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ABSTRACT

As common chemotherapeutic agents are associated with an increased risk of acute and chronic
cardiovascular complications, a new clinical discipline, cardio-oncology, has recently emerged. At the
same time, the development of preclinical human stem cell-derived cardiovascular models holds
promise as a more faithful platform to predict the cardiovascular toxicity of common cancer thera-
pies and advance our understanding of the underlying mechanisms contributing to the cardiotoxicity.
In this article, we review the recent advances in preclinical cancer-related cardiotoxicity testing,
focusing on new technologies, such as human induced pluripotent stem cell-derived cardiomyocytes
and tissue engineering. We further discuss some of the limitations of these technologies and present
future directions. STEM CELLS TRANSLATIONAL MEDICINE 2019;8:758–767

SIGNIFICANCE STATEMENT

Many chemotherapeutic agents cause acute and chronic cardiovascular complications. The
development of rigorous preclinical models is necessary to predict human cardiotoxicity and elu-
cidate the underlying mechanisms of cardiotoxicity.

INTRODUCTION

Several common chemotherapeutic agents,
including anthracyclines, alkylating agents, anti-
metabolites, antimicrotubule agents, tyrosine
kinase inhibitors (TKIs), and proteasome inhibitors
(PIs) are associated with an increased risk of acute
and chronic cardiovascular complications [1]. Cur-
rent preclinical strategies for predicting car-
diotoxicities are inadequate. There is a pressing
need for the development of relevant preclinical
models to predict human cardiotoxicity and to
elucidate the underlying mechanisms contribut-
ing to the cardiotoxicity of common oncology
therapies.

The objective of this review is to highlight
recent advances in preclinical cardiotoxicity test-
ing in vitro with an emphasis on human induced
pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs) and tissue engineering approaches.
These new technologies promise a revolutionary
in vitro model that can improve cardiotoxicity
assessment toward precision medicine.

CARDIO-ONCOLOGY: A RAPIDLY EMERGING FIELD

The National Cancer Institute estimates that
there is a �40% lifetime risk of developing cancer
in the U.S. [2]. Anticancer therapies have

dramatically improved the outcomes of cancer
treatment over the past decades and the overall
cancer death rate has declined by almost 25%
since 1990 [2]. The demand for cardio-oncology ser-
vices grows along with increasing cancer survivor-
ship rates. However, cardiotoxicity-related adverse
effects caused by these anticancer therapies are on
the rise. The incidence of cardiotoxicity differs
greatly between chemotherapeutic agents, with
pre-existing cardiovascular disease and other
risk factors playing an important role in the devel-
opment of cardiomyopathy secondary to cancer
treatment. Reported incidences of chemotherapy-
induced cardiotoxicity vary based on how cardio-
toxicity is defined, with the most commonly used
definition derived from the Cardiac Review and
Evaluation Committee (CREC) of trastuzumab-
associated cardiotoxicity. The CREC characterizes
myocardial toxicity by a symptomatic decrease in
left ventricular ejection fraction (LVEF) of at least
5%–55% or an asymptomatic decrease in LVEF of at
least 10%–55% [3]. Additional variability in reported
cardiotoxicity arises from differing baseline
patient characteristics, follow-up times, and a lack
of clinical trials reporting predefined cardiac end-
points for chemotherapeutic agents. A compre-
hensive list of commonly used chemotherapeutic
agents, therapeutic indications, and cardiotoxicity
rates compiled from relevant studies is presented
in Table 1 [4–33].
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CANCER THERAPEUTICS-RELATED CARDIOTOXICITY

Anthracyclines

Anthracyclines are widely used and effective antineoplastic drugs,
but cardiotoxicity is a well-established complication of anthra-
cycline cancer therapies. Anthracyclines, such as doxorubicin, are a
class of chemotherapeutic agents that inhibit the function of topo-
isomerase 2B (TOP2B) in cardiomyocytes leading to apoptosis.
Progressive cardiotoxicity usually occurs after the completion
of treatment with anthracyclines in a dose-dependent manner
and may manifest within 1 year (early onset chronic cardiotoxicity)
or many years after chemotherapy has been completed (late onset
chronic cardiotoxicity) [34].

Monoclonal Antibodies

Trastuzumab has revolutionized the treatment of HER2-positive
breast cancer and metastatic gastric cancer. However, clinical trial

data on trastuzumab safety has shown a fourfold increase in car-
diotoxicity with concurrent trastuzumab and anthracycline treat-
ment, compared with anthracyclines alone [35]. Dysregulation of
HER2 signaling suppresses autophagy in cardiomyocytes leading
to reactive oxygen species (ROS) accumulation and subsequent
cardiotoxicity [36]. Additionally, trastuzumab has been shown
to downregulate TOP2B gene expression in primary human
cardiomyocytes, which may potentially explain its synergistic
cardiotoxicity with anthracyclines [37]. Similarly, newer monoclo-
nal antibodies such as bevacizumab have also been associated
with cardiovascular adverse events. Of note, in patients treated
with bevacizumab, there is a 4%–35% incidence of hypertension
and 2%–4% incidence of heart failure. Bevacizumab inhibits vascu-
lar endothelial growth factor (VEGF) and decreases nitric oxide
production, leading to hypertension. Consequently, uncon-
trolled hypertension results in left ventricular hypertrophy
and dysfunction. Anti-VEGF effects may also contribute to the

Table 1. The most frequently used agents in each chemotherapeutic class and their therapeutic indications, along with a range
of reported cardiotoxicity rates for each agent

Chemotherapy agent Cardiotoxicity rate Therapeutic indications Notes References

Anthracyclines

Doxorubicin (400–700 mg/m2)
Epirubicin (>900 mg/m2)
Idarubicin (>150 mg/m2)
Mitoxantrone (>100 mg/m2)

3%–48%
0.9%–11.4%
5%–18%
4.1%–14%

Breast cancer
Lymphoma/leukemia
Lung cancer
Sarcoma
Ovarian cancer
Gastric cancer
Liver cancer
Thyroid cancer

Cumulative dose-dependent
decline in LVEF

[4–13]

Alkylating agents

Cyclophosphamide
Ifosfamide (up to 18 g/m2)

7%–28%
17%

Lymphoma/leukemia
Multiple myeloma
Breast cancer
Lung cancer
Endometrial cancer
Sarcoma

Acute onset after initial dose [14–18]

Antimetabolites

Clofarabine
5-Fluourouracila

Capecitabinea

27%
<1%
<1%

Leukemia
Breast cancer
Gastric cancer
Head and neck tumors
Ovarian cancer

aHigh incidence of ischemic
symptoms

[8, 19]

Antimicrotubule agents

Docetaxel
Vinorelbine

2.3%–11%
1.2%

Breast cancer
Lung cancer
Head and neck tumors

Synergistic cardiotoxicity
with anthracyclines

[8, 20–22]

Proteasome inhibitors

Bortezomib 2% Multiple myeloma
Lymphoma

[23]

Monoclonal antibodies

Trastuzumab
Pertuzumab

2%–43.6%
3%–7%

Breast cancer
Gastric cancer

[8, 24–26]

Small-molecule TKIs

Sorafenib
Sunitinib
Pazopanib
Dasatinib
Imatinib
Lapatinib

6%
2.7%–15%
7%–20%
2%–4%
0.5%–1.7%
1.5%–2.2%

Renal cell cancer
Thyroid cancer
Breast cancer
Leukemia
Sarcoma

[8, 27–33]

Doses have been provided for chemotherapeutic agents with demonstrated dose-dependent toxicity.
aonly for 5-fluourouracil and capecitabine.
Abbreviations: LVEF, left ventricular ejection fraction; TKI, tyrosine kinase inhibitors.
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Table 2. This table outlines the antineoplastic mechanism of action for each drug class, focusing on the most commonly used drug in each
category, and lists proposed mechanisms of cardiotoxicity for each class

Drug class Mechanism of antineoplastic action Mechanism of cardiotoxicity References

Anthracyclines

Doxorubicin
Epirubicin
Daunorubicin

Doxorubicin binds to DNA and TOP2B, causing
cell death.

• Free radical accumulation.
• Oxidative stress.
• TOP2B association with heart failure,

targeted by dexrazoxane.

[34, 47–49]

Alkylating agents

CYC Attaches an alkyl group to guanine bases in
DNA, causing crosslinking and reduced cell
proliferation.

• Dose-dependent cardiotoxicity.
• Oxidative stress leading to myocardial

necrosis and capillary microthrombi
formation.

[16, 50]

Antimetabolites

5-FU 5-FU is a thymidylate synthase inhibitor, which
reduces levels of dTMP and consequently
inhibits DNA replication.

• 5-FU has the greatest cardiotoxic effect with
reported incidences of up to 20%.

• Fluoroacetate, a 5-FU metabolite, mediates
direct myocardial toxicity and coronary
vasospasm.

[51]

Taxanes

Paclitaxel
Docetaxel

Binds to tubulin and prevents depolymerization,
leading to microtubule stabilization which
limits the progression of the cell cycle.

• Taxane use is associated with bradycardia
and ischemia.

• Unknown mechanism of cardiotoxicity.

[49]

Monoclonal antibodies

Trastuzumab
Bevacizumab

Targeted therapy against antibodies specific to
cancer pathogenesis.

Trastuzumab targets the HER2 receptor.
Bevacizumab limits angiogenesis via targeted

inhibition of VEGFA.

• Trastuzumab: possible inhibition of
neuregulin-1 mediated survival and
activation of NADPH oxidase via angiotensin
II that promotes oxidative stress and
downregulation of TOP2B gene expression
in cardiomyocytes.

• Bevacizumab: VEGF stimulates NO
production by upregulating eNOS in
endothelial cells. VEGF inhibition causes
systemic vasoconstriction and raised blood
pressure.

[36–38, 53–55]

TKI

Imatinib
Sunitinib

Overexpression or mutation of tyrosine kinases
in malignant cells can increase proliferation
and angiogenesis and reduce apoptosis,
making it an ideal target in certain cancers.

• Imatinib toxicity is linked to on-target
cardiotoxic effects, whereas sunitinib
displays off-target effects where unintended
kinases are inhibited in cardiomyocytes.

• Imatinib (TKI of ABL, KIT, and
PDGFRα/β)-ABL inhibition in cardiomyocytes
linked to activation of prolonged ER stress
response and apoptosis.

• Sunitinib—VEGF inhibition leads to
hypertension and off-target cardiotoxic side
effects of sunitinib possibly from ribosomal
S6 kinase inhibition that triggers intrinsic
apoptosis by ATP depletion and
AMP-activated protein kinase inhibition that
stimulates catabolic pathways.

• Sunitinib and sorafenib-mediated
dysfunction in VEGF–VEGFR signaling
impair the angiogenic response necessary
to overcome the effects of pressure
overload (hypertension-induced) on the
heart and prevent the progression to heart
failure.

• Sorafenib-induced RAF1 antagonism disrupts
the ERK cascade, which has cardioprotective
effects particularly in response to stress.

• KIT receptor inhibition by imatinib,
dasatinib, sunitinib, and sorafenib impairs
endothelial progenitor cell migration to
areas of myocardial infarction where
repair is essential to avoid heart
remodeling.

[39–46, 56, 57]

(Continues)
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increased risk of arterial and venous thromboembolism associ-
ated with bevacizumab therapy [38].

Tyrosine Kinases Inhibitors

The development of small molecule inhibitors targeting receptor
tyrosine kinases that regulate tumor vasculature angiogenesis
and cellular proliferation have significantly improved cancer sur-
vival outcomes. To inhibit neoplastic cell proliferation, targeted
chemotherapeutic agents alter key signaling cascades that are
also essential in cardioprotection, especially under stress [39].
However, targeting novel kinases or pathways have been associ-
ated with critical cardiovascular side effects due to “on-target”
and “off-target” effects [40–60] (Table 2). However, the underlying
mechanisms for cardiotoxicity remain unclear. Sunitinib inhibits a
wide range of targets including vascular endothelial growth factor
receptor (VEGFR), KIT, RET, and platelet-derived growth factor
receptor α/β (PDGFRα/β). Hypertension and left ventricular dys-
function are a common adverse effect of sunitinib treatment
potentially due to off-target inhibition of ribosomal S6 kinase
(RSK) that triggers intrinsic apoptosis by ATP depletion and
AMP-activated protein kinase (AMPK) inhibition that stimu-
lates catabolic pathways [28, 41, 42]. Furthermore, imatinib
and dasatinib inhibition of the Abelson family (ABL) of non-
receptor tyrosine kinases has been shown to activate the
endoplasmic reticulum stress response and induce apoptosis
in cardiomyocytes [43]. Other proposed mechanisms for TKI-
mediated cardiotoxicity include myocardial contractile dysfunc-
tion secondary to disrupted VEGF–VEGFR signaling resulting in
an impaired angiogenic response to pressure overload due to
hypertension [44], sorafenib-induced RAF1 inhibition which is an
essential kinase in the cardioprotective extracellular signal-
regulated kinase (ERK) cascade [45] and KIT receptor antago-
nism that limits endothelial progenitor cell migration to sites of
myocardial ischemia [46]. Identifying novel kinases involved in car-
diomyocyte function and dysfunction through the “off-target”
effects of these multitargeted TKIs can drive future cardiotoxicity
and mechanistic studies.

MODELING ANTICANCER THERAPY MEDIATED CARDIOTOXICITY
IN VITRO

To effectively recreate functional cardiac tissues in vitro for
drug screening, there are three key design elements to be
considered—cell source, scaffold design, and biomolecules
[61]. In 2006, induced pluripotent stem cells (iPSCs) were
established as a potential cell source by the innovative work
of Takahashi et al. who used retrovirus-expressed transcription

factors to reprogram somatic cells to iPSCs [62]. There are def-
inite advantages of using iPSCs in tissue engineering as they
have unlimited expansion capacity, can be derived from sev-
eral, easily accessible cell types, and can be differentiated into
multiple cell lineages. Efficient and chemically directed differ-
entiation protocols have been developed to generate
cardiomyocytes from iPSCs [63], which can be further
subcategorized into atrial, ventricular, or nodal cells through
patch-clamp analysis [64]. Compared with animal models,
hiPSC-CMs are more representative of human cardiac physiol-
ogy in terms of ion channel expression, heart rate, and myofil-
ament composition [65]. Several studies exploring the
cardiotoxicity of different chemotherapy agents using stem cell
models have been described in the past few years [66–78]
(summarized in Table 3).

Anthracyclines

Most of the studies so far have focused on doxorubicin-mediated
cardiotoxicity. Burridge et al. [66] identified a differential response
to doxorubicin in hiPSC-CMs derived from healthy controls,
doxorubicin-treated patients without cardiotoxicity (DOX),
and doxorubicin-treated patients with clinical cardiotoxicity
(DOXTOX). The DOXTOX cells showed sarcomeric disarray, an
increase in arrhythmogenic predisposition, and a decrease in
cell viability upon exposure to doxorubicin. The effect of oxi-
dative stress was also explored following doxorubicin admin-
istration, with significantly higher levels of induced ROS and
a greater decrease in glutathione (GSH) observed in DOXTOX
cells. Most interestingly, transcriptomic analysis of doxorubi-
cin treatment identified several differentially regulated genes
between DOX and DOXTOX hiPSC-CMs, illustrating the power of
this model to unravel the molecular mechanism(s) of inter-
individual variation in doxorubicin toxicity. More recently, a panel
of hiPSC-CMs derived from 45 individuals was exposed to five dif-
ferent doxorubicin concentrations to generate a comprehensive
map of genetic variants [67]. A significant observation from this
study was the negative effect of doxorubicin exposure on splicing
fidelity, contributing to the high number of genes showing aber-
rant splicing. Genome editing approaches in hiPSCs have also
been tested to elucidate the role of TOP2B in doxorubicin toxic-
ity, a useful tool to further investigate the functional role of other
genetic variants. Maillet et al. showed that inactivation of TOP2B
via CRISPR/Cas9 resulted in increased cell viability following
doxorubicin exposure [68]. Moreover, Gupta et al. described a
novel mechanism involving the downregulation of quacking (Qki5),
an RNA-binding protein, in doxorubicin-induced cardiotoxicity [69].
Interestingly, Qki5 overexpression attenuated the toxic effect of

Table 2. (Continued)

Drug class Mechanism of antineoplastic action Mechanism of cardiotoxicity References

Proteasome inhibitors

Bortezomib
Carfilzomib

The malignant cell may harness the UPP to
enhance proliferation and decrease apoptosis.
In myeloma cells, PIs activate the UPR causing
the accumulation of cytotoxic misfolded or
unfolded proteins, eventually leading to
apoptosis.

• Cardiotoxic effects linked to UPR in
cardiomyocytes, causing apoptosis and are
more prevalent in patients with a prior
history of chemotherapy or other
cardiovascular diseases.

[58–60]

Abbreviations: 5-FU, 5-fluorouracil; ABL, Abelson family of nonreceptor tyrosine kinases; CYC, cyclophosphamide; eNOS, endothelial nitric oxide
synthase; ER, endoplasmic reticulum; ERK, extracellular signal-related kinase; KIT, proto-oncogene receptor tyrosine kinase; TKI, tyrosine kinase
inhibitors; TOP2B, topoisomerase II-B; PDGFRα/β, platelet-derived growth factor α/β; PI, proteasome inhibitor; UPP, ubiquitin proteasome pathway;
UPR, unfolded protein response; VEGFA, vascular endothelial growth factor A.
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doxorubicin through regulation of noncoding circular RNAs derived
from Ttn, Fhod3, and Strn3 genes, highlighting the potential of
harnessing the hiPSC-CMs model to gain mechanistic insights in
doxorubicin-induced cardiotoxicity.

Monoclonal Antibodies

A recent study demonstrated that trastuzumab induces cardio-
toxicity in hiPSC-CMs that was dependent on the activation of the
erythroblastic oncogene B2/B4 (ErbB2/B4) by either neuregulin
(NRG-1) or heparin-binding epidermal growth factor, suggesting
that trastuzumab is blocking the cardioprotective effects of the
ErbB2/4 pathway [70]. In contrast, two other studies showed that
trastuzumab-mediated cardiotoxicity on hiPSC-CMs is independent
of the ErbB2/B4 pathway activation [71, 72], highlighting the need
to develop standardized cell culture conditions to improve the valid-
ity of hiPSC-CMs in trastuzumab-toxicity screening. More recently,
the potential cardiotoxic effects of pertuzumab and trastuzumab-
emtansine (TDM1), a novel antibody–drug conjugate targeting the
ErbB2 receptor were tested in the hiPSC-CMs [73]. Of note, clinical
trials assessing these agents selected patients without trastuzumab-
related cardiotoxicity. Although pertuzumab has been added to
the combined treatment regimen for metastatic breast cancer,
trastuzumab-DM1 has been approved in metastatic breast cancer
resistant to standard therapy as it exhibits more cytotoxic activity
than trastuzumab due to the conjugated emtansine (DM1) toxin.

Although both pertuzumab and TDM1 showed cardiotoxicity, TDM1
demonstrated a more significant decrease in cell viability as well as
marked morphological changes and dysfunction in beating pheno-
type, emphasizing the utility of hiPSC-CMs as a preclinical model for
testing new anticancer drug combinations for cardiotoxicity studies.

Tyrosine Kinase Inhibitors

Patient-specific hiPSC-CMs have already been used to assess
the cardiotoxicity of several TKIs, demonstrating the potential
of this cell source in high-throughput drug screening for car-
dio-oncology. Sharma et al. harnessed the ability of hiPSCs
to differentiate into multiple lineages to elucidate the cell
type-specific cardiotoxic effects of 21 TKIs using a high-
throughput approach [57]. An interesting finding from this study
was the cardioprotective effect of insulin and insulin growth
factor-1 when TKIs inhibited VEGFR and PDGFR. Although VEGFR/
PDGFR inhibition leads to cardiotoxicity, this finding suggests that
there may be increased sensitivity to pro-survival factors following
their inhibition. The hiPSC-CM model has been used in another
mechanistic study investigating the role of RSK and AMPK in
sunitinib-related cardiotoxicity [74]. In contrast to previous
studies on rodent models, specific RSK inhibition did not induce
cytotoxicity and pretreatment of hiPSC-CMs with AMPK activators
did not alleviate sunitinib-mediated cell death. Although the pre-
cise molecular mechanisms of sunitinib-induced cardiotoxicity are

Table 3. This table outlines the key findings of each study that uses stem cell models to determine the cardiotoxic effects of different
antineoplastic agents

Drug Key findings References

Trastuzumab Detection of trastuzumab-induced cardiotoxicity upon activation of ErbB2/B4 signaling pathway or in
coculture with endothelial cells.

[70]

Trastuzumab Trastuzumab-treated cardiomyocytes showed downregulation of genes involved in small molecule
metabolism.

[72]

Pertuzumab
Trastuzumab-DM1

Trastuzumab-DM1 displayed a greater decrease in cell viability, compared with pertuzumab alone. [73]

Trastuzumab
Doxorubicin

Inhibition of ErbB signaling with trastuzumab worsened doxorubicin-induced cardiotoxicity. [71]

Doxorubicin Comparison of doxorubicin sensitivity in hiPSC-CMs derived from breast cancer patients with induced
cardiotoxicity to control hiPSC-CMs mirrored the clinical findings.

[66]

Doxorubicin RNA-seq analysis on hiPSC-CMs elucidated an in vitro transcriptomic response to varying doxorubicin
doses that corresponded with cell damage and may be used to predict in vivo cardiotoxicity risk.

[67]

Doxorubicin Doxorubicin demonstrated dose-related hiPSC-CM cell damage, changes in gene expression and
electrophysiological abnormalities. CRISPR/Cas9 was used to show the association of TOP2B with
doxorubicin-induced cardiotoxicity.

[68]

Doxorubicin The downregulation of Qki5 in response to doxorubicin increased cardiomyocyte apoptosis. [69]

Doxorubicin Vascularized 3D tissue derived from hiPSC-CM demonstrated different cardiotoxic responses in
comparison to 2D models.

[75]

Doxorubicin Doxorubicin tested on hiPSC-CM-derived multiorgan-on-a-chip models revealed marked cardiotoxicity,
with increased apoptosis, CK-MB levels, and visible arrhythmia.

[76]

Doxorubicin 48-Hour doxorubicin treatment of a multiorgan-on-a-chip model was evaluated at seven days after
treatment, highlighting its effects on drug viability and functionality.

[77]

Tyrosine kinase
inhibitors

Cardiac safety indices for 21 TKIs were established using a high-throughput approach. Exogenous
insulin and IGF-1 improved hiPSC-CM viability following cotreatment with certain TKIs.

[57]

Sunitinib Sunitinib-mediated cardiotoxicity on hiPSC-CMs were secondary to multiple kinase inhibition, and not
only AMPK and RSK.

[74]

Sunitinib Increased afterload in 3D microtissues was shown to increase sunitinib-mediated cardiotoxicity
in vitro, supporting the clinical observation of left ventricular dysfunction following the
development of hypertension.

[78]

Abbreviations: AMPK, AMP-activated protein kinase; CK-MB, creatine kinase-MB; CM, cardiomyocyte; hiPSC, human induced pluripotent stem cell;
IGF, insulin growth factor; RSK, ribosomal S6 kinase; TKI, tyrosine kinase inhibitors.
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unknown, this study challenged the notion that RSK and AMPK
pathways play a causative role in sunitinib-mediated cardiotoxicity,
suggesting a key difference between human and rodent cellular
models of drug-induced cardiotoxicity.

REFINING CARDIAC MODELS FOR CARDIOTOXICITY SCREENING

The hiPSC-CMs most closely resemble human fetal cardiomyocytes
in terms of gene expression, ultrastructure, and electrophysiologi-
cal properties [65]. The lack of T-tubules, the absence of H-zones
andM-bands, and poorly developed calcium handlingmay affect the
response of hiPSC-CMs to drugs that affect excitation–contraction
coupling [79]. Several methods to promote cardiomyocyte matura-
tion in vitro have been proposed including growth factors [80], elec-
trical or mechanical stimulation [81], cell alignment [82], and
long-term culture [83], but further refinements are needed to
mimic the native heart environment faithfully.

TISSUE ENGINEERING

Three-dimensional (3D) engineered heart tissues (EHTs) cre-
ated using hiPSCs display a more mature phenotype than their
two-dimensional (2D) counterparts [84]. Individual approaches
with static stretch [85], cyclic stretch [86], and electrical stimu-
lation [85] have also been used to enhance maturation of
hiPSC-derived EHTs albeit less effectively than the combinatorial
electro-mechanical conditioning [87]. Although cyclic stretch sim-
ulates ventricular filling, static stretch recreates embryonic devel-
opment through progressive lengthening [66]. Together, these
mechanical stimulation approaches have been shown to enhance
sarcomeric protein structure, cardiomyocyte alignment, calcium
cycling, and expression of gap junctions in 3D EHTs derived from
hiPSCs [88]. Interestingly, well-aligned cardiac tissue (“biowires”)
stimulated at high frequency, greater than in vivo average heart
rates, has also been associated with improved cardiac tissue mat-
uration in terms of size and action potential kinetics [89].

Engineered 3D microtissues from hiPSC-CMs have been
used to explore the mechanisms underlying sunitinib-induced
cardiotoxicity [90]. Correlating with previous findings, Truitt
et al. described a preclinical model that recapitulates cell
death and increased caspase 3/7 activation following sunitinib
exposure [78]. These findings provide new insight into mecha-
nisms of sunitinib toxicity as they suggest a direct cardiotoxic
effect, independent of sunitinib-induced vascular effects. Sig-
nificantly, the study also observed an increase in caspase acti-
vation associated with increased afterload, recreated in vitro
by altering the stiffness of the pillars to which the 3D tissues
are attached. The potential to use 3D tissues for the in vitro
assessment of increasing afterload on sunitinib cardiotoxicity is
promising, with findings supporting the potentiating effect of
sunitinib-induced hypertension on left ventricular dysfunction.
Clinically, this study implies that early blood pressure control in
patients treated with sunitinib may minimize future cardiovas-
cular adverse events.

Doxorubicin has also been tested in both 2D and 3D models
derived from hiPSC-CMs. Indeed, a recent study compared the
effects of doxorubicin using monolayer-cultured CMs (2D-CM
model) and a vascularized 3D EHT iPSC-CM tissues created using
nanofilm-based engineering techniques (3D-CM model) [75].
The vascularized 3D-iPSC-CM tissues demonstrated increased

resistance to doxorubicin when compared with 2D-iPSC-CM
cells. There was no decrease in beating rate when the 3D
model was exposed to doxorubicin, compared with a significant
decrease in beating rate in the 2D model under the same condi-
tions. Moreover, doxorubicin exhibited a dose-dependent toxic
effect on vascularization, suggesting the utility of 3D-CM in eval-
uating drug-induced vascular toxicity.

ORGAN-ON-A-CHIP

Recent developments in microfluidic devices (“organ-on-a-chip”
[OOC]) and organoid assembly using hiPSC-CMs provide an op-
portunity for optimizing chemotherapy-associated cardiotox-
icity screening in vitro. OOC systems are miniaturized 3D tissue
and organ models, which employ a reductionist approach to
recapitulate the relevant aspects of organ physiology depending
on the eventual application [91]. OOCs offer several advantages
as microtissues can be engineered from fewer cells compared
with traditional EHTs and are highly reproducible, a critical fea-
ture for commercial cardiotoxicity screening. In cardiotoxicity
screening for chemotherapy candidates, for example, patient-
specific cardiac OOCs must be designed without materials that
absorb drugs, include minimal culture media volume to reduce
drug dilution, and incorporate microfluidic connections to other
OOC models to form a multiorgan chip [91]. An integrative bio-
mimetic platform is essential for drug screening, particularly
dual-organ models such as a heart-and-liver-on-a-chip model sys-
tem, as several chemotherapy agents induce cardiotoxicity after
hepatic first-pass metabolism. Examples include doxorubicin
that is reduced to the cardiotoxic metabolite, doxorubicinol, by
carbonyl reductase-I present in the liver [92] and 5-fluorouracil
(5-FU) which is metabolized to cardiotoxic fluoroacetate by
α-fluoro-β-alanine, which is a downstream metabolite of 5-FU
by dihydropyrimidine dehydrogenase [93].

Cardiac OOC platforms using hiPSCs are being developed for
higher throughput drug screening including: muscular thin film
based assays to measure contractility [94], 3D bioprinting strate-
gies to fabricate endothelialized-myocardium-on-a-chip [95], pneu-
matic actuation systems to provide cyclic strain enabling
maturation of the 3D constructs along with electrical stimula-
tion [96, 97], and computational modeling of microcirculation
to create perfused OOCs with increased functionality [98].
Recently, Zhang et al. reported two multiorgan models, liver-
and-heart-on-a-chip and heart-liver-cancer-on-a-chip, with an
automated, in situ monitoring system with potentially broad appli-
cations in drug toxicity screening [76]. Doxorubicin was used to
assess the functionality of this testing model and induced marked
cardiotoxicity detected by hiPSC-CM apoptosis, elevated levels of
creatine kinase-MB, and arrhythmic beating visualized microscopi-
cally [76]. Doxorubicin was also tested in another multi-OOC sys-
tem where similar effects on cell viability and heart rate were
noted with a 65% and 45% decrease, respectively [77]. OOCs offer
several advantages as microtissues can be engineered from fewer
cells compared with traditional EHTs and are highly reproducible,
a critical feature for commercial cardiotoxicity screening.

CARDIAC ORGANOIDS

Cardiac organoids, on the other hand, are 3D tissue structures
arising from the self-assembly of hiPSC-CMs in the presence of
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appropriate factors. The self-organizing properties of stem cells
are exploited to create another in vitro biological model with
potential applications in cardiotoxicity screening. Although stem
cells are the key element in organoids, microenvironment design
features from biomimetic scaffolds to spatio-temporal control are
equally important to coordinate organoid assembly in culture [99].
Spheroid is a term that is sometimes used interchangeably with
organoid, but these are distinctly different in that spheroids are
3D aggregates without a stem cell component or tissue-like func-
tion [99]. The potential of cardiac organoids in drug toxicity
screening has been reinforced by a recent study of environ-
mental toxins on 3D cardiac organoids derived from hiPSC-
CMs [100]. When thallium was tested on cardiac organoids,
half-maximal inhibitory concentration (IC50) values were simi-
lar to lethal patient plasma levels, suggesting the utility of this
in vitromodel in detecting acute toxin effects [99]. This is particu-
larly useful for testing combination chemotherapy regimens due
to their magnified risk of acute cardiotoxicity. However, the main
challenge of using self-assembled cardiac organoids in drug
screening is the lack of an experimentally reproducible model.
Hoang et al. have recently described a cell micropatterning
approach to overcome this limitation, but the model remains
limited to studying early cardiac development and may be useful
in cardio-oncology to explore chemotherapy-related fetal cardiac
defects [100]. The issue of scalability has also been addressed by
high-throughput cardiac organoid screening platforms, such as
the Heart-Dyno [101]. Multiple organoids-on-a-chip represent
the future of cardiotoxicity screening as they combine the high
physiological accuracy of organoids with the ease of automated
readouts and perfusability seen in OOC models [102]. Addition-
ally, Li et al. recently reported a 3D human ventricle-like cardiac
organoid chamber derived from hiPSC-CMs, with potential to
model cardiac pump activity in vitro and broader drug screening
applications [103].

CONCLUSION

Cardio-oncology is a constantly evolving clinical discipline, as
cardiovascular safety is expected to remain a significant chal-
lenge in anticancer therapy secondary to the advent of novel
targeted agents. There is increasing interest in identifying the
underlying mechanisms of cardiotoxicity induced by both tradi-
tional and novel targeted therapies. The advent of hiPSC-CMs
and iPSC-CM-derived 3D cultures, such as EHTs, OOC, and
organoids, promises to revolutionize preclinical cardiotoxicity
drug screening by providing relevant human-based, renewable
model systems to explore drug toxicity (Fig. 1). Several studies
have demonstrated the utility of the hiPSC-CM-based models
to predict the cardiotoxic effects of anticancer therapies, pro-
viding novel insights on the underlying molecular mechanisms
of cardiotoxicity. Although there is a need for improved proto-
cols to address the relative immaturity of hiPSC-CMs, the
patient-specific hiPSC-CM technology can serve as a platform for
personalized medicine. Nevertheless, for effective translation into
cardio-oncology clinical practice, results from existing in vivo and
in silico models must be combined with high fidelity in vitro
models to better predict chemotherapy-induced cardiotoxicity
and maximize patient safety.
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Figure 1. Personalized chemotherapy drug screening to minimize cardiotoxicity. (1) Peripheral blood mononuclear cells (PBMCs) taken
from the cancer patient. (2) PBMCs reprogrammed to human induced pluripotent stem cells (hiPSCs). (3) hiPSCs differentiated into
cardiomyocytes. (4) Chemotherapy agents screened for toxicity on tissue derived from these cardiomyocytes—engineered heart tissue,
organ-on-a-chip, organoid, and cardiac organoid chamber. (5) Single drug with minimal cardiotoxic effects selected from initial drug
screen. (6) Tailored therapy for individual patient based on in vitro screening.
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