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Simple Summary: High metastasis-associated in colon cancer 1 (MACC1) expression is associated
with metastasis, tumor cell migration, and increased proliferation in colorectal cancer. Tumors with
high MACC1 expression show a worse prognosis and higher invasion into neighboring structures.
However, the mediation of the pro-migratory effects is still a matter of investigation. The aim of this
study was to elucidate the impact of single cell biomechanics and proliferation on MACC1-dependent
migration. We found that MACC1 expression associated with increased collective migration, caused
by increased proliferation, and no changes in single cell biomechanics. Thus, targeting proliferation
in high-MACC1-expressing tumors may offer additional effects on cell migration.

Abstract: Metastasis-associated in colon cancer 1 (MACC1) is a marker for metastasis, tumor cell mi-
gration, and increased proliferation in colorectal cancer (CRC). Tumors with high MACC1 expression
show a worse prognosis and higher invasion into neighboring structures. Yet, many facets of the
pro-migratory effects are not fully understood. Atomic force microscopy and single cell live imaging
were used to quantify biomechanical and migratory properties in low- and high-MACC1-expressing
CRC cells. Furthermore, collective migration and expansion of small, cohesive cell colonies were
analyzed using live cell imaging and particle image velocimetry. Lastly, the impact of proliferation
on collective migration was determined by inhibition of proliferation using mitomycin. MACC1 did
not affect elasticity, cortex tension, and single cell migration of CRC cells but promoted collective
migration and colony expansion in vitro. Measurements of the local velocities in the dense cell layers
revealed proliferation events as regions of high local speeds. Inhibition of proliferation via mitomycin
abrogated the MACC1-associated effects on the collective migration speeds. A simple simulation
revealed that the expansion of cell clusters without proliferation appeared to be determined mostly by
single cell properties. MACC1 overexpression does not influence single cell biomechanics and migra-
tion but only collective migration in a proliferation-dependent manner. Thus, targeting proliferation
in high-MACC1-expressing tumors may offer additional effects on cell migration.

Keywords: MACC1; migration; biomechanics; proliferation; colorectal cancer

1. Introduction

Colorectal cancer (CRC) is the third most frequent cancer type and a major cause of
cancer-associated death [1]. The survival of patients is directly linked to the formation of
metastasis as the most frequent type of therapy failure [2,3]. For the formation of metastasis,
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tumor cells need to detach from the primary tumor and migrate either individually or
collectively through surrounding tissues and enter vessels.

In recent years, metastasis-associated colon cancer 1 (MACC1) has been shown to
promote migration and proliferation in CRC and be a predictor of clinical outcome [4,5].
High MACC1 expression levels, whether determined in the primary tumor or in the cancer
patient’s blood, predict a reduced survival time, caused by a promotion of tumor aggres-
siveness and metastasis formation, even when detected in early, not yet metastasized
tumor stages [6]. MACC1 has been established by us and many other groups as crucial
for tumor development and metastasis. Thus, it has been found to be a prognostic and
predictive biomarker for tumor progression and metastasis formation in a multitude of
solid cancer types, including supportive meta-analyses for solid cancers; hepatocellular
and gastrointestinal tract cancers, such as CRC and gastric cancer; and gynecological and
breast cancer [7–12].

MACC1 regulates key processes during tumor progression such as proliferation,
migration, invasiveness, and metastasis formation in xenografted and transgenic mice [6,13].
Cell migration represents a very crucial phenomenon and reflects, in addition to cell
proliferation, a most decisive feature. However, how MACC1 is mechanistically increasing
and thereby decisively activating cell migration is not well understood.

Thus, the current study investigated MACC1-induced elevated cancer cell motility,
focusing on the biomechanics and migration of CRC cells on the single and multicellular
level. Furthermore, the effect of proliferation on collective cell migration was assessed. We
thereby found that MACC1 expression does not affect the migration and biomechanics of
single colorectal cancer cells but does affect collective migration dynamics in a proliferation-
dependent manner.

2. Materials and Methods
2.1. Cell Culture

SW480 and SW620 cells were purchased from the American Type Culture Collection
(Manassas, VA, USA). The generation of the MACC1-overexpressing cell line SW480/MACC1
and MACC1-silenced SW620/shMACC1 and their respective controls (SW480/EV and
SW620/EV) was previously described [4].

SW620 cells were cultured in 89 % (v/v) DMEM (Invitrogen, Carlsbad, CA, USA
41965-062) and SW480 in 89% (v/v) RPMI (Lonza, Basel, Switzerland, BE12-115F) and both
were supplemented with 10 % (v/v) FBS (Gibco, Life Technologies, Carlsbad, CA, USA,
10500-064) and 1% (v/v) penicillin/streptomycin (Gibco, 15140-122).

To inhibit cell proliferation, 0.1 µg/mL mitomycin was applied 1 h before the start of
the respective experiment.

2.2. Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)

Total RNA was isolated using a GeneMATRIX Universal RNA Purification Kit (Robok-
lon, Berlin, Germany) according to the manufacturer’s instructions. In total, 50 ng RNA
was taken from each sample for reverse transcription (RT) with random hexamers in a
reaction mix (25 µM hexamer primer, 200 U/µL reverse transcriptase, 40 U/µL RNase
inhibitor, 5× synthesis buffer, dNTP mix, PCR grade water; all from Biozym, Hessisch
Oldendorf, Germany). RT was carried out at 30 ◦C for 10 min, 50 ◦C for 40 min, and 99 ◦C
for 5 min with cooling at 4 ◦C for 5 min and samples were diluted 1:1 with PCR grade water.
qRT-PCR was performed in duplicate with the Blue SYBR Green qPCR Mix (Biozym) in a
final volume of 10 µL in a LightCycler 480 (Roche, Basel, Switzerland). The PCR protocol in-
cluded a pre-incubation step at 95 ◦C for 2 min, followed by 40 cycles of incubation at 95 ◦C
for 5 s, and annealing at 60 ◦C for 20 s. In the melting curve, the temperature was increased
from 65 to 95 ◦C (0.1 ◦C/s). RNA polymerase II (RP II) was used as the housekeeping gene.
The primers for MACC1 (fow 5′-ttcttttgattcctccggtga-3′; rev 5′-actctgatgggcatgtgctg-3′) and
RP II (fow 5′-gaagatggtgatgggatttc-3′; rev 5′-gaaggtgaaggtcggagt-3′) were used for qPCR
amplification of cDNA by a LightCycler 480 II (Roche Diagnostics, Basel, Switzerland).
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Data were analyzed with the LightCycler 480 Software release 1.5.0 SP3 (Roche Diagnostics).
Average values of repeated samples were taken, and each mean value of the expressed
genes was normalized according to the results of the housekeeping gene. All expression
analyses were performed three times independently.

2.3. Western Blot Analysis

RIPA buffer (50 mM Tris-HCl at pH 7.5, 150 mM NaCl, 1% NP-40; supplemented with
protein and phosphate inhibitor cocktail tablets, Roche Diagnostics) was used for cell lysis
on ice for 30 min. Protein concentration was quantified with the Bicinchoninic Acid (BCA)
Protein Assay (Thermo Scientific, Waltham, MA, USA).

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to
analyze the protein expression levels. After electrophoresis, transfer to the polyvinylidene
difluoride (PVDF) membrane was performed. Membranes were blocked with 5% milk in
TBS-T (50 mM Tris-HCl, 150 mM NaCl, 0.05% Tween 20, pH 7.5) for 1 h at room temperature.
Membranes were washed with TBS-T and treated with MACC1 or β-actin (as loading
control) primary antibody (MACC1 antibody, Sigma, diluted 1:3000; β-actin antibody,
Sigma, dilute 1:20,000; all prepared with albumin bovine fraction V; Serva, Heidelberg,
Germany) at 4 ◦C room temperature overnight. The membranes were incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies (anti-rabbit IgG, Promega,
dilute 1:10,000; anti-mouse IgG, Thermo Fisher, dilute 1:40,000; prepared with TBS-T) at
room temperature for 1 h, and washed. Detection was performed with WesternBright
(Advansta, Menlo Park, CA, USA) and subsequent exposure to Fuji medical X-ray film
SuperRX (Fujifilm, Tokyo, Japan). Quantification was performed using Image J 1.53a
(National Institute of Health, Bethesda, MD, USA).

2.4. Atomic Force Microscopy

The mechanical properties of single cells were assessed in the form of the Young’s
modulus and cortex tension; both were measured using an atomic force microscope (AFM;
Bruker, Billerica, MA, USA, Bioscope Catalyst). The measurement procedure for obtaining
the Young’s modulus is described elsewhere [14,15]. Briefly, cells were seeded on a petri
dish and measured 15 min after seeding to avoid slippage of individual cells. Measure-
ments were conducted using a tip-less cantilever (Arrow-TL2, Nanoworld, Neuchatel,
Switzerland) to apply a force of 1 nN that led to deformations of 1–2 µm. The Young’s
modulus was calculated using the Hertz model:

F =
4
3

E
1− ν2

√
Rδ0

3

where F denotes the applied force, E is the Young’s modulus, R is the cells radius, ν is the
Poisson ratio (set to 0.5), and δ0 is the central indentation.

From the same measurement curves, the actin cortex tension was extracted. For this
purpose, a model introduced by Cartagena-Rivera et al. [16,17] was used:

T =
k
π

(
1

Z/d− 1

)
where T is the cortex tension, k is the elastic constant of the cantilever, Z is the piezo
extension, and d is the deflection of the cantilever. To calculate the surface tension, the
first 200 nm of the force–distance curve after contact between the cantilever and cell were
fitted. Please note that the difference in indentations (factor 5–10) allows a disentanglement
between the cortical Young’s modulus and cortical tension. When fitting the force–distance
curves for extraction of either the Young’s modulus or the cortex tension, values were
discarded if R2 < 0.8.
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2.5. Single Cell Motility and Doubling Time

For time lapse microscopy, 1000 cells were seeded in a 6-well plate 24 h before the
start of the experiments. Cells were imaged with a microscope (Leica DMi8, Leica, Wetzlar,
Germany) equipped with temperature (37 ◦C) and CO2 regulation (5% (v/v)). The experi-
ments were conducted as described before [14,18]. From the obtained images, the contact
area of the cells with the substrate, the mean speed, and the directionality were determined.
Directionality was defined as the distance between the start and endpoint of a cell divided
by the sum of incremental movements, and ranges between 0 and 1 for random or straight
movements, respectively. To characterize the type of motion further, the Fürth formula
was used to extract the persistence of motion and the diffusion coefficient from the mean
squared displacement (MSD). The Fürth formula is defined as [19]:

MSD(t) = 4× D× t0

(
e−t/t0 +

t
t0
− 1
)

where t is the time, t0 is the time of persistent movement, and D is the diffusion coefficient.
As the images displayed cell divisions, the doubling time for each cell line was determined
assuming exponential growth.

2.6. Measurement of the Properties of Collective Cell Migration

First, 24 h after seeding either 400,000 SW480 or 600,000 SW620 cells into 12 wells,
they were transferred to an inverted microscope (DMi 8, Leica, Wetzlar, Germany) with
temperature (37 ◦C) and CO2 (5% (v/v)) control. Images were taken every 5 min for
20 h and filtered using block matching 3D transform [20]. To analyze the local velocity,
particle image velocimetry (PIV) [21–23] was used with a cross-correlation window size of
32 × 32 pixels (pixel size: 0.48 µm).

To quantify the cellular movement, the self-overlap function Q(∆t) [24] was calculated:

Q(∆t) =
1
N

N

∑
i=1

wi with w =

{
1; i f ∆r > 0.1d

0; else

where N is the cell number, ∆r is the distance to the initial position of each cell, and d is
the cell diameter. Here, d = 80 px (≈38.4 µm) was chosen for all cell types, corresponding
approximately to the cell diameter of SW480 cells. Q measures the proportion of cells that
moved away more than 10% of its cell size from their initial position. For quantification of
the cooperativity, the 4-point susceptibility χ was calculated:

χ = N
[
〈Q(∆t)2〉 − 〈Q (∆t)〉2

]
The peak height of χ is proportional to the number of cells moving collectively and the

peak position corresponds to the average lifetime of collectively moving cell packs [24,25].
Furthermore, to assess caging for each non-boundary cell, how many of its eight

nearest neighbors at the beginning and end of each measurement were identical was
checked using an Euclidian distance metric.

2.7. Measuring Colony Expansion

As collective migration and expansion depends on cell density, the migration of small,
growing cell clusters with a defined cell number was analyzed. Therefore, cells were seeded
sparsely and allowed to form small clusters (4–12 cells) before imaging every 5 min for
40 h. From the measurements, the cellular speed inside the clusters, the cluster size in
absolute terms and normalized to the cell number, the amount of cellular reorganization,
and measures for directionality of the cellular movement (auto-correlation length, changes
of neighborhood, angular variance of the velocity field) were determined. To characterize
the growth of colonies further, the expansion speed v(t) = dr(t)/dt of the cluster was
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calculated, taking advantage of the circular cluster geometry. Thus, it holds for the time
differential of the cluster area A:

dA(t)
dt

= 2× π × r(t)× dr(t)
d(t)

→ dr(t)
d(t)

=
dA(r)

dt
/P(t)

with perimeter P. Please denote that the expansion speed v decreases with an increasing clus-
ter size, given the constant area change. Notably, if A increases linearly, dA(t)/dt = const.,
it is easily possible to extrapolate the expansion rate of the cluster to a size corresponding
to one cell size for comparison to the speed of single cells.

To determine the cell number in clusters of SW480 cells, the cell number in each cluster
was counted at 0, 10, 20, 30, and 40 h and interpolated using an exponential fit. SW620 cells
formed 3D clusters with no visible single cells. Therefore, the doubling time determined
from the single cell measurements was used to estimate the single cell volume for each
cluster, relative to the initial cell volume. It was calculated as the product of the projected
area of the cluster and cluster intensity normalized to the background intensity, normalized
to the value at the start of the measurement.

2.8. Simulation of a Persistent Random Walker with Directional Constraints

To model the expansion of small cell clusters, without proliferation as a constraint,
the persistent random walk model was used. The movement of cells was modeled as:

∆
→

x(t) = v×
{

cos(α(t))
sin(α(t))

, with time t, spatial coordinates
→
x , speed v, and direction of movement

α. To induce persistence, the following approach was used: α(ta) =

{
α(ta−1) i f P ≥ R1

2×π× R2 i f P < R1
.

P is the persistence of movement, varying between 0 and 1, with 1 corresponding to
linear movement and 0 to random movement. R1 and R2 are random numbers between 0
and 1. To obtain the persistence of movement, the results of the single cell motility analysis
were used. To model boarder cells in small cell clusters, the same approach, together with
the previously obtained persistence, was used, but the movement was set to zero if the

modeled cell moved in the negative x direction: ∆
→

x(t) = 0 i f cos(α(t)) < 0, as illustrated
in Figure A1. This assumption was made to reflect the observation that cells did not migrate
back into the cell cluster. As readout, the cellular displacement from its initial position per
hour was determined, corresponding to the expansion speed of the cluster dr(t)/dt. For
more details, see the Appendix A.

2.9. Statistics

Statistics was performed using the two-sided Mann–Whitney–Wilcoxon test or
Kruskal–Wallis test with the Tukey post-hoc test. Significance was defined for p < 0.05. All
error bars depict the standard error of the mean. Experiments were repeated at least three
independent times. All sample sizes are summarized in Table A1.

3. Results
3.1. Effect of MACC1 Expression on Single Cell Properties

To assess the biomechanical properties of the two CRC cell lines SW480 and SW620
under conditions of low and high MACC1 expression, the Young’s modulus and cortical
tension were measured. For SW480/EV (low endogenous MACC1 expression, Figure A2)
and SW480/MACC1 (high endogenous MACC1 expression), the median modulus was
570 and 478 Pa, respectively, while it was significantly higher for the SW620/shMACC1
(low endogenous MACC1 expression, p < 0.0001) and SW620/shCTL (high endogenous
MACC1 expression, p < 0.0001) cells (2044 and 2017 Pa, respectively; Figure 1A). No
MACC1 dependence on the cortical tension was found, but SW480 cells (125 or 175 pn/µm)
had significantly lower values than SW620 (356 or 272 pn/µm, p = 0.012 and p = 0.048,
Figure 1B) cells. Next, it was evaluated whether single cell migration was affected by
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MACC1 expression. Thereby, we found that all cell types moved comparably fast, with
10–11 µm/h, independent of MACC1 expression (Figure 1C). Notably, the movement was
highly undirected, with directionalities between 0.03 and 0.06 (Figure A3). Combining
the average speed and directionality, it led to an average displacement of ≈7 µm/day for
SW620 and ≈14 µm/day for SW480 cells. The average displacement for both cell types was
less than one cell size, implying that single cells are rather stationary. These observations
are in line with the fit results for the Fürth formula to characterize diffusion and persistence
of movement. While the mean squared displacement was well approximated by the Fürth
equation (R2 > 0.85), values for all cell lines were very similar, with diffusion coefficients in
the order of 0.2 µm2/min and a persistence time of 5 min, which was the time difference
between successive images. Furthermore, the contact area of SW480 cells with the substrate
dropped from 2435 to 1530 µm2 upon MACC1 overexpression (p < 0.0001). Silencing
MACC1 in SW620 increased the contact area from 817 to 949 µm2 (p = 0.025). From the
live cell images, the doubling times were calculated, confirming the proliferative effect of
MACC1 on these CRC cell lines. For SW480 cells, the doubling time decreased from 29 to
22 h upon MACC1 overexpression while silencing of MACC1 in SW620 cells increased the
doubling time from 14 to 18 h.

Figure 1. Single cell properties of high- and low-MACC1-expressing colon carcinoma cells.
(A,B) depict the results of the biomechanical measurements for the Young´s modulus and the cortex
tension. (C,D) show the results of live cell imaging of single cells for the mean speed and the contact
area with the substrate. Sample sizes: (A) nSW480/EV = 35; nSW480/MACC1 = 33; nSW620/shMACC1 = 40;
nSW620/shCTL = 40. (B) nSW480/EV = 33; nSW480/MACC1 = 31; nSW620/shMACC1 = 25; nSW620/shCTL = 26.
(C,D) nSW480/EV = 66; nSW480/MACC1 = 98; nSW620/shMACC1 = 102; nSW620/shCTL = 111. Asterisk de-
picts statistically significant results with p < 0.05. Box plots show the median (red line), 25 and
75 percentile (box), non-outlier range (whiskers), and outliers (red dots).

3.2. MACC1 Promotes Collective Migration in a Cell Line-Dependent Manner

Next, it was analyzed whether MACC1-mediated pro-migratory effects necessitate
cell–cell interactions. Therefore, collective migration of a cell layer was analyzed using
particle image velocimetry. It was found that SW480/MACC1-expressing cells moved
significantly faster (13–15 µm/h) than the cells with low MACC1 expression (8–9 µm/h;
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p < 0.0001, Figure 2A,B,D), but the same dependency for SW620 cells was not found upon
MACC1 silencing (both: 4–6 µm/h; Figure 2C,E).

Figure 2. Collective migration of SW480 and SW620 cells. (A) The left column shows a typical
phase contrast image of SW480, overlaid with the vectors of the velocity fields, and the right column
shows the magnitude of the velocity and its direction. The scale bar depicts 50 µm. (B,C) Graph
of the mean speeds of SW480 and SW620 cells, respectively. (D,E) Mean of the movement speeds
of SW480 and SW620 cells from data in (B,C). Sample sizes: nSW480/EV = 75; nSW480/MACC1 = 75;
nSW620/shMACC1 = 32; nSW620/shCTL = 32. Asterisk depicts statistically significant results with p < 0.05.
Error bars and shaded areas depict the standard error of the mean.
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For further analysis of collective migration, it was measured how long cells needed to
move from their initial location at least 0.1 cell diameters away. For SW480 cells, MACC1
overexpression resulted in cells moving away faster from their initial position (70 min vs.
180 min for 50% of the cells to move significantly, p < 0.0001, Figure 3A). This effect was not
observed for SW620 cells upon MACC1 silencing (395 min vs. 430 min, Figure 3 B). Using
the order parameter, the four-point susceptibility was calculated. The peak time of this
quantity corresponds to the time a fast-moving pack of cells moved together. After several
pack life times, the cell layer underwent significant reorganization. The reorganization times
in SW480/MACC1 cells compared to SW480/EV were lower (65 min vs. 220 min; p < 0.0001,
Figure 3C), but no effect was observed in SW620 cells (275 min for both; Figure 3D). As an
additional independent metric for cell layer reorganization, we analyzed how many cells
did not make contact with new neighbors during the measurement time of 20 h. It was
found that 22% of SW480/EV cells but only 7% of SW480/MACC1 (p < 0.0001) cells did not
make any new cell–cell contacts (Figure 3E) while both SW620 cell populations behaved
similarly (71% and 70%, respectively, Figure 3F). Taken together, MACC1 overexpression
induced a faster moving phenotype associated with faster reorganization of the monolayer
of SW480 cells but not in SW620 cells. Notably, SW620 cells did not form a monolayer but
rather a multilayered structure, where no individual cells could be distinguished. Thus,
particle image velocimetry (PIV) detected the movement of the top cell layer interacting
only with cells below and not with the substrate as is the case for SW480 cells.

The analysis of the velocity maps showed a strong association between proliferation
events in both populations of SW480 cells and peaks in the velocity map (Figure 4). During
mitotic rounding, the cell itself contracted and thus moved quickly and surrounding cells
filled the free space, creating regions of high velocity. After cell division, daughter cells
expanded, creating another region of high velocity, albeit with lower peak velocities. Taken
together, with the lower doubling times of SW480/MACC1, we reasoned that cell division
might be an important factor in MACC1-induced migratory effects.

3.3. MACC1 Promotes Colony Expansion and Migration Dependent on Proliferation

To analyze the effects of the cell division rate on the movement of small cell groups,
the expansion and growth of small colonies of SW480 and SW620 cells (4–12 cells) were
analyzed over the time course of 40 h (Figure 5A, Videos S1–S4). This approach allowed
the precise determination of cell numbers in each colony for SW480 cells at any time and
thus helped to decouple cell division from migration. SW620 cells immediately formed
dense 3D clusters that did not allow the discrimination of individual cells. Of note, in
all analyzed clusters, no cell left the cluster. Analysis of the cellular movement speeds
recaptured values obtained in the dense, large monolayer (Figure 5B–E) and MACC1-
associated effects on speed (p = 0.011) were conserved. As clusters were comparably small
and cells synchronized, cell divisions often occurred in quick succession, demonstrating
that cell divisions can induce high velocities in single clusters (Figure A4).

Next, the cluster size was analyzed, depicting larger clusters for SW480/MACC1
cells, compared to SW480/EV cells (Figure 6A, p = 0.037), while SW620/shMACC1 and
SW620/shCTL clusters were of a very similar size (Figure 6B). Cluster size increased
exponentially for all cell types (R2 > 0.99) and the difference in the cluster size between
SW480/EV and SW480/MACC1 increased over time. When normalized to the number of
cells (SW480 cells) or relative cell volume (SW620 cells), the curve reflected the average
cell size or volume and all previously observed effects diminished and the curves of the
high- and low-MACC1-expressing cells run parallel. The average cell size decreased for
all populations and thus the rate of outward migration did not keep up with the rate of
proliferation (Figure 6C,D).
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Figure 3. Collective migration properties of SW420 and SW620 cells. (A,B) Order parameter Q
for both cell lines for the 20 h time window. (C,D) Four-point susceptibility as obtained from the
velocity fields over the whole measurement time. The peak positions of the 4-point susceptibility
represent the average life time of collectively moving packs of cells. (E,F) Analysis of the layer
reorganization in terms of cells that did not make new neighbors during live-cell imaging. Sample
sizes: nSW480/EV = 75; nSW480/MACC1 = 75; nSW620/shMACC1 = 32; nSW620/shCTL = 32. Shaded areas
depict the standard error of the mean. Box plots show the median (red line), 25 and 75 percentile
(box), non-outlier range (whiskers), and outliers (red dots). Asterisk depicts statistically significant
results with p < 0.05.

Furthermore, when analyzing the movement characteristics in terms of the changes
in the cellular neighborhood, the autocorrelation of the velocity field inside the cell clus-
ters, and the angular variance of the velocity fields, high- and low-MACC1-expressing
cells showed only very little cellular reorganization and were otherwise indistinguishable
(Figure A5).
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Figure 4. Effects of cell division on local cellular velocities. This image collection depicts a single cell
division, together with the associated local speeds as a function of time. Please denote the high speeds
during mitotic rounding and subsequent high speeds during the expansion of the two daughter cells.
The scale bar depicts 50 µm.

Figure 5. Expansion of small cell clusters. (A) Illustration of cluster expansion for SW480 and SW620
cells during the measurement time, together with the associated velocity maps. The scale bar depicts
50 µm. (B,D) Plots of the cellular speed inside the clusters as a function of time for both cell types.
(C,E) Temporal averages of the cell speed inside the clusters for SW480 and SW620 cells. Sample
sizes: nSW480/EV = 14; nSW480/MACC1 = 14; nSW620/shMACC1 = 18; nSW620/shCTL = 17. Asterisk depicts
statistically significant results with p < 0.05. Error bars and shaded areas depict the standard error of
the mean.
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Figure 6. Evolution of cluster and cell size as a function of time. (A,B) Average size of cell clusters
of SW480 and SW620 cells as a function of time. (C) Cluster size of SW480 cells normalized to the
cell number, corresponding to the average cell size. (D) Cluster size of SW620 cells normalized
to the average cell volume at time point 0. Sample sizes: nSW480/EV = 14; nSW480/MACC1 = 14;
nSW620/shMACC1 = 18; nSW620/shCTL = 17. Shaded areas depict the standard error of the mean.

To verify whether the MACC1-induced increase in cellular velocities was caused
by proliferation, 0.1 µg/mL mitomycin was applied to the SW480 clusters immediately
before the imaging to inhibit proliferation. As mitomycin effects are time delayed and it
additionally causes apoptosis, the analysis window was restricted to the time of 10–26 h
after mitomycin treatment, as no significant cell death or proliferation was observed in that
period (Figure 7A). During that time window, SW480 cells in clusters of both populations
had virtually the same speed of ≈3 µm/h over the whole time frame (Figure 7B,C), be-
ing significantly slower than in the untreated cell clusters (p < 0.0001). Furthermore,
cluster expansion was now linear and—due to the constant number of cells in each
cluster—only determined by the formation of protrusions of cells. SW480/EV (slope:
537 ± 2 µm2/h) cell clusters expanded faster than SW480/MACC1 (slope: 326 ± 1 µm2/h)
clusters, independent of the cell number (Figure 7D,E). Extrapolated to the size of a single
cell, cluster expansion rates were calculated for SW480/EV (v = 3.09 ± 0.05 µm/h) and
SW480MACC1 (v = 2.36 ± 0.01 µm/h). Notably, these values were approximately four to
five times higher than the values obtained for the displacement speed of single SW480 cells
(14 µm/24 h ≈ 0.58 µm/h). At the border of cell clusters, the movement of SW480 cells
was bound to outward movements because on the side of the cluster, other confined cells
inhibited motion into the cluster. Consequently, the degrees of freedom for directional
choices of migration were approximately halved. This assumption was in line with our
observations showing that no boarder cell moved into the cluster during the measurements.
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Figure 7. Expansion of small cell clusters without proliferation. (A) Illustration of cluster expansion
for SW480 cells treated with mitomycin (Mito) during the measurement time, without proliferation.
The scale bar depicts 50 µm. (B,C) Speed of cells in clusters of SW480 cells as a function of time
or averaged over time. (D,E) Total cluster size of SW480 cells over time and normalized to the cell
number. Sample sizes: nSW480/EV+Mito = 18; nSW480/MACC1+Mito = 15. Error bars and shaded areas
depict the standard error of the mean.

Assuming a persistent random walk for single cells, one can extract the persistence
of the movement of SW480 cells using the average speed and displacement measured for
single cells (see the Supplementary Materials). The persistence parameter, bound to the
values 0 to 1, was found to be p = 0.05, which is very low and in agreement with the low
values of the persistence time reported. Using this persistence and performing the same
analysis for cells at the boarder of the cluster, restricting movement in one direction, we
obtained cluster displacement speeds of 3.18 ± 0.27 µm/h, which are close to the ones
obtained from the experiment.
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4. Discussion

In this study, we report MACC1-induced effects on the collective migration of CRC
cells. It was demonstrated that these effects are not mediated via changes in single cell
motility, elasticity, or cortex tension. Interestingly, MACC1-induced proliferation appeared
to be an important inducer of the increased MACC1-dependent collective migration.

MACC1 has proven to be a prognostic marker that is predictive of therapy response
and targetable by various drugs [4,5,26,27]. Two important effects associated with increased
MACC1 expression are increased cell migration and proliferation [4,5], both being hall-
marks of cancer. From a mechanistic point of view, MACC1 induces the activation of
the HGF/c-Met axis in multiple tumor entities [4,5,28–30]. Another main component of
MACC1 signaling is via PI3K/Akt [5,31,32]. Both the HGF/c-Met axis and PI3K are strongly
involved in cytoskeletal reorganization and regulation of cell migration [33–35]. Conse-
quently, MACC1 was demonstrated to induce increased cell migration [4,26,29,36–40].
Based on these studies, we expected an MACC1-induced increase in single cell and/or
collective migration, yet we could verify this only for collective migration. Notably, in a
previous study of ours, increased single cell velocities of glioblastoma cells were found
upon increased MACC1 expression, which were associated with differential biomechanical
properties and cytoskeletal organization [36]. As no changes in the biomechanics of single
cells were observed here, it is plausible that single cell motility was unchanged. A further
likely difference between the previous and the current study is the differential coupling of
signaling cascades in both tumor entities, which may cause different downstream effects.
On the other hand, SW480 and SW620 cells were stationary as isolated cells, potentially due
to different cell surface friction compared to the glioblastoma cells [23,41], thus behaving
highly differently from the beginning. Still, compared with the other studies, both mech-
anistic and functional, conducted in CRC, changes in migration are to be expected. Yet,
these studies were mostly performed using Boyden chambers or scratch assays, measuring
either dominant chemotaxis or a combination of proliferation and (collective) migration. To
assess if MACC1-dependent effects necessitate cell–cell interactions, collective migration
was analyzed. Thereby, in SW480 cells, MACC1 expression increased migration and pro-
moted layer reorganization. In other studies, such changes were associated with changes in
cell–surface interactions and reductions in cell–cell adhesion or their ratio [23,42], which
is in line with the MACC1-dependent increase in fibronectin and decrease in E-cadherin
expression [43,44]. Nevertheless, the experiments performed here imply either the neces-
sity of cell–cell interactions or confinement for MACC1-induced migration. Notably, cell
division events occurred in parallel with local peaks in the velocity field. In preparation for
division, a cell contracts and thus locally reduces pushing forces on neighboring cells while
simultaneously freeing up space. Thus, neighbors quickly expand, occupy the free space,
and are displaced again when the two daughter cells start to expand [45]. Consequently,
proliferation may induce tissue fluidization and thus migration [46,47] via the induction of
active stress fluctuations [48–51].

To analyze the effect of proliferation further, the system was downscaled to small cell
clusters, with a defined number of cells. Downscaling reproduced the key properties of
the dense layer measurement: the mean speed inside the cell clusters and high velocities
associated with proliferative events. In the presence of proliferation, the expansion of cell
clusters was dominated by proliferation during the whole measurement time, as seen by
the exponential growth of colonies and the decrease in the average cell size, as reported
before [52,53]. Notably, the used cell types migrate too slowly to match proliferation in any
state of cluster expansion. In contrast, in the absence of proliferation, the velocity inside of
the clusters was smaller [54] and the cluster size increased linearly, solely dominated by cell
migration [52]. This observation also agrees with a recent study showing that inhibition
of proliferation is highly effective in arresting motility [47]. Devany et al. argued that
the shape, force, and motility fluctuations may largely be caused by proliferation rather
than other cellular processes classically associated with cell motility, such as cytoskeletal
remodeling [47]. Given the low single cell motility of the cell types examined here, this ar-
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gument appears plausible. While the model used to simulate the movement of SW480 cells
in the absence of proliferation is over-simplified because it does not take into account any
kind of cell–surface or cell–cell interactions, it gave a reasonable prediction of the outward
movement of cells. Thus, cluster expansion in the absence of proliferation is likely not
governed largely by collective cell properties but rather by individual cell properties. This
conclusion agrees with the fact that tumor cells often downregulate cell–cell adhesion
molecules such as E-cadherin [55] and thus reduce mechanical coupling with each other.

5. Conclusions

The current study confirmed the pro-proliferative effect of MACC1 [5,39,43,56,57] and
found that differences in migration between high- and low-MACC1-expressing cells dimin-
ished in the absence of proliferation. Thus, we conclude that proliferation is the main driver
of differential migration in high- and low-MACC1-expressing cells here. Consequently, it
could be argued that targeting MACC1-induced proliferation may affect migration as well.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14122857/s1, Video S1: Sample video of SW480/EV cells
during cluster formation, imaged every 5 min for 40 h. The red boarder marks the detected boundary.
Video S2: Sample video of SW480/MACC1 cells during cluster formation, imaged every 5 min for
40 h. The red boarder marks the detected boundary. Video S3: Sample video of SW620/shMACC1
cells during cluster formation, imaged every 5 min for 40 h. The red boarder marks the detected
boundary. Video S4: Sample video of SW620/shCTL cells during cluster formation, imaged every
5 min for 40 h. The red boarder marks the detected boundary.
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Appendix A

Persistent Random Walk Model

A persistent random walk is a classical random walk paired with a “directional
memory” in the form of persistence, modeled with a probability to not change the direction
of movement relative to the previous direction [58]. Persistent random walks are very
common for modeling of the migration of single isolated cells [19,58–60].

The movement of cells was modeled as: ∆
→

x(t) = v×
{

cos(α(t))
sin(α(t))

, with time t, spatial

coordinates
→
x , speed v, and direction of movement α. To induce persistence, the following

approach was used: α(ta) =

{
α(ta−1) i f P ≥ R1

2× π × R2 i f P < R1
.

P is the persistence of movement, varying between 0 and 1, with 1 corresponding to
linear movement and 0 to random movement. R1 and R2 are random numbers between 0
and 1. To obtain the persistence of movement, the results of the single cell motility analysis

https://www.mdpi.com/article/10.3390/cancers14122857/s1
https://www.mdpi.com/article/10.3390/cancers14122857/s1
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were used (Figure 1). The speed v was set to 10 µm/h and the persistence was varied
from 0 to 1 in steps of 0.01 to identify the best matching displacement for the experimental
data. We deemed this approach feasible as the Fürth formula fitted [19] the mean squared
displacements of single cells very well, with R2 > 0.85. To model boarder cells in small
cell clusters, the same approach, together with the previously obtained persistence, was
used. Additionally, the movement was set to zero if the modeled cell moved in the negative

x direction: ∆
→

x(t) = 0 i f cos(α(t)) < 0. See Figure A1 for illustration of the model.
Using this approach, it was assured that a cell could not move back into the cluster, as
such phenomena were not observed in our experiment, leading to an effectively lowered
degree of freedom for the directions of movement. Thus, it is implicitly assumed that each
boundary cell moves independently of each other and no additional cell–cell interactions
take place. The advantage of these assumptions is that the geometry of the cluster can be
disregarded and the whole process can be modeled as persistent random walk of a single
cell with constraints.

Figure A1. Illustration of the simulation model. The red dot corresponds to a cell moving at a constant
speed v, in the direction determined by the angle α. Note that movements to the left, representing the
cell cluster, are forbidden.

The final model was used to predict the average expansion of a cluster, which was
identical to the average displacement of the simulated confined cells, without proliferation,
as cluster expansion in this case is only influenced by migration but not proliferation and
the effective cluster expansion corresponds to the migration speed of boarder cells. All
simulations were performed 10,000 times for time frames corresponding to either 18 (colony
expansion without proliferation) or 20 h (single cell imaging), with time steps of 5 min.
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Appendix B

Figure A2. mRNA expression of MACC1 (top) and representative Western blot (bottom) for
SW480/EV and SW620/shCTL, including densiometric analysis.

Figure A3. Directionality of single cells. Box plots show the median (red line), 25 and 75 per-
centile (box), non-outlier range (whiskers), and outliers (red dots). Sample sizes: nSW480/EV = 66;
nSW480/MACC1 = 98; nSW620/shMACC1 = 102; nSW620/shCTL = 111.
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Figure A4. Plot of the smoothed cellular speed inside one representative cluster of SW480\EV cells
together with some example images associated with peaks and dips. The curve was smoothed with
a moving average filter of size 15. Please note the high number of cells showing the characteristic
mitotic rounding at peaks (top images) and their absence in dips (bottom images). The scale bar
corresponds to 50 µm.
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Figure A5. Reorganization and coordination in small cell clusters. (A,B) Illustration of the conserved
neighborhood as a function of time. (C,D) Velocity auto-correlation at a distance of 200 µm as a
function of time. (E,F) Angular variance of the velocity field for both cell types. Error bars and shaded
areas depict the standard error of the mean. Sample sizes: nSW480/EV = 14; nSW480/MACC1 = 14;
nSW620/shMACC1 = 18; nSW620/shCTL = 17.
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Table A1. Sample sizes.

Parameters SW480\EV SW480\MACC1 SW620\shMACC1 SW620\shCTL

Young Modulus 35 33 40 40

Cortical Tension 33 31 25 26

Single Cell Speed/Contact Area 66 98 102 111

Collective Migration 75 75 32 32

Colony Expansion 14 14 18 17

Colony Expansion + Mitomycin 18 15 — —
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