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ABSTRACT

Background. This multicenter, open-label, phase Ib study
investigated the safety and efficacy of binimetinib (MEK inhib-
itor) in combination with buparlisib (phosphatidylinositol
3-kinase [PI3K] inhibitor) in patients with advanced solid
tumors with RAS/RAF alterations.
Materials and Methods. Eighty-nine patients were enrolled
in the study. Eligible patients had advanced solid tumors
with disease progression after standard therapy and/or for
which no standard therapy existed. Evaluable disease was
mandatory, per RECIST version 1.1 and Eastern Cooperative
Oncology Group performance status 0-2. Binimetinib and
buparlisib combinations were explored in patients with
KRAS-, NRAS-, or BRAF-mutant advanced solid tumors until
the maximum tolerated dose and recommended phase II
dose (RP2D) were defined. The expansion phase comprised
patients with epidermal growth factor receptor (EGFR)-
mutant, advanced non-small cell lung cancer, after progres-
sion on an EGFR inhibitor; advanced RAS- or BRAF-mutant

ovarian cancer; or advanced non-small cell lung cancer with
KRAS mutation.
Results. At data cutoff, 32/89 patients discontinued treat-
ment because of adverse events. RP2D for continuous dos-
ing was buparlisib 80 mg once daily/binimetinib 45 mg
twice daily. The toxicity profile of the combination resulted
in a lower dose intensity than anticipated. Six (12.0%)
patients with RAS/BRAF-mutant ovarian cancer achieved a
partial response. Pharmacokinetics of binimetinib were not
altered by buparlisib. Pharmacodynamic analyses revealed
downregulation of pERK and pS6 in tumor biopsies.
Conclusion. Although dual inhibition of MEK and the PI3K
pathways showed promising activity in RAS/BRAF ovarian
cancer, continuous dosing resulted in intolerable toxicities
beyond the dose-limiting toxicity monitoring period.
Alternative schedules such as pulsatile dosing may be
advantageous when combining therapies. The Oncologist
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Implications for Practice: Because dysregulation of the mitogen-activated protein kinase (MAPK) and the pho-
sphatidylinositol 3-kinase (PI3K) pathways are both frequently involved in resistance to current targeted therapies, dual inhi-
bition of both pathways may be required to overcome resistance mechanisms to single-agent tyrosine kinase inhibitors or
to treat cancers with driver mutations that cannot be directly targeted. A study investigating the safety and efficacy of com-
bination binimetinib (MEK inhibitor) and buparlisib (PI3K inhibitor) in patients harboring alterations in the RAS/RAF pathway
was conducted. The results may inform the design of future combination therapy trials in patients with tumors harboring
mutations in the PI3K and MAPK pathways.

INTRODUCTION

The mitogen-activated protein kinase (MAPK [RAS/RAF/MEK/
ERK]) and phosphatidylinositol 3-kinase (PI3K [PI3K/AKT/
mTOR]) pathways are frequently dysregulated in cancer. Onco-
genic mutations in RAS and its downstream signals occur in a
variety of tumors, including non-small cell lung cancer (NSCLC;
20%–30%), melanoma (30%–60%), thyroid (30%–50%), colo-
rectal (2%–45%), and ovarian cancers (3%–11%) [1–8]. Further-
more, the PI3K and MAPK pathways are interconnected;
inhibition of one pathway can lead to compensatory activation
of the other. Therefore, dual blockade of both pathways may
be required [9, 10]. Synergistic antitumor efficacy by dual
PI3K/MAPK pathway inhibition has been demonstrated in pre-
clinical in vitro and in vivo models of basal-like breast cancer
and lung cancer, and has shown promise in the clinical setting
[11], thus supporting this hypothesis [12, 13].

Binimetinib (MEK162) is a potent, highly selective, orally
bioavailable, non-ATP-competitive allosteric inhibitor of MEK1
and MEK2 [14–16]. The maximum tolerated dose (MTD) of
single-agent binimetinib is 60 mg b.i.d. [17]; single-agent
binimetinib has shown preliminary clinical activity in solid
tumors such as NRAS- and BRAF-mutant melanoma (objective
response rate 11% and 6%, respectively) [14, 17, 18]. A phase
III study (NEMO) of binimetinib versus dacarbazine in
unresectable or metastatic NRAS-mutant melanoma met its pri-
mary endpoint of improvement in progression-free survival
(PFS; hazard ratio = 0.62; 95% confidence interval [CI]:
0.47–0.80; p < .001) [19].

Buparlisib (BKM120) is an oral pan-class I PI3K inhibitor
that selectively targets all four isoforms of class I PI3K [20,
21]. The MTD of single-agent buparlisib is 100 mg once
daily (q.d.) [20, 22]. Although only modest improvements in
PFS were reported in a randomized clinical trial in estrogen
receptor-positive breast cancer, higher activity was seen in
patients with PIK3CA-activating mutations [23].

Given the preclinical rationale for dual inhibition of the
PI3K and MAPK pathways, a phase Ib basket trial was con-
ducted to evaluate the safety and MTD of binimetinib/
buparlisib combination therapy in patients with advanced
solid tumors harboring selected genomic alterations in the
RAS/RAF pathway (ClinicalTrials.gov, number NCT01363232).
Secondary objectives of the study were evaluation of effi-
cacy, pharmacokinetics (PK), and pharmacodynamics (PD).

MATERIALS AND METHODS

Study Design
This was a multicenter, open-label, phase Ib study to deter-
mine the MTD and/or recommended phase II dose (RP2D)

for combination buparlisib/binimetinib, followed by an
expansion phase to further assess safety and efficacy in
patients with advanced solid tumors harboring selected
genomic alterations in the RAS/RAF pathway. Dose escalation
was conducted in patients with KRAS-, NRAS-, or BRAF-
mutant advanced solid tumors. Upon determination of RP2D,
two expansion arms were then opened in order to further
assess safety and preliminary antitumor activity.

Eligibility Criteria
Patients >18 years of age with advanced solid tumors and
disease progression after standard therapy and/or for whom
no standard anticancer therapy exists were eligible. Eva-
luable disease was mandatory as determined by RECIST
version 1.1 and Eastern Cooperative Oncology Group perfor-
mance status 0-2. Patients with diabetes mellitus, impaired
cardiovascular function, clinically significant cardiovascular
diseases, history of depression, or ocular disease (with a his-
tory or current evidence of central serous retinopathy [CSR],
retinal vein occlusion [RVO], or ophthalmopathy that would
be considered a risk factor for CSR/RVO) were excluded.

Dose escalation was performed in patients with advanced
refractory colorectal cancer harboring KRAS, NRAS, or BRAF
mutations; NSCLC with KRAS mutation; cutaneous malignant
melanoma with NRAS or BRAF mutations; pancreatic cancer
(irrespective of RAS/RAF mutation status, because most have
KRAS mutations); triple-negative breast cancer (because
tumors have high prevalence of RAS/MAPK pathway activa-
tion) [24]; and other advanced solid tumors with docu-
mented KRAS, NRAS, or BRAF mutations. For evaluation of
RP2D, patients were enrolled in one of two expansion arms.
Arm 1 comprised patients with epidermal growth factor
receptor (EGFR)-mutant, advanced NSCLC (including NSCLC
with documented T790M activating mutations), with disease
progression on a prior EGFR-inhibitor treatment. Arm 2 com-
prised patients with advanced ovarian cancer with docu-
mented RAS or RAF mutations, or advanced NSCLC with
documented KRAS mutation.

The study was conducted in accordance with the
Declaration of Helsinki and guidelines for Good Clinical
Practice as defined by the International Conference on
Harmonisation. Patients provided written informed consent,
and regulatory approval was obtained from participating
institutions.

Treatments
Starting doses for the combination were 30 mg binimetinib
b.i.d. and 50 mg buparlisib q.d. (both 50% of the single-
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agent MTD). Combinations of doses were explored based
on an adaptive Bayesian logistic regression model (BLRM)
for dose-escalation with overdose control (EWOC) [25] until
the MTD and RP2D were defined (supplemental online
Table 1). At all decision time points, the adaptive BLRM per-
mitted alterations in the dose increments based on the
observed dose-limiting toxicities (DLTs). Only one of the
two combination partners could be escalated, and the maxi-
mum intercohort dose escalation for a combination partner
was limited to 100%. Following determination of the RP2D,
patients enrolled in Arm 1 (n ≥ 15) and Arm 2 (advanced
ovarian cancer with documented RAS or RAF mutations
[n ≥ 15], or advanced NSCLC with documented KRAS muta-
tion [n ≥ 10]) received the recommended RP2D: 80 mg
buparlisib q.d. and 45 mg binimetinib b.i.d.

Safety and Efficacy Assessments
A treatment cycle was defined as 28 days. Clinical and labo-
ratory assessments were conducted at baseline, throughout
the study, and up to 30 days after the last treatment dose.

Safety assessments included monitoring and recording
all adverse events (AEs) with their severity and relationship
to study drug, according to Common Terminology Criteria
for Adverse Events (version 4.0). Given known pulmonary,
ophthalmic, and psychiatric effects of the drugs, patients
were monitored at baseline and during the study with pul-
monary function tests, mood questionnaires (Patient Health
Questionnaire [PHQ-9] depression scale and the General-
ized Anxiety Disorder 7-item [GAD-7] anxiety scale), and
detailed ophthalmic examination [10, 20]. Supportive medi-
cations to manage side effects were permitted.

Efficacy assessments were conducted at baseline and
every 8 weeks and evaluated by RECIST version 1.1 criteria.

Pharmacokinetic Assessments
Pharmacokinetic assessments were performed for
binimetinib, its primary active metabolite (AR00426032),
and buparlisib; plasma levels were determined from sam-
ples collected before dose and 0.5, 1.5, 3, 5, 8, and 24 hours
after dose on Day 1 and Day 15 of Cycle 1 from all patients
in the dose-escalation phase and expansion arm 2. The
pharmacokinetics of binimetinib and buparlisib were inves-
tigated after a single dose (Day 1) and multiple doses (Day
15) in Cycle 1. The potential impact of coadministration of
buparlisib on binimetinib was assessed by examining maxi-
mum plasma concentration (Cmax) and area under the con-
centration curve (AUCtau) at the same level of binimetinib
across doses of buparlisib on Day 15.

Pharmacodynamic Assessments
Paired fresh tumor biopsy samples were collected at base-
line and Day 15. Biopsies were recommended for all
patients in the dose-escalation phase and were required for
patients in the dose-expansion phase. Specimens were flash
frozen and analyzed by immunohistochemistry for the PD
markers pS6 and pERK (IPG, Belgium) to confirm target
modulation of the MAPK and PI3K pathway, respectively.
Immunohistochemistry results were semiquantitatively
evaluated using the H-score. The percentage of cells with
positive staining was estimated for each intensity level

(0, no staining; 1+, weak staining; 2+, moderate staining;
3+, strong staining). The H-score is calculated using the
following equation: [1 × (% cells 1+) + 2 × (% cells
2+) + 3 × (% cells 3+)]. The H-score ranges from 0 to 300.

Statistical Analyses
A BLRM guided by EWOC principle was used to guide dose
escalation of the combination treatment to its MTD and
RP2D. A five-parameter BLRM for combination treatment
was fitted on Cycle 1 DLT data accumulated throughout the
dose escalation to model the dose-toxicity relationship of
buparlisib and binimetinib when given in combination. Dose
recommendation was based on the probability that the true
DLT rate for each dose combination lies in one of the fol-
lowing categories: underdosing (0%, 16%), targeted toxicity
(16%, 35%), or excessive toxicity (35%, 100%). The MTD
and/or RP2D was expanded by enrolling additional patients
eligible for the safety set to be evaluated for safety, tolera-
bility, pharmacokinetics, and biologic activity of buparlisib
and binimetinib. A sample size of 40 patients in the expan-
sion cohort had an 87% probability of detecting an AE with
a true incidence rate of ≥5%.

RESULTS

Patient Characteristics
From August 15, 2011, to March 24, 2014 (data cutoff date),
89 patients were enrolled and received at least one dose of
the buparlisib/binimetinib combination (Table 1). One
patient withdrew consent before receiving the first dose of
study drug; 48 and 41 patients were treated in the escala-
tion and expansion phases, respectively. Baseline character-
istics were similar across treatment groups in the escalation
phase.

Patient Disposition
At the cutoff date, 84 patients (94.4%) had discontinued
study treatment; 5 patients in the expansion phase were
still ongoing. The most common reasons for discontinuation
were disease progression (43 patients, 48.3%) and AEs
(32 patients, 36.0%). Other reasons included withdrawal of
consent (seven patients, 7.9%), death due to disease pro-
gression (one patient, 1.1%), and administrative problems
(one patient, 1.1%).

MTD and RP2D Determination
Thirteen patients (20.3%) experienced at least one DLT dur-
ing the first cycle; the most frequent DLTs were diarrhea
(four patients, 6.3%), CSR, and stomatitis (two patients
each, 3.1%). Both CSRs were grade 1, reversible, and man-
ageable. In the dose-escalation phase, no DLTs were
reported in the buparlisib 50-mg/binimetinib 45-mg group
or the buparlisib 60-mg/binimetinib 45-mg group. The dose
at which DLTs occurred in both the dose-escalation and
dose-expansion phases are specified in supplemental online
Table 2.

The MTD for the dose combination was buparlisib
90 mg q.d. and binimetinib 45 mg b.i.d. in a continuous
schedule; however, a lower RP2D of buparlisib (80 mg q.d.)
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and binimetinib (45 mg b.i.d.) was recommended. During
the dose escalation phase, there were fewer DLTs reported
in the buparlisib (80 mg q.d.) and binimetinib (45 mg b.i.d.)
group (1/7 reported grade 3 maculo-papular rash) than in
the buparlisib (90 mg q.d.) and binimetinib (45 mg b.i.d.)
group (2/6 reported DLTs; grade 3 diarrhea [n = 1] and
grade 3 anaphylactic reaction and grade 3 swelling face
[n = 1]); the Bayesian model estimated the probability of
excessive toxicity was higher for buparlisib 90 mg q.d. and
binimetinib 45 mg b.i.d. (0.052) than for buparlisib 80 mg
q.d. and binimetinib 45 mg b.i.d. (0.012), and the true DLT
rate lies in the excessive toxicity category. Therefore, both
dose combinations satisfied EWOC criterion (less than 25%
chance that true DLT rate ≥ 35%). The lower buparlisib dose
was chosen to limit DLTs and excessive toxicity while still
meeting EWOC criterion.

Patient Exposure and Safety
The most common all-grade AEs (≥10%) suspected of being
study drug related included increased blood creatine phos-
phokinase (CPK; 59.6%), diarrhea (57.3%), and increased
aspartate aminotransferase (AST; 49.4%; Table 2). The most
common grade 3/4 AEs suspected of being study drug
related included increased CPK (27%), increased alanine
aminotransferase (ALT; 14.6%), and increased AST (13.5%;
Table 2). The most common (≥10%) all-cause all-grade AEs
and all-cause grade 3/4 AEs are shown in supplemental
online Table 3.

Fifty-three patients (59.6%) reported a grade 3/4 AE
that required dose interruption and/or change; 54 patients
(60.7%) with a grade 3/4 AE required additional therapy for
diarrhea, pneumonia, nausea, and vomiting. At the RP2D
dose, 26 patients (29.2%) discontinued study treatment for
drug-related AEs. The most commonly occurring AEs leading
to discontinuation were maculopapular rash (7.9%), symp-
tomatic blood CPK elevation, diarrhea, and ALT increase
(3.4% each). One patient died while on treatment as a
result of disease progression, and 10 patients died within
30 days after the last dose of study drug as a result of dis-
ease progression (n = 7), pneumonia (n = 2), and dissemi-
nated intravascular coagulation (n = 1). No deaths were
suspected to be study drug related.

Efficacy
Sixty-nine patients (77.5%) were evaluable for tumor response
according to RECIST version 1.1 (Fig. 1A). Six patients (12.0%)
from the dose-expansion arm achieved a partial response
(PR) and remained on treatment for 57 to 169 days. In
patients treated with the RP2D (Fig. 1B; supplemental online
Table 4), PR was most frequently observed in RAS/BRAF ovar-
ian cancer (27.8%); one patient (7.7%) in the EGFR-mutant
NSCLC group achieved a PR. In the RP2D population, the
highest disease control rate (the proportion of patients with a
best overall response of complete response, PR, or stable dis-
ease) was reported for patients with RAS/BRAF ovarian cancer
(61.1%; 95% CI: 35.7%–82.7%; supplemental online Table 4).
The longest median PFS based on Kaplan-Meier estimates was

Table 1. Baseline patient characteristics

Characteristic

Buparlisib/binimetinib dose, mg q.d./b.i.d.

50/30 (n = 11) 50/45 (n = 5) 60/45 (n = 5) 70/30 (n = 6) 80/30 (n = 6) 80/45 (n = 50) 90/45 (n = 6)

All
patients
(n = 89)

Sex, male/
female, n (%)

5 (46)/6 (55) 3 (60)/2 (40) 2 (40)/3 (60) 1 (17)/5 (83) 3 (50)/3 (50) 17 (34)/33 (66) 3 (50)/3 (50) 34 (38)/55 (62)

Age, median
(range), years

64 (36–77) 57 (47–75) 52 (52–78) 50 (42–69) 56 (43–73) 54 (30–77) 66 (54–76) 57 (30–78)

WHO PS, n (%)

0 3 (27) 0 1 (20) 4 (67) 4 (67) 21 (42) 2 (33) 35 (39)

1 8 (73) 5 (100) 4 (80) 2 (33) 2 (33) 28 (56) 3 (50) 52 (58)

2 0 0 0 0 0 1 (2) 1 (17) 2 (2)

Primary cancer
site, n (%)

Lung 0 1 (20) 0 1 (17) 0 24 (48) 1 (17) 27 (30)

Ovary 1 (9) 0 0 0 0 18 (36) 0 19 (21)

Colon 4 (36) 0 1 (20) 4 (67) 1 (17) 2 (4) 1 (17) 13 (15)

Rectum 4 (36) 1 (20) 1 (20) 0 0 2 (4) 1 (17) 9 (10)

Othera 0 2 (40) 1 (20) 0 1 (17) 1 (2) 2 (33) 7 (8)

Breast (triple
negative)

2 (18) 0 0 1 (17) 2 (33) 1 (2) 0 6 (7)

Pancreas 0 1 (20) 2 (40) 0 2 (33) 0 1 (17) 6 (7)

Melanoma 0 0 0 0 0 2 (4) 0 2 (2)

No. of prior
antineoplastic
regimens,
median (range)

3.0 (2.0–12.0) 3.5 (1.0–6.0) 2.0 (1.0–4.0) 3.0 (2.0–3.0) 2.5 (1.0–5.0) 3.0 (1.0–12.0) 2.0 (1.0–5.0) 3.0 (1.0–12.0)

aOther sites included unknown/unspecified (n = 3) and cervix, head and neck, small intestine, and thyroid (n = 1 each).
Abbreviations: PS, performance status; q.d., once daily; WHO,World Health Organization.
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also reported in patients with RAS/BRAF ovarian cancer
(median 3.7 months; 95% CI: 1.8 to not estimable).

Pharmacokinetics
The potential impact of coadministration of buparlisib and
binimetinib was assessed by examining Cmax and AUCtau at
the same level of binimetinib across doses of buparlisib on
Day 15 (Fig. 2).

For the combination of binimetinib 45 mg b.i.d. and
buparlisib 80 mg q.d., the mean AUCtau of 2,668 ng•hour/
mL (supplemental online Table 5) was comparable to or
higher than the expected exposure (2,679 ng•hour/mL)
derived from the population PK model developed for
binimetinib monotherapy and that seen in the single-agent
phase I study (mean AUCtau [1,740 ng•hour/mL]) using the
same dosing schedule [17]. In the present study, the AUCtau

and Cmax were 11,690.71 hour•ng/mL and 764.3 ng/mL,
respectively. In the single-agent study, AUCtau and Cmax

were 15,413 ng•hour/mL and 1,098 ng/mL, respectively
[22]. Overall, the peak concentration of buparlisib and
exposure at steady state were lower than expected from
single-agent data (supplemental online Table 5), and the PK
of binimetinib was not altered by buparlisib. When com-
bined with binimetinib, Cmax and AUCtau of buparlisib were
reduced by >50% in many patients, but this reduction is
within the variability of buparlisib exposure and clinical rel-
evance is unclear.

Pharmacodynamics
Biomarker analyses on baseline and postbaseline fresh
tumor samples (20 evaluable baseline and postbaseline
pairs for pERK analysis; 19 evaluable baseline and

Figure 1. Best percentage change from baseline in sum of tumor diameters. (A): By local mutational status and treatment group
(full analysis set). (B): By local mutational status (recommended phase II dose).
Abbreviations: Adv, advanced; mEGFR, mutant epidermal growth factor receptor; NSCLC, non-small cell lung cancer; PD, progressive
disease; SD, stable disease; UNK, unknown.
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postbaseline pairs for pS6 analysis) showed that inhibition
of MAPK and PI3K signaling by combination therapy
resulted in downregulation of pERK and pS6 (Fig. 3). At the
RP2D dose combination, median cytoplasmic pERK H-score
at baseline and postbaseline was 210 (range, 0–300) and
190 (range, 60–300), respectively; the median nuclear pERK
H-score at baseline and postbaseline was 180 (range,
0–300) and 160 (range, 0–300). Median cytoplasmic pS6
(Ser235 and Ser240) H-score at baseline and postbaseline
was 120 (range, 3-280) and 110 (range, 9–140). H-score
could not be analyzed for nuclear pS6 levels.

DISCUSSION

In this study, we show that buparlisib, an oral pan-PI3K
inhibitor, and binimetinib, an oral MEK1/2 inhibitor, have
overlapping toxicities when given in combination; the RP2D
of this combination is lower than the MTD for single-agent
buparlisib (100 mg/day) and binimetinib (60 mg b.i.d.) [17,
20, 22]. Although the pharmacokinetics of binimetinib are
comparable to those observed in a single-agent phase I

study, the peak concentration of buparlisib and exposure at
steady state were lower than expected from single-agent
data [17]. Despite the lower exposures of buparlisib, there
was significant interpatient variability, and a significant pro-
portion of patients required dose reductions and treatment
discontinuation even at the RP2D.

In terms of efficacy, the most striking responses were
seen in KRAS/NRAS/BRAF-mutant ovarian cancer, where
standard therapies are ineffective [26]. In contrast, a
phase II study of single-agent selumetinib reported a 15%
response rate irrespective of BRAF or KRAS status [26].
The doubling of response rates seen in our study was simi-
larly observed in a previous MEK-PI3K trial [11], thereby
lending support to a combination strategy. A phase III
study (MILO; NCT01849874) of single-agent binimetinib
compared with standard chemotherapy in genomically
unselected patients with low-grade serous (LGS) ovarian
cancer failed to meet its futility endpoint [27]. Based on
findings from our study, further exploration of combina-
tion therapy in this patient population with selected geno-
mic alterations is warranted.

Figure 2. Geometric mean plasma concentration-time profiles after repetitive (Day 15) daily combination doses of buparlisib and
binimetinib by treatment group. (A): Binimetinib. (B): Buparlisib. “tau” represents the dosing interval; tau = 12 hours for
binimetinib, tau = 24 hours for buparlisib.
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Although dual PI3K and MAPK pathway inhibition has
strong preclinical rationale across a range of cancer types,
the efficacy of the combination was not as robust in the
clinic, perhaps with the exception of ovarian cancer (PR in
5/18 [27.8%] patients treated at RP2D). Several factors
should be considered. First, toxicities from the combination
resulted in frequent dose reductions, and the consequent
suboptimal pathway modulation likely contributed to
reduced efficacy. Second, although tumors may share com-
mon driver alterations, coexisting mutations and their geno-
mic context—whether truncal, shared, or private—may
explain the significant differences in responses between the
cancers. In support, whole exome sequencing of LGS has
shown a high prevalence of activating mutations in the
MAPK pathway (~70%) with few “passenger” mutations
likely explaining the sensitivity of this histology to combina-
tion strategy [28]. Dual inhibition of PI3K and MEK in colon
cancer cell lines demonstrated antitumor activity except in
those harboring TP53 gene mutations [29]. In targeting
PI3K- and MAPK-mutant pathways, the impact of “passen-
ger” mutations needs further elucidation. Third, beyond
genomic alterations, the dependency of a tumor on a par-
ticular pathway can be mediated by epigenetic factors that
dictate therapeutic vulnerabilities, requiring different doses
of targeted therapy to achieve sufficient pathway inhibition.
This was previously illustrated in a histology-independent,
BRAF V600E–mutant basket study with vemurafenib that
showed differential activities between histologies [30].

In this study, toxicity with the combination generally
required dose reduction of both agents, and many patients
discontinued because of intolerable toxicities. Data from
other phase Ib studies have suggested that long-term toler-
ability of the combination at RP2D is challenging [11, 31]
and that overlapping toxicities of rash, diarrhea, and fatigue

limits the ability to dose both agents continuously [22, 32].
Pharmacodynamic studies in BRAF-mutant melanoma indi-
cate that profound (>80%) inhibition of the pathway is
required for clinical responses [33]. In this study, RP2D
patient biopsies at baseline and after treatment (Day 15)
demonstrated median pERK H-score (cytoplasm) of
210 (range, 0–300) and 190 (range, 60–300), respectively;
median pERK H-score (nucleus) of 180 (range, 0–300) and
160 (range, 0–300); and median pS6 (Ser235 and Ser240) H-
score (cytoplasm) of 120 (range, 3–280) and 110 (range,
9–140). This shows that with continuous dosing, the down-
stream targets of MAPK and PI3K pathway are not ade-
quately inhibited at the Day 15 time point, likely because of
early and acquired compensatory resistance. Furthermore,
we found elevated ERK signaling after treatment, which can
paradoxically have antiproliferative effects [34].

A potential way of overcoming toxicities while achieving
adequate PD inhibition is to evaluate alternate schedules
and doses. MEK inhibitors are limited by a narrow thera-
peutic index and accumulative toxicities. Pulsatile dosing of
buparlisib and/or binimetinib may overcome issues related
to toxicities [35]. This strategy was successfully used in the
combination study of selumetinib, a MEK inhibitor, with
MK-2206, an AKT inhibitor, where pulsatile dosing was bet-
ter tolerated than a continuous dosing schedule [36]. The
advantage of pulsatile dosing may not only mitigate toxic-
ities but also delay resistance (acquired mutations or recep-
tor upregulations) [37–39]. To the best of our knowledge,
clinical trials have not formally evaluated the PK/PD rela-
tionship of pulsatile dosing strategies, where the degree of
PD inhibition at early time points (24–72 hours after dosing)
would be critical. Based on our findings, we advocate clini-
cal trial designs in which either one or both drugs are
administered at or above the established MTD in a pulsatile

Figure 3. Immunohistochemical staining on pre- and postbaseline tumor biopsies (representative images shown at ×25
magnification).
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fashion [40] to induce tumor regression and mitigate
toxicities.

This study further expands the “basket” concept from
selection based on a single genomic mutation (e.g., BRAF
V600E) to selection based on multiple genomic alterations
that converge on a common pathway. It should be noted
that tissue type and quality are important for these geno-
mic studies, as highlighted by the BELLE-2 trial of buparlisib
plus fulvestrant that showed that PIK3CA mutations in cir-
culating tumor DNA, but not tissue specimens, may help
select patients who could benefit from PI3K-inhibitor ther-
apy [23]. Moving forward, comprehensive molecular profil-
ing of fresh tissue or liquid biopsies might be important for
matching patients with rational combinations of targeted
drugs and may address some of the challenges associated
with biomarker development.

Limitations
The study limitations include the relatively small number of
patients in each tumor group of the expansion phase and
the limited number of tumor samples available for PD
analyses.

CONCLUSION

The toxicity profile of the combination regimen evaluated
in this study resulted in a lower dose intensity than antici-
pated. However, an encouraging signal was observed in
patients with ovarian cancer. Based on these data, further
exploration of this combination may be warranted to define
a better-tolerated dose and/or schedule, such as alternative
scheduling with noncontinuous/pulsatile dosing of either
agent, which could be explored further in RAS/BRAF-mutant
tumors.
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