-[(3R)-1,2-dithiolan-3-yl]pentanoic
acid)50,106–110 (Fig. 2) are among them. Importantly,
butyric acid and a-lipoic acid (ALA), as well as their re-
spective corresponding L-carnitine esters PMX550DBr
and PMX500FI (Fig. 2), also act as antioxidant histone
deacetylase (HDAC) inhibitors (HDACi) (Hoffman
et al., submitted).47,50,54 noted for effecting favorable
epigenetic modulation of the cell survival protein, B
cell lymphoma 2 (Bcl-2) with respect to the proapop-
totic protein, Bcl-2-associated X protein (BAX) in a
BAX/Bcl-2 ratio of 1:2.54,110–113 Again, note the implied
potential of drugs that modulate epigenetic pathways.

ALA has been extensively researched as a neuropro-
tectant,114–119 acting on signaling mechanisms through
both receptor-mediated pathways and nonreceptor-
mediated antioxidant processes in a variety of cell
types110,115,116,119,120—including cochlear hair cells.31,121,122

In humans, ALA is a functionally versatile endogenous
molecule enzymatically synthesized in mitochondria
from octanoic acid.123 It is a key cofactor in the
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FIG. 2. Chemical structures of butyric acid, ALA, and their corresponding carnitine esters. ALA, a-lipoic acid.
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construction of vital metabolic multienzyme complexes,
including pyruvate dehydrogenase and the glycine cleavage
system.123 It is also a strong antioxidant1,119,124,125 and
anti-inflammatory109,119,125 agent capable of activating
and modulating signal transduction pathways,109,119,126

upregulating the expression of nerve growth factor, and
augmenting the conduction velocity of motor nerves.127

The expression of *1% (*200–250 genes) of the
protein-coding human genome is modulated in concert
with the Nrf2/ARE signaling pathway.117,128 ALA is a
potent activator of Nrf2, a transcription factor encoded
by NFE2L2 that helps regulate cellular redox balance
and protective antioxidant and phase II detoxification
responses in mammals.50 Dietary antioxidant sup-
plements are commonly sought by patients and caregiv-
ers for treating primary mitochondrial disorders.23,65

The role of antioxidants in prevention of age-related
hearing loss has been reviewed by Tavanai and Moham-
madkhani.129 In one of the reviewed studies, C57BL/6
mice fed with control diet or diet containing 1 of 17 an-
tioxidant compounds (acetyl-L-carnitine, N-acetyl-L-
cysteine (NAC), ALA, carotene, carnosine, coenzyme
Q10, curcumin, tocopherol, epigallocatechin-3-gallate,
gallic acid, lutein, lycopene, melatonin, proanthocyani-
din, quercetin, resveratrol, or tannic acid), ARHL was

nearly completely prevented by ALA and coenzyme
Q10 and partially by NAC, but not by the other com-
pounds.130 Unfortunately, this strategy showed no sig-
nificant benefit in an interventional human study.131

However, the results from the Polanski and Cruz131

study may not truly address the ability of antioxidants
to prevent ARHL because the design of the study was not
directed toward prevention, and damaged cochlear hair
cells are not restored by antioxidants.129 In studies aimed
at preventing hearing loss in aged animals, ALA was
shown to confer significant hearing preservation.34,108 Sim-
ilar results between human and animal studies99 were also
observed with the use of L-carnitine—an endogenously
synthesized molecule mostly obtained from the diet.65

NF-jB is a transcription factor that regulates the
expression of a variety of genes involved in inflamma-
tion and immunity.81,104,105 Sodium butyrate is a well-
documented HDAC inhibitor18,27,54,101,105 that has
demonstrated anti-inflammatory NF-jB inhibition
properties.50,101–105 Butyrate mediates NF-jB activation
by rescuing the redox machinery and controlling reac-
tive oxygen species105 that are highly injurious to hair
cells18,132 by suppressing the NF-jB signaling pathways.105

Although ALA and butyrate are common food and
diet supplements that can be safely taken in high

FIG. 3. Wide ranging chemical structures of potentially ototoxic drugs.
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doses, their bioavailability is not prolonged or sus-
tained at an effective therapeutic level.50 Furthermore,
a recent Phase I clinical trial in age-related macular
degeneration evaluating the safety and tolerability of
ALA in 15 subjects, 65 years of age or older, showed
that high doses (800–1200 mg) of racemic ALA cannot
be tolerated very well by patients.133 Thus, in the treat-
ment of hearing loss, a need for ALA and butyrate
derivatives having more clinically suitable pharmacoki-
netics is a challenging pharmaceutical objective.

Concluding Remarks
Hearing impairment is a major global health concern;
its massive impact seemingly unrecognized until re-
cently, and the affected population largely untreated.
Preventing, or at least delaying or reducing, some hear-
ing loss may be possible by avoiding excessive noise ex-
posure and addressing contributory factors such as
cardiovascular risk, infectious diseases, neurological
disorders, and drug toxicity. However, these interven-
tions will not be sufficient given the sheer magnitude
of the problem. Thus, in view of recent advances
in our understanding of the underlying mechanistic
pathways—both mitochondrial and epigenetic—that
govern hearing function, coupled with new drug dis-
covery paradigms that can today be exploited to iden-
tify new and effective therapies, the time is ripe to
tackle hearing loss with novel medicines. Alcmaeon
of Croton remarked that vision and hearing are con-
structs of the brain. We see and hear in our dreams
and in some aspects of disease conditions, such as
high fever, schizophrenia, psychosis, or the later stages
of dementia, and our dreams may blend into our
conscious state immersed in auditory and/or visual
hallucinations and delusions. The most common hal-
lucination in schizophrenia is hearing voices.134,135

Finally, readers are directed to Table 2 for a summary
of key points related to otologic disorders.
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Table 2. Selected Key Points

� Roughly 1 in 15 people worldwide—about 500 million—suffer from
disabling hearing loss; two to three times that number have mild-to-
complete hearing loss.12,13

� Recent studies proclaim hearing problems as the fourth leading cause
of YLDs; clearly a major global health concern.10–12

� Hearing impairment has been called an ‘‘invisible disability’’ despite its
significant consequences, economic and personal; the impact is most
substantial in LMICs, where >80% of people with hearing loss reside.44

� Noise exposure is a major cause of deafness and hearing impairment
(i.e., noise-induced hearing loss); cardiovascular risk caused by
diabetes and smoking is also associated with hearing loss.22

� Hearing impairment in children and adults may also present as
sequelae of cytomegalovirus, Ebola virus, and other serious
infections.14,75,77,121

� Advanced age is a major risk factor for hearing loss (i.e., presbycusis,
age-related hearing loss), with U.S. prevalence nearly 70% over age
70; indeed, age-related hearing loss may prove to be a useful
biomarker and treatable risk factor for cognitive decline or
impairment, including Alzheimer’s disease.43–46

� Hearing loss has been observed following TBI, and while it is
significant clinically it is yet to be well characterized.92,136

� Genetics, both mitochondrial and nuclear, and demographics
(educational level, race/ethnicity, sex) have an influence on, or are
associated with, hearing disorders.24,62,63,65,66,72,82

� The most common congenital sensory impairment is hearing loss,
affecting between 1 in 300 to 500 newborns and children to the age
of 4; one example results from disruption of a gene that encodes a
major component of cochlear gap junctions.137

� It is not uncommon to see links between sensorineural deficits in
both the ear and the eye; RP, an inherited eye disease, is in some
cases associated with reduced hearing ability.65,66,75,89

� Sensorineural hearing loss is found in mitochondrial respiratory chain
disorders, and mtDNA mutations represent one of the most important
causes of hearing loss (Table 1)24,62,63,65,66; given the high energy
demands of hearing, mitochondrial involvement should not be a
surprise.60,61

� Certain drugs (Fig. 3), notably aminoglycoside antibiotics (gentamicin),
antivirals (ganciclovir), antifungals (amphotericin B), antimalarials
(chloroquine), antituberculosis agents (capreomycin), cardiovascular
drugs (furosemide), anticonvulsants (valproic acid), cisplatin (platinol),
and immunosuppressants (tacrolimus), can result in significant
hearing loss.16,28 Ototoxicity is a potential side effect of some
commonly used NSAID and related medications, including
acetaminophen (paracetamol) and ibuprofen when taken in very high
doses or used chronically (‡2 days/week).42 In lieu of a recent study
suggesting that, if started early enough, a daily regimen of ibuprofen
can prevent the onset of Alzheimer’s disease,138 ototoxicity in this
protocol is an important consideration to take into account.

� From a pharmaceutical perspective, the chemical structural diversity
(Fig. 3) of potentially ototoxic drugs is noteworthy.

� Drug discovery to identify novel therapeutics that protect hair cells
from toxic insults is experimentally challenging owing to the
inaccessibility of the inner ear, but zebrafish and other animal models
have been explored; screens have identified multiple potential drug
classes of interest, for example, antioxidants,122 and other compounds
acting on classical GPCR neurotransmitter systems (i.e., adrenergic,
dopaminergic, serotoninergic) and estrogen receptor
modulators.28,29,32,37,57,65,99

� Biotechnology and pharmaceutical companies have recognized the
unmet medical need and therapeutic potential of new drugs for
hearing impairment, as exemplified by ventures such as Aurin,
Auris, Autifony, Decibel, Frequency, Novus, Otonomy, Sensorion,
and Sound, among others10,13,31,97; still relatively untapped
in this respect are epigenetic and mitochondrial
targets.8,14,18,26,27,30,34,57,82,98,99,132,139–141

GPCR, G-protein-coupled receptor; LMICs, low- and middle-income
countries; NSAID, nonsteroidal anti-inflammatory drug; RP, retinitis pig-
mentosa; TBI, traumatic brain injury; YLDs, years lived with disability.
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