
molecules

Review

Traditional Uses, Botany, Phytochemistry,
Pharmacology, Pharmacokinetics and Toxicology of
Xanthium strumarium L.: A Review

Wenxiang Fan 1, Linhong Fan 1, Chengyi Peng 1, Qing Zhang 1, Li Wang 1, Lin Li 1,
Jiaolong Wang 1, Dayong Zhang 1,2, Wei Peng 1,* and Chunjie Wu 1,*

1 School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
fwx13990706098@163.com (W.F.); fanlinhong1996@163.com (L.F.); CEandAnthony@163.com (C.P.);
zq1995729@163.com (Q.Z.); liwang201812@163.com (L.W.); li54627627@163.com (L.L.);
tcmwangjiaolong@163.com (J.W.); zdy@xinhehua.com (D.Z.)

2 Sichuan Neautus Traditional Chinese Herb Limited Company, Chengdu 611731, China
* Correspondence: pengwei@cdutcm.com (W.P.); wucjcdtcm@163.com (C.W.);

Tel.: +86-028-61801001 (W.P. & C.W.)

Received: 28 December 2018; Accepted: 16 January 2019; Published: 19 January 2019
����������
�������

Abstract: Xanthium strumarium L. (Asteraceae) is a common and well-known traditional Chinese
herbal medicine usually named Cang-Er-Zi, and has been used for thousands of years in China.
The purpose of this paper is to summarize the progress of modern research, and provide a systematic
review on the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics,
and toxicology of the X. strumarium. Moreover, an in-depth discussion of some valuable issues and
possible development for future research on this plant is also given. X. strumarium, as a traditional
herbal medicine, has been extensively applied to treat many diseases, such as rhinitis, nasal sinusitis,
headache, gastric ulcer, urticaria, rheumatism bacterial, fungal infections and arthritis. Up to now,
more than 170 chemical constituents have been isolated and identified from X. strumarium, including
sesquiterpenoids, phenylpropenoids, lignanoids, coumarins, steroids, glycosides, flavonoids,
thiazides, anthraquinones, naphthoquinones and other compounds. Modern research shows that
the extracts and compounds from X. strumarium possess wide-ranging pharmacological effects,
including anti- allergic rhinitis (AR) effects, anti-tumor effects, anti-inflammatory and analgesic
effects, insecticide and antiparasitic effects, antioxidant effects, antibacterial and antifungal effects,
antidiabetic effects, antilipidemic effects and antiviral effects. However, further research should
focus on investigating bioactive compounds and demonstrate the mechanism of its detoxification,
and more reasonable quality control standards for X. strumarium should also be established.

Keywords: Xanthium strumarium L.; traditional usages; botany; phytochemistry; pharmacology;
pharmacokinetics; toxicology

1. Introduction

Since 1963, the fruits of Xanthium strumarium L. have been listed in the Pharmacopoeia of the
People’s Republic of China (CH.P), and currently over 60 formulas containing the fruits of X. strumarium
have been applied for treating various diseases, including rhinitis, nasal sinusitis, headache, gastric
ulcer, urticarial, rheumatism, bacterial and fungal infections, and arthritis [1–3]. So far, many studies
have been devoted to the pharmacological and phytochemical studies of X. strumarium, and more than
170 chemical compounds have been isolated and identified from this plant, including sesquiterpene
lactones, phenols, glycoside, alkaloids, fatty acid and others [4]. In addition, increasing evidence
has indicated that X. strumarium possesses a wide spectrum of pharmacological activities including
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analgesic and anti-inflammatory, antioxidant, hypoglycemic, anti-cancer, antibacterial and antifungal,
anti-trypanosomal, anti-tussive activities, and effects on nervous and digestive systems, as well as other
effects [1]. Nowadays, the fruits of X. strumarium remains a common Traditional Chinese Medicine
(TCM) listed in the CH.P, and atractyloside and chlorogenic acid are used as the quality indicator
agents for evaluating quality of the fruits of X. strumarium [5].

In this paper, we systematically summarize the traditional uses, botany, phytochemistry,
pharmacology, pharmacokinetics as well as the safety aspects of X. strumarium, hoping that it could
propel the research forward for applying the medicinal values of this plant completely. Moreover,
potential research directions and emphasis on Xanthium strumarium L. are discussed as well.

2. Traditional Usages

X. strumarium has a long history for utilization as a medicinal plant in China due to its extensive
biological and pharmacological activities. In particular, the fruit is the predominant medicinal part of
X. strumarium, and is one of the most common used herbal medicines to treat rhinitis and headache for
thousands years [6]. Before clinical use, the fruits of X. strumarium are often processed by stir-baking
to a yellowish color, which aims to reduce toxicity and enhance efficacy. The first record of the
pharmacological effects of this plant can be traced back to ShenNong BenCaoJing, which is the earliest
monograph of TCM during the Eastern Han dynasty. In this monograph, it was used for the treatment
of anemofrigid headache and rheumatic arthralgia. Then, in Mingyi Bielu which is another known
TCM monograph, X. strumarium was recorded as an effective herbal medicine with the function of
curing gonyalgia. In Yaoxinglun, X. strumarium was described as an agent for treating hepatic heat
and eye diseases. Subsequently, another famous monograph, Xinxiu Bencao, described X. strumarium
with improving eyesight, antiepileptic and antirheumatic properties. Besides, X. strumarium was also
listed in some other classical monographs of materia medica in China, such as Bencao Shiyi, Bencao
Mengquan, Depei Bencao, Caomu Bianfang, Tianbao Bencao and others.

Currently, the fruits of X. strumarium have become an important traditional Chinese medicine
commonly used in clinic for the treatment of nasal diseases (including acute and chronic rhinitis,
allergic rhinitis (AR), nasosinusitis, and nasal obstruction), itching diseases, and painful diseases.
In order to meet clinical needs better, various forms of formulas are developed, such as pills, tablets,
granules, oral liquid, powders and others (Table 1). Furthermore, in India, X. strumarium, commonly
known as Chotagokhru or Chotadhatura, are usually used to cure leucoderma, poisonous bites of
insects, epilepsy, and biliousness [7]. In addition, several North American Indian tribes and Zuni tribes
apply this plant to relieve constipation, diarrhoea and vomiting [1]. Besides, X. strumarium is also
reported as a folk herbal medicine in Bangladesh for the treatment of urinary disorder, ear infection,
diabetic, and gastric disorder [8].

Apart from clinical application, its potential capacity as a biodiesel feedstock has been proven.
X. strumarium has very strong environmental adaptability and thus has numerous wild resources.
The seed has a high oil content (42.34%) which gives potential annual output of 100,000 tons just in
China [9]. Furthermore, the research in Pakistan also found the prospects of non-edible seed oils for
use as biodiesel to solve the serious energy crisis [10].

Table 1. The traditional and clinical uses of Xanthium strumarium in China.

Preparation
Name Main Compositions Traditional and Clinical Uses References

Li Bi Tablets
Xanthii Fructus, Scutellariae Radix, Magno1iae Flos,
Menthae Haplocalycis Herba, Angelicae Dahuricae Radix,
Asari Radix Et Rhizoma, Taraxaci Herba

Curing common cold with nasal
obstruction, nasosinusitis, turbid nasal
discharge

“Chinese
Pharmacopoeia
(2010)” a

Shuang Xin Bi
Dou Yan Ke Li

Xanthii Fructus, Magno1iae Flos, Angelicae Dahuricae
Radix, Asari Radix Et Rhizoma, Lonicerae Japonicae Flos,
Lonicerae Japonicae Cau1is, Taraxaci Herba, Glycyrrhizae
Radix Et Rhizoma, Platycodonis Radix, Chrysanthemi
Flos, Scutellariae Radix, Paeoniae Radix Rubra, Coicis
Semen, Rehmanniae Radix

Treating nasosinusitis
“Guo Jia Zhong
Cheng Yao Biao
Zhun” b
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Table 1. Cont.

Preparation
Name Main Compositions Traditional and Clinical Uses References

Xiao Er Bi Yan
Tablets

Xanthii Fructus, Ligustici Rhizoma Et Radix,
Saposhnikoviae Radix, Angelicae Dahuricae Radix,
Polygoni Tinctorii Folium, Taraxaci Herba, Cimicifugae
Rhizoma, Glycyrrhizae Radix Et Rhizoma

Curing chronic rhinitis of child
“Zhong Yao
Cheng Fang
Zhi Ji”c

Yu Yuan Wan

Xanthii Fructus, Scutellariae Radix, Gardeniae Fructus,
Scrophulariae Radix, Magno1iae Flos, Ophiopogonis
Radix, Lycii Cortex, Paeoniae Radix Rubra, Forsythiae
Fructus, Angelicae Dahuricae Radix, Menthae
Haplocalycis Herb, Schizonepetae Herba, Glycyrrhizae
Radix Et Rhizoma, Platycodonis Radix

Treating redness and swelling of the
nostrils, swelling and pain in throat

“Zhong Yao
Cheng Fang
Zhi Ji”c

Yi Xuan Ning
Jiao Nang

Xanthii Fructus, Chrysanthemi Flos, Arisaema Cum Bile,
Scutellariae Radix, Bambusae Caulis in Taenias, Ostreae
Concha, Crataegi Fructus, Citri Reticulatae Pericarpium,
Paeoniae Radix Alba Poria, Lycii Fructus

Treating hyperactivity of liver-yang,
vertigo due to deficiency of Qi and
blood

“Xin Yao Zhuan
Zheng Biao
Zhun” d

Qing Re Zhi Ke
Ke Li

Xanthii Fructus, Scutellariae Radix, Fritillariae Thunbergii
Bulbus, Paridis Rhizoma, Commelinae Herba,
Anemarrhenae Rhizoma, Gypsum Fibrosum, Citri
Reticulatae Pericarpium, Aurantii Fructus, Armeniacae
Semen Amarum, Platycodonis Radix

Curing cough, phlegm, fever,
pharyngalgia, thirst, chest tightness, dry
stool, yellow urine due to pulmonary
retention of phlegmopyrexia; acute
bronchitis, acute exacerbation of chronic
bronchitis

“Xin Yao Zhuan
Zheng Biao
Zhun” d

Di Tong Bi Yan
Liquid

Xanthii Fructus, Taraxaci Herba, Asari Radix Et Rhizoma,
Scutellariae Radix, Ephedrae Herba, Acori Tatarinowii
Rhizoma, Angelicae Dahuricae Radix, Magno1iae Flos

Curing common cold with nasal
obstruction, chronic rhinitis, allergic
rhinitis, nasosinusitis

“Zhong Yao
Cheng Fang
Zhi Ji” c

Di Tong Bi Yan
Liquid Pen Wu
Ji

Xanthii Fructus, Scutellariae Radix, Taraxaci Herba,
Ephedrae Herba, Magno1iae Flos, Angelicae Dahuricae
Radix, Asari Radix Et Rhizoma, Acori Tatarinowii
Rhizoma

Curing common cold with nasal
obstruction, chronic rhinitis, allergic
rhinitis, nasosinusitis

“Xin Yao Zhuan
Zheng Biao
Zhun” d

Fu Yang Chong
Ji

Xanthii Fructus, Chuanxiong Rhizoma, Carthami Flos,
Kochiae Fructus Treating pruritus, eczema, urticaria

“Zhong Yao
Cheng Fang
Zhi Ji” c

Dan Xiang Bi
Yan Tablets

Xanthii Fructus, Pogostemonis Herba, Angelicae
Dahuricae Radix, Centipedae Herba, Schizonepetae Herba,
Lonicerae Japonicae Flos, Chrysanthemi Indici Flos

Curing chronic simple rhinitis, allergic
rhinitis, acute and chronic rhinitis, and
nasosinusitis

“Zhong Yao
Cheng Fang
Zhi Ji” c

Nao Ning
Tablets

Xanthii Fructus, Polygonati Rhizoma, Epimedii Folium,
Ophiopogonis Radix, Ginseng Radix Et Rhizoma Rubra,
Polygalae Radix, Ziziphi Spinosae Semen, Schisandrae
Chinensis Fructus, Lycii Fructus, Cervi Cornu
Pantotrichum, Testudinis Carapax Et Plastrum, Poria,
Jujubae Fructus, Rehmanniae Radix Praeparata, Cervi
Cornus Colla

Curing neurasthenia, forgetfulness and
insomnia, dizziness and palpitation,
weariness of body, weak health and
spontaneous perspiration, impotence
and spermatorrhea

“Zhong Yao
Cheng Fang
Zhi Ji” c

Nao Ning Su
Tablets

Xanthii Fructus, Polygonati Rhizoma, Lycii Fructus, Poria,
Epimedii Folium, Polygalae Radix, Jujubae Fructus,
Schisandrae Chinensis Fructus, Ziziphi Spinosae Semen,
Ophiopogonis Radix, Testudinis Carapax Et Plastrum,
Cervi Cornu Pantotrichum, Cervi Cornus Colla,
Rehmanniae Radix Praeparata, Ginseng Radix Et Rhizoma

Curing neurasthenia, forgetfulness and
insomnia, dizziness and palpitation,
weariness of body, weak health and
spontaneous perspiration, impotence
and spermatorrhea

“Zhong Yao
Cheng Fang
Zhi Ji” c

Qin Zhi Bi Yan
Tang Jiang

Xanthii Fructus, Scutellariae Radix, Angelicae Dahuricae
Radix, Ephedrae Herba, Magno1iae Flos, Centipedae
Herba, Menthae Haplocalycis Herba

Treating acute rhinitis
“Chinese
Pharmacopoeia
(2015)” a

Cang Yi Di Bi
You

Xanthii Fructus, Angelicae Dahuricae Radix, Borneolum
Syntheticum

Curing nasosinusitis, nasal obstruction
and runny nose

“Zhong Yao
Cheng Fang
Zhi Ji”c

Cang Xin Qi
Wu Ji

Xanthii Fructus, Magno1iae Flos, Asari Radix Et Rhizoma,
Angelicae Dahuricae Radix, Coptidis Rhizoma

Curing nasal obstruction,
rhinocnesmus, sneeze, allergic rhinitis,
acute and chronic rhinitis

“Guo Jia Zhong
Cheng Yao Biao
Zhun” b

Xin Yi Bi Yan
Pills

Xanthii Fructus, Magno1iae Flos, Menthae Haplocalycis
Herba, Perillae Folium, Glycyrrhizae Radix Et Rhizoma,
Pogostemonis Herba, Centipedae Herba, Isatidis Radix,
Angelicae Dahuricae Radix, Saposhnikoviae Radix,
Houttuyniae Herba, Chrysanthemi Flos

Treating allergic rhinitis, chronic
rhinitis, nervous headache, cold and
rhinorrhea, nasal obstruction

“Zhong Yao
Cheng Fang
Zhi Ji” c

Xin Qin Chong
Ji

Xanthii Fructus, Asari Radix Et Rhizoma, Scutellariae
Radix, Schizonepetae Herba, Saposhnikoviae Radix,
Angelicae Dahuricae Radix, Astragali Radix, Atractylodis
Macrocephalae Rhizoma, Cinnamomi Ramulus, Acori
Tatarinowii Rhizoma

Curing allergic rhinitis due to deficiency
of lung qi

“Zhong Yao
Cheng Fang
Zhi Ji” c
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Table 1. Cont.

Preparation
Name Main Compositions Traditional and Clinical Uses References

Xin Qin Tablets

Xanthii Fructus, Asari Radix Et Rhizoma, Scutellariae
Radix, Schizonepetae Herba, Saposhnikoviae Radix,
Angelicae Dahuricae Radix, Astragali Radix, Atractylodis
Macrocephalae Rhizoma, Cinnamomi Ramulus

Curing allergic rhinitis, deficiency of
lung qi, exogenous pathogenic wind

“Xin Yao Zhuan
Zheng Biao
Zhun” d

Xin Qin Ke Li

Xanthii Fructus, Asari Radix Et Rhizoma, Scutellariae
Radix, Schizonepetae Herba, Saposhnikoviae Radix,
Angelicae Dahuricae Radix, Astragali Radix, Atractylodis
Macrocephalae Rhizoma, Cinnamomi Ramulus, Acori
Tatarinowii Rhizoma

Curing rhinocnesmus, sneeze,
rhinorrhea, cold, allergic rhinitis

“Chinese
Pharmacopoeia
(2010)” a

Tong Qiao Bi
Yan Tablets

Xanthii Fructus, Saposhnikoviae Radix, Astragali Radix,
Magno1iae Flos, Atractylodis Macrocephalae Rhizoma,
Menthae Haplocalycis Herba

Curing nasal obstruction, rhinorrhea,
rhinocnesmus, forehead headache,
chronic rhinitis, allergic rhinitis,
nasosinusitis

“Chinese
Pharmacopoeia
(2010)” a

Tong Qiao Bi
Yan Jiao Nang

Xanthii Fructus, Saposhnikoviae Radix, Astragali Radix,
Magno1iae Flos, Atractylodis Macrocephalae Rhizoma,
Menthae Haplocalycis Herba

Curing nasal obstruction, rhinorrhea,
rhinocnesmus, forehead headache,
chronic rhinitis, allergic rhinitis,
nasosinusitis

“Xin Yao Zhuan
Zheng Biao
Zhun” d

Tong Qiao Bi
Yan Ke Li

Xanthii Fructus, Astragali Radix, Magno1iae Flos,
Menthae Haplocalycis Herba, Saposhnikoviae Radix,
Angelicae Dahuricae Radix, Atractylodis Macrocephalae
Rhizoma

Curing nasal obstruction, rhinocnesmus,
rhinorrhea, forehead headache, chronic
rhinitis, allergic rhinitis, nasosinusitis

“Chinese
Pharmacopoeia
(2015)” a

Fang Zhi Bi Yan
Tablets

Xanthii Fructus, Chrysanthemi Indici Flos, Centipedae
Herba, Angelicae Dahuricae Radix, Saposhnikoviae Radix,
Ecliptae Herba, Paeoniae Radix Alba, Arisaema Cum Bile,
Glycyrrhizae Radix Et Rhizoma, Tribuli Fructus

Curing sneeze, nasal obstruction,
headache, allergic rhinitis, nasosinusitis

“Zhong Yao
Cheng Fang
Zhi Ji”c

Bi Yan Qing Du
Ji

Xanthii Fructus, Chrysanthemi Indici Flos, Paridis
Rhizoma, Zanthoxyli Radix, Prunellae Spica, Gentianae
Radix Et Rhizoma, Codonopsis Radix

Treating chronic inflammation of
nasopharynx, swelling and pain in
throat

“Zhong Yao
Cheng Fang
Zhi Ji”c

Bi Yan Qing Du
Ke Li

Xanthii Fructus, Chrysanthemi Indici Flos, Paridis
Rhizoma, Zanthoxyli Radix, Prunellae Spica, Gentianae
Radix Et Rhizoma, Codonopsis Radix

Treating chronic inflammation of
nasopharynx

“Chinese
Pharmacopoeia
(2015)” a

Bi Yuan Pills Xanthii Fructus, Magno1iae Flos, Lonicerae Japonicae Flos,
Rubiae Radix Et Rhizoma, Chrysanthemi Indici Flos

Curing nasal obstruction, nasosinusitis,
ventilation lack, rhinorrhea, anosmia,
headache, pain of superciliary ridge

“Chinese
Pharmacopoeia
(2010)” a

Bi Yuan He Ji Xanthii Fructus, Magno1iae Flos, Lonicerae Japonicae Flos,
Rubiae Radix Et Rhizoma, Chrysanthemi Indici Flos

Curing nasal obstruction, nasosinusitis,
ventilation lack, rhinorrhea, anosmia,
headache, pain of superciliary ridge

“Xin Yao Zhuan
Zheng Biao
Zhun” d

Bi Yuan Tablets Xanthii Fructus, Magno1iae Flos, Lonicerae Japonicae Flos,
Rubiae Radix Et Rhizoma, Chrysanthemi Indici Flos Curing chronic rhinitis, nasosinusitis

“Zhong Yao
Cheng Fang
Zhi Ji”c

Bi Yuan Shu
Kou Fu Ye

Xanthii Fructus, Magno1iae Flos, Menthae Haplocalycis
Herba, Angelicae Dahuricae Radix, Scutellariae Radix,
Gardeniae Fructus, Bupleuri Radix, Asari Radix Et
Rhizoma, Chuanxiong Rhizoma, Astragali Radix,
Clematidis Armandii Caulis, Platycodonis Radix, Poria

Curing rhinitis, nasosinusitis
“Chinese
Pharmacopoeia
(2010)” a

Bi Yuan Shu
Jiao Nang

Xanthii Fructus, Magno1iae Flos, Menthae Haplocalycis
Herba, Angelicae Dahuricae Radix, Scutellariae Radix,
Gardeniae Fructus, Bupleuri Radix, Asari Radix Et
Rhizoma, Chuanxiong Rhizoma, Astragali Radix,
Clematidis Armandii Caulis, Platycodonis Radix, Poria

Curing rhinitis, nasosinusitis
“Chinese
Pharmacopoeia
(2010)” a

Bi Yuan Tong
Qiao Ke Li

Xanthii Fructus, Magno1iae Flos, Ephedrae Herba,
Angelicae Dahuricae Radix, Menthae Haplocalycis Herba,
Ligustici Rhizoma Et Radix, Scutellariae Radix, Forsythiae
Fructus, Chrysanthemi Indici Flos, Trichosanthis Radix,
Rehmanniae Radix, Salviae Miltiorrhizae Radix Et
Rhizoma, Poria, Glycyrrhizae Radix Et Rhizoma

Curing acute nasosinusitis, nasal
obstruction, headache, fever

“Chinese
Pharmacopoeia
(2015)” a

Bi Yan Ling
Pills

Xanthii Fructus, Magno1iae Flos, Angelicae Dahuricae
Radix, Asari Radix Et Rhizoma, Scutellariae Radix,
Menthae Haplocalycis Herba, Fritillariae Cirrhosae Bulbus,
Sojae Semen Praeparatum

Curing nasosinusitis, nasal obstruction,
chronic rhinitis

“Zhong Yao
Cheng Fang
Zhi Ji” c

Bi Yan Ling
Tablets

Xanthii Fructus, Magno1iae Flos, Angelicae Dahuricae
Radix, Asari Radix Et Rhizoma, Scutellariae Radix,
Fritillariae Cirrhosae Bulbus, Sojae Semen Praeparatum

Treating chronic nasosinusitis, rhinitis,
nasal obstruction and headache,
anosmia

“Zhong Yao
Cheng Fang
Zhi Ji” c
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Table 1. Cont.

Preparation
Name Main Compositions Traditional and Clinical Uses References

Bi Yan Tablets

Xanthii Fructus, Magno1iae Flos, Saposhnikoviae Radix,
Forsythiae Fructus, Chrysanthemi Indici Flos, Schisandrae
Chinensis Fructus, Platycodonis Radix, Angelicae
Dahuricae Radix, Anemarrhenae Rhizoma, Schizonepetae
Herba, Glycyrrhizae Radix Et Rhizoma, Phellodendri
Chinensis Cortex, Ephedrae Herba, Asari Radix Et
Rhizoma

Treating acute and chronic rhinitis,
nasal obstruction, rhinorrhea, fever,
headache

“Chinese
Pharmacopoeia
(2010)” a

Bi Yan Tang
Jiang

Xanthii Fructus, Scutellariae Radix, Angelicae Dahuricae
Radix, Ephedrae Herba, Magno1iae Flos, Centipedae
Herba, Menthae Haplocalycis Herba

Treating acute rhinitis
“Zhong Yao
Cheng Fang
Zhi Ji” c

Bi Dou Yan Kou
Fu Yan

Xanthii Fructus, Magno1iae Flos, Menthae Haplocalycis
Herba, Platycodonis Radix, Bupleuri Radix, Angelicae
Dahuricae Radix, Chuanxiong Rhizoma, Scutellariae
Radix, Gardeniae Fructus, Poria, Clematidis Armandii
Caulis, Astragali Radix

Curing nasal obstruction due to
wind-heat affecting lung, acute and
chronic rhinitis, nasosinusitis

“Chinese
Pharmacopoeia
(2010)” a

Bi Shu Shi
Tablets

Xanthii Fructus, Chrysanthemi Indici Flos, Centipedae
Herba, Angelicae Dahuricae Radix, Saposhnikoviae Radix,
Ecliptae Herba, Paeoniae Radix Alba, Arisaema Cum Bile,
Glycyrrhizae Radix Et Rhizoma, Tribuli Fructus

Curing sneeze, rhinorrhea, nasal
obstruction, headache, allergic rhinitis,
chronic nasosinusitis

“Zhong Yao
Cheng Fang
Zhi Ji” c

Bi Tong Pills
Xanthii Fructus, Magno1iae Flos, Angelicae Dahuricae
Radix, Centipedae Herba, Menthae Haplocalycis Herba,
Scutellariae Radix, Glycyrrhizae Radix Et Rhizoma

Curing affection of exogenous
wind-heat, chronic rhinitis

“Zhong Yao
Cheng Fang
Zhi Ji” c

a Cited from “Chinese Pharmacopoeia”; b Cited from “Guo Jia Zhong Cheng Yao Biao Zhun”; c Cited from “Zhong
Yao Cheng Fang Zhi Ji”; d Cited from “Xin Yao Zhuan ZhengBiao Zhun”. Xanthii Fructus means the fruits of
Xanthium strumarium L.

3. Botany

Xanthium, belonging to the Asteraceae family, is a taxonomically complex genus, which includes
more than 20 species in the world and three species and one varietas in China [8]. Xanthium strumarium
L. (Figure 1) is an annual herb approximately 20–90 cm in height, its stems are erect, branched,
often speckled with purple and have short white hairs scattered across the surface. Leaves are green,
cauline, mostly alternate (proximal 2–6 sometimes opposite) with petiole, which are 5–20 cm long
and 4–16 cm wide; the shape of blades are lanceolate, linear, ovate, orbicular-deltate, or suborbicular,
and both surfaces are hirtellous or strigose, usually with gland-dotted, margin entire or toothed.
The capitula are discoid, whose female (proximal) or functionally male (distal) are in racemiform
to spiciform arrays or borne singly (in axils). The female capitula are elliptic, 2–5 mm in diameter;
Male capitula are saucer-shaped, 3–5 mm in diameter. The achenes are black, fusiform, obovoid,
enclosed in the hardened involucre, with two hooked beaks and hooked bristles [11,12].
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This plant is widely distributed all over the world, including Russia, Iran, India, North Korea and
Japan. It is native to China and widely distributed in the area of Northeast China, Southwest China,
North China, East China and South China. It often grows in plains, hills, mountains and wilderness
roadsides. The flowering time ranges from July to August, and fruiting stage lasts from September to
October in China [1].

4. Phytochemistry

So far, many phytochemical studies of X. strumarium have been conducted, and more than
170 compounds have been isolated and identified from this plant. Among them, sesquiterpenes and
phenylpropanoids are the most abundant and major bioactive constituents in X. strumarium, and are
considered as the characteristic constituents of this plant. In addition to the chemical constituents found
in fruits, constituents in other parts of X. strumarium were also comprehensively reported, including
leaves, roots and stems, etc. In this section, the identified compounds are listed in the following table
and the corresponding structures are also comprehensively presented. (Table 2, Figures 2–12).

Table 2. Chemical constituents isolated from X. strumarium.

Classification No. Chemical Component Part of Plant Reference

Sesquiterpenoids

1 sibirolide A Fruits [13]
2 sibirolide B Fruits [13]
3 norxanthantolide A Fruits [13]
4 norxanthantolide B Fruits [13]
5 norxanthantolide C Fruits [13]
6 norxanthantolide D Fruits [13]
7 norxanthantolide E Fruits [13]
8 norxanthantolide F Fruits [13]
9 1β-hydroxyl-5α-chloro-8-epi-xanthatin Aerial parts [14]
10 11α,13-dihydro-8-epi-xanthatin Aerial parts [14]

Sesquiterpenoids

11 xanthinin Leaves [15]
12 xanthumin Leaves [15]
13 xanthanol Leaves [15]
14 xanthanol Acetate Leaves [15]
15 isoxanthanol Leaves [15]
16 xanthumanol Leaves [16]
17 deacetoxylxanthumin Leaves [16]
18 xanthatin Leaves [16]
19 xanthinosin Leaves [16]
20 tomentosin Leaves [16]
21 8-epi-tomentosin Leaves [17]
22 11α,13-dihydroxanthuminol Leaves [18]
23 desacetylxanthanol Leaves [18]
24 (2E,4E,1’S,2’R,4’S,6’R)-dihydrophaseic acid Fruits [19]
25 8-epi-xanthatin Aerial parts [20]
26 2-hydroxy xanthinosin Aerial parts [21]
27 lasidiol p-methoxybenzoate Leaves [18]
28 1β, 4β, 4α,5α-diepoxyxanth-11(13)-en-12-oic acid Aerial parts [22]
29 11α,13-dihydroxanthatin Aerial parts [22]
30 4β,5β-epoxyxanthatin-1α,4α-endoperoxide Aerial parts [22]
31 4-epi-xanthanol Aerial parts [22]
32 4-epi-isoxanthanol Aerial parts [22]
33 4-oxo-bedfordia acid Aerial parts [22]
34 2-hydroxytomentosin Aerial parts [20]
35 2-hydroxytomentosin-1β,5β-epoxide Aerial parts [20]
36 xanthnon Aerial parts [21]
37 6β,9β-dihydroxy-8-epi-xanthatin Leaves [23]
38 inusoniolide Aerial parts [21]
39 (3S,5R,6S,7E)-5,6-epoxy-3-hydroxy-7-megastigmene-9-one Fruits [24]
40 pungiolide E Aerial parts [25]
41 pungiolide A Aerial parts [25]
42 pungiolide D Aerial parts [25]
43 5-azuleneacetic acid Aerial parts [21]
44 dihydrophaseic acid sodium salt 4’-O-β-D-glucopyranoside Fruits [26]
45 (3S,5R,6R,7E,9S)-megastigman-7ene-3,5,6,9-tetrol-3-O-β-D-glucopyranoside Aerial parts [27]

Triterpenoids

46 betulinic acid Roots [28]
47 betulin Roots [28]
48 erythrodiol Roots [28]
49 lup-20(29)-en-3β-ol Aerial parts [27]
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Table 2. Cont.

Classification No. Chemical Component Part of Plant Reference

Triterpenoids

50 lupenyl acetate Aerial parts [29]
51 lupeol acetate Whole plants [30]
52 β-amyrin Aerial parts [31]
53 oleanolic acid Aerial parts [31]
54 α-amyrin Leaves [32]

Phenylpropenoids

55 1,3,5-tri-O-caffeoylquinic acid Fruits [33]
56 3,5-di-O-caffeoylquinic acid Fruits [33]
57 neochlorogenic acid methyl ester Fruits [34]
58 1,3-di-O-caffeoylquinic acid Fruits [34]
59 methyl-3,5-di-O-caffeoylquinic acid Fruits [34]
60 chlorogenic acid Fruits [35]
61 1,4-di-O-caffeoylquinic acid Fruits [35]
62 4,5-di-O-caffeoylquinic acid Fruits [35]
63 5-O-caffeoylquinic acid Fruits [35]
64 1,5-di-O-caffeoylquinic acid Fruits [36]
65 3,4-di-caffeoylquinic acid methyl ester Fruits [37]
66 3,5-di-caffeoylquinic acid methyl ester Fruits [37]
67 4-O-caffeoyl quinic acid methyl ester Fruits [38]
68 N-trans-feruloyl tyramine Roots [39]
69 9,9’-O-di-(E)-feruloyl-(-)-secoisolariciresinol Roots [39]
70 xanthiumnolic A Fruits [40]
71 xanthiumnolic C Fruits [40]
72 2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one Fruits [41]
73 threo-guaiacylglycerol-8-O-4’- (coniferyl alcohol) ether Fruits [42]
74 erythro-guaiacylglycerol-8-O-4’-(coniferyl alcohol) ether Fruits [42]

75 threo-1-phenyl-(4-hydroxy-3-methoxy)-2-phenyl-(4”-hydroxy-3”-methoxy)-
1,3-propanediol Fruits [42]

76 (1S,2R)-1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol Fruits [42]
77 threo-guaiacylglycerol-β-coniferyl aldehyde ether Fruits [42]
78 erythro-guaiacylglycerol-β-coniferyl aldehyde ether Fruits [42]
79 xanthiumnolic D Fruits [40]
80 xanthiumnolic E Fruits [40]
81 ferulic acid Fruits [43]
82 caffeic acid Fruits [36]
83 protocatechuic acid Fruits [19]
84 isovanillic acid Whole plants [30]
85 7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one Roots [28]

Phenylpropenoids

86 xanthiazone-(2-O-caffeoyl)-β-D-glucopyranoside Whole plants [44]
87 rel-(2α,3β)-7-O-methylcedrusin Fruits [42]
88 caffeic acid choline ester Fruits [38]
89 icariside D1 Fruits [45]
90 3-methoxy-4-hydroxy-transcinnamaldehyde Fruits [24]
91 methylchlorogenate Fruits [46]
92 icariside F2 Fruits [45]
93 arbutin Fruits [45]
94 coniferine Fruits [45]
95 3-hydoxy-1-(4-hydroxy-phenyl)-propan-1-one Fruits [47]
96 ω-hydroxypropioguaiacone Fruits [45]
97 caffeic acid ethyl ester Fruits [19]
98 4-hydroxy-3-methoxycinnamaldehyde Fruits [37]
99 p-hydroxybenzaldehyde Fruits [24]

Lignanoids

100 xanthiumnolic B Fruits [40]

101 (-)-1-O-β-D-glucopyranosyl-2-{2-methoxy-4-[1-(E)-propen-3-ol]phenoxyl}-
propane-3-ol Fruits [48]

102 leptolepisol D Fruits [48]
103 dihydrodehydrodiconiferyl alcohol Fruits [48]
104 chushizisin E Fruits [48]

105 (-)-(2R)-1-O-β-D-glucopyranosyl-2-{2-methoxy-4-
[(E)formylviny1]phenoxyl}propane-3-ol Fruits [48]

106 (-)-7R,8S-dehydrodiconiferyl alcohol Fruits [48]
107 (-)-simulanol Fruits [48]

108 2-(4-hydroxy-3-methoxyphenyl)-3-(2-hydroxy-5-methoxyphenyl)-3-oxo-1-
propanol Fruits [48]

109 diospyrosin Fruits [48]
110 dehydrodiconiferyl alcohol Fruits [48]
111 balanophonin A Fruits [48]
112 threo-dihydroxydehydrodiconiferyl alcohol Fruits [48]
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Table 2. Cont.

Classification No. Chemical Component Part of Plant Reference

Lignanoids

113 1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2,3-trihydroxypropyl)-2-
methoxy]-phenoxy-1,3-propandiol Fruits [48]

114 7R,8S-dihydrodehydrodiconiferyl alcohol 4-O-β-D-glucopyranoside Fruits [48]
115 syringaresinol Roots [39]
116 fructusol A Fruits [42]
117 balanophonin Fruits [24]
118 4-oxopinoresinol Roots [28]
119 pinoresinol Fruits [24]

Coumarins 120 jatrocin B Roots [39]

Coumarins
121 cleomiscosin A Roots [39]
122 cleomiscosin C Roots [39]
123 scopoletin Roots [39]

Steroids

124 stigmast-4-en-β-ol-3-one Roots [39]
125 β-sitostenone Roots [39]
126 β-sitosterol Fruits, Leaves [39]
127 daucosterol Fruits [39]
128 5α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol Roots [39]
129 6β-hydroxy-stigmast-4,22-dien-3-one Roots [28]
130 6β-hydroxy-stigmast-4-en-3-one Roots [28]
131 3-oxo-4(4,5)-sitostenone Roots [28]
132 β-daucosterol Roots [28]
133 β-stigmasterol Roots [28]
134 7-ketositosterol Roots [28]
135 stigmasterol Aerial parts [31]
136 β-sitosterol-3-O-β-D-glucopyranoside Aerial parts [31]
137 ergosterol Whole plants [30]
138 taraxasteryl acetate Whole plants [30]
139 7α-hydroxy-β-sitosterol (stigmast-5-ene-3β,7α-diol) Fruits [24]
140 stigmast-4-ene-3β,6α-diol Fruits [24]
141 14-methyl-12,13-dehydro-sitosterol-heptadeconate Leaves [32]

Glycosides

142 atractyloside Fruits [49]
143 carboxyatractyloside Burrs [50]
144 3β-norpinan-2-one 3-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside Fruits [41]

145 (6Z)-3-hydroxymethyl-7-methylocta-1,6-dien-3-ol
8-O-β-D-glucopyranoside Fruits [41]

146 (6E)-3-hydroxymethyl-7-methylocta-1,6-dien-3-ol
8-O-β-D-glucopyranoside Fruits [41]

147 7-[(β-D-apiofuranosyl-(1→6)-β-D-glucopyranosyl)oxymethy]-8,8-
dimethyl-4,8-dihydrobenzo[1,4]thiazine-3,5-dione Fruits [41]

148 3’,4’-dedisulphated-atractyloside Fruits [46]
149 2-methyl-3-buten-2-ol-β-D-ap-iofuranosyl-(1→6)-β-D-glucopyranoside Fruits [51]
150 everlastoside C Fruits [51]

Flavonoids

151 ononin Fruits [43]
152 quercetin Fruits [37]
153 allopatuletin Fruits [37]
154 patuletin-3-glucuronide Fruits [34]

Flavonoids
155 quercetin-3-O-glucuronide Fruits [34]
156 formononetin Fruits [43]

Tihiazdes

157 xanthiazone Fruits [36]
158 2-hydroxy-xanthiazone Fruits [42]

159 7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-3,5-dione-
11-O-β-D-glucopyranoside Fruits [43]

160 2-hydroxy-7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-
3,5-dione-11-O-β-D-glucopyranoside Fruits [43]

161 7-Hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-3,5-dione-
(2-O-caffeoyl)-β-D-glucopyranoside Fruits [52]

Anthraquinones &
naphthoquinones

162 xanthialdehyde Fruits [53]
163 chrysophanic acid Fruits [54]
164 emodin Fruits [54]
165 aloe emodin Fruits [54]
166 5-hydroxy-3,6-dimethoxy-7-methyl-1,4-naphthalenedione Roots [28]

Other compounds

167 5-methyluracil Roots [39]
168 uracil Roots [39]
169 sibiricumthionol Fruits [19]
170 indole-3-carbaldehyde Fruits [45]
171 N-(1’-D-deoxyxylitolyl)-6,7-dimethyl-1,4-dihydro-2,3-quinoxalinedione Fruits [38]
172 nonadecanoic acid Roots [39]
173 hexadecanoic acid Leaves [32]
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4.1. Sesquiterpenoids and Triterpenoids

Sesquiterpenoids have many important biological functions and physiological activities,
which are abundant in X. strumarium. Sesquiterpene lactones, the main characteristic components of
plants in the Asteraceae family, exhibit strong activities with anti-microbial, antiviral, anti-tumor
and anti-inflammation [55,56]. The predominant sesquiterpene lactones are the guaiane type
and seco-guaiane type, of which xanthanolides are the important active constituent. In 2015,
eight sesquiterpenes were isolated from the fruits of X. strumarium, including sibirolide A (1), sibirolide
B (2) and norxanthantolide A–F (3–8) [13]. In addition, 1β-hydroxyl-5α-chloro-8-epi-xanthatin (9) and
11α, 13-dihydro-8-epi-xanthatin (10) were isolated from the aerial parts of X. strumarium [14]. Moreover,
xanthinin (11), xanthumin (12), xanthanol (13), xanthanol acetate (14), isoxanthanol (13), xanthumanol
(16), deacetoxylxanthumin (17), xanthatin (18), xanthinosin (19), tomentosin (20) were isolated
from the leaves of X. strumarium [15,16]. Furthermore, other sesquiterpenoids were isolated and
identified from the fruits, leaves and aerial parts of X. strumarium, including 8-epi-tomentosin (21) [17],
11α,13-dihydroxanthuminol (22), desacetylxanthanol (23) [18], (2E,4E,1’S,2’R,4’S,6’R)-dihydrophaseic
acid (24) [19], 8-epi-xanthatin (25) [20], 2-hydroxy xanthinosin (26) [21], lasidiol p-methoxybenzoate
(27) [18], 1β,4β, 4α,5α-diepoxyxanth-11(13)-en-12-oic acid (28), 11α,13-dihydroxanthatin (29),
4β, 5β-epoxyxanthatin-1α,4α-endoperoxide (30), 4-epi-xanthanol (31), 4-epi-isoxanthanol (32),
4-oxo-bedfordia acid (33) [22], 2-hydroxytomentosin (34), 2-hydroxytomentosin-1β,5β-epoxide
(35) [20], xanthnon (36) [21], 6β,9β-dihydroxy-8-epi-xanthatin (37) [25], inusoniolide (38) [21],
(3S,5R,6S,7E)-5,6-epoxy-3-hydroxy-7-megastigmene-9-one (39) [24], pungiolide E (40), pungiolide
A (41), pungiolide D (42) [25], 5-azuleneacetic acid (43) [21], dihydrophaseic acid sodium
salt 4’-O-β-D-glucopyranoside (44) [26], (3S,5R,6R,7E,9S)-megastigman-7ene-3,5,6,9-tetrol-3-O-β-D-
glucopyranoside (45) [27].

Triterpenoids are another important kind of biomolecule found in X. strumarium. Nine triterpenoids
including betulinic acid (46), botulin (47), erythrodiol (48) [28], lup-20(29)-en-3β-ol (49) [27], lupenyl acetate
(50) [29], lupeol acetate (51) [30], β-amyrin (52), oleanolic acid (53) [31] and α-amyrin (54) [32] are reported
from this plant. The chemical structures of these sesquiterpenoids and triterpenoids isolated from X.
strumarium are shown in Figures 2 and 3.
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4.2. Phenylpropenoids

Phenylpropenoids are also important active constituents found in X. strumarium. To date,
45 phenylpropenoids have been reported in this plant. Phenolic acids, mainly chlorogenic acid,
are considered to be the main anti-inflammatory and analgesic active ingredients and the highest
content of organic acids [57]. The phenolic acids in X. strumarium contain caffeic acid, ferulic
acid, and protocatechuic acid, etc. However, studies have shown that factors such as origin,
harvesting time, processing time and temperature have obvious effects on the content of phenolic
acid in X. strumarium [58]. Thirteen caffeoylquinic acids (CQA) derivatives were isolated from
X. strumarium, including 1,3,5-tri-O-caffeoylquinic acid (55), 3,5-di-O-caffeoylquinic acid (56),
neochlorogenic acid methyl ester (57), 1,3-di-O-caffeoylquinic acid (58), methyl-3,5-di-O-caffeoylquinic
acid (59), chlorogenic acid (60), 1,4-di-O-caffeoylquinic acid (61), 4,5-di-O-caffeoylquinic acid (62),
5-O-caffeoylquinic acid (63), 1,5-di-O-caffeoylquinic acid (64), 3,4-di-caffeoylquinic acid methyl ester
(65), 3,5-di-caffeoylquinic acid methyl ester (66), 4-O-caffeoyl quinic acid methyl ester (67) [33–38].
In addition, in 2017, N-trans-feruloyl tyramine (68) and 9,9’-O-di-(E)-feruloyl-(-)-secoisolariciresinol
(69) were firstly reported in this plant [39].

Besides, some other phenylpropanoids were also isolated and identificated from this plan, such as
xanthiumnolic A (70), xanthiumnolic C (71) [40], 2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-
propan-1-one (72) [41], threo-guaiacylglycerol-8-O-4’-(coniferyl alcohol) ether (73), erythro-
guaiacylglycerol-8-O-4’-(coniferyl alcohol) ether (74), threo-1-phenyl-(4-hydroxy-3-methoxy)-2-phenyl-
(4”-hydroxy-3”-methoxy)-1,3-propanediol (75), (1S,2R)-1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-
propanediol (76), threo-guaiacylglycerol-β-coniferyl aldehyde ether (77), erythro-guaiacylglycerol-
β-coniferyl aldehyde ether (78) [42], xanthiumnolic D (79), xanthiumnolic E (80) [40], ferulic acid
(81) [43], caffeic acid (82) [36], protocatechuic acid (83) [19], isovanillic acid (84) [30], 7-(4-hydroxy-3-
methoxyphenyl)-1-phenylhept-4-en-3-one (85) [28], xanthiazone-(2-O-caffeoyl)-β-D-glucopyranoside
(86) [44], rel-(2α,3β)-7-O-methylcedrusin (87) [42], caffeic acid choline ester (88) [38], icariside
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D1 (89) [45], 3-methoxy-4-hydroxy-transcinnamaldehyde (90) [24], methylchlorogenate (91) [46],
icariside F2 (92), arbutin (93), coniferine (94) [45], 3-hydoxy-1-(4-hydroxy-phenyl)-propan-1-one
(95) [47], ω-hydroxypropioguaiacone (96) [45], caffeic acid ethyl ester (97) [19], 4-hydroxy-3-
methoxycinnamaldehyde (98) [37], p-hydroxybenzaldehyde (99) [24], The chemical structures of
these phenylpropenoids isolated from X. strumarium are shown in Figure 4.
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4.3. Lignanoids and Coumarins 

In recent years, some studies found that X. strumarium contain lignanoids and coumarins, 
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4.3. Lignanoids and Coumarins

In recent years, some studies found that X. strumarium contain lignanoids and coumarins,
moreover, 21 lignanoids and four coumarins have been discovered in this plant and are displayed in
Figures 5 and 6. In 2017, xanthiumnolic B (100) was found from the fruits of X. strumarium and its
anti-inflammatory activity has been demonstrated [40]. Later, 14 lignanoids were also isolated from
the fruits of X. strumarium, including (-)-1-O-β-D-glucopyranosyl-2-{2-methoxy-4-[1-(E)-propen-3-
ol]phenoxyl} -propane-3-ol (101), leptolepisol D (102), dihydrodehydrodiconiferyl alcohol (103),
chushizisin E (104), (-)-(2R)-1-O-β-D-glucopyranosyl-2-{2-methoxy-4-[(Eformylvinyl]phenoxyl}propane-
3-ol (105), (-)-7R,8S-dehydrodiconiferyl alcohol (106), (-)-simulanol (107), 2-(4-hydroxy-3-
methoxyphenyl)-3-(2-hydroxy-5-methoxyphenyl)-3-oxo-1-propanol (108), diospyrosin (109),
dehydrodiconiferyl alcohol (110), balanophonin A (111), threo-dihydroxydehydrodiconiferyl alcohol
(112), 1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2,3-trihydroxypropyl)-2-methoxy]-phenoxy-1,3-
propandiol (113), 7R,8S-dihydrodehydrodiconiferyl alcohol 4-O-β-D-glucopyranoside (114) [48].
Furthermore, syringaresinol (115) [39], fructusol A (116) [42], balanophonin (117) [24], 4-oxopinoresinol
(118) [28], pinoresinol (119) [24] were identified from the plant.

In 2011, Kan et al. isolated four coumarins from the roots of X. strumarium for the first time,
including scopoletin (120), Jatrocin B (121), cleomiscosin A (122), cleomiscosin C (123) [39].
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4.4. Steroids

A few studies have been conducted investigating the steroids in X. strumarium. In 2010, β-sitostenone
(124), β-sitosterol (125), daucosterol (126), stigmast-4-en-β-ol-3-one (127), and 5α,8α-epidioxy-
22E-ergosta-6,22-dien-3β-ol (128) were isolated from X. strumarium [39]. Furthermore, Chen et al. found
6β-hydroxy-stigmast-4,22-dien-3-one (129), 6β-hydroxy-stigmast-4-en-3-one (130), 3-oxo-∆4,5-sitostenone
(131), β-daucosterol (132), β-stigmastero (133) and 7-ketositosterol (134) from the roots of
X. strumarium [28].

Lately, stigmasterol (135), β-sitosterol-3-O-β-D-glucopyranoside (136) [31], ergosterol
(137), taraxasteryl acetate (138) [30], 7α-hydroxy-β-sitosterol(stigmast-5-ene-3β,7α-diol) (139),
stigmast-4-ene-3β,6α-diol (140) [24] and 14-methyl-12,13-dehydro-sitosterol-heptadeconate (141) [32]
were isolated and identified in X. strumarium. The chemical structures of these steroids isolated from
X. strumarium are shown in Figure 7.
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4.5. Glycosides

In 1962, Song et al. isolated a toxic glycoside component named AA2 from the fruits of X.
strumarium, which has been authenticated as atractyloside (142) by Wang in 1983 [49,59]. Subsequently,
John et al. found another toxic ingredient known as carboxyatractyloside (143) in 1975 [50]. Research
showed that the content of atractyloside in X. strumarium could be reduced after stir-flying, and its
toxicity could be reduced. [60] Lately, seven other glycosides were separated from the fruits
of X. strumarium, such as 3β-norpinan-2-one 3-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside
(144), (6Z)-3-hydroxymethyl-7-methylocta-1,6-dien-3-ol 8-O-β-D-glucopyranoside (145), (6E)-3-
hydroxymethyl-7-methylocta-1,6-dien-3-ol 8-O-β-D-glucopyranoside (146), 7-[(β-D-apiofuranosyl-
(1→6)-β-D-glucopyranosyl)oxymethy]-8,8-dimethyl-4,8-dihydrobenzo[1,4]thiazine-3,5-dione (147) [41],
3’,4’-dedisulphated-atractyloside (148) [46], 2-methyl-3-buten-2-ol-phated-atractylosideimethy-D-
glucopyranoside (149), everlastoside C (150) [51], and all glycosides are displayed in Figure 8.
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Flavonoids are common chemical components in plants all over the world. Six flavonoids
including ononin (151) [43], quercetin (152), allopatuletin (153) [37], patuletin-3-glucuronide (154),
quercetin-3-O-glucuronide (155) [34], formononetin (156) [43] have been isolated from this plant and
are presented in Figure 9.
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4.7. Thiazides

To this day, six thiazides from X. strumarium have been reported. In 1997, xanthiazone (157) was
isolated from the aqueous acetone extract of the fruits [36]. Furthermore, 2-hydroxy-xanthiazone
(158) [42], 7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4] thiazine-3,5-dione-11-O-β-D-
glucopyranoside (159), 2-hydroxy-7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-
3,5-dione-11-O-β-D-glucopyranoside (160) [43], 7-Hydroxymethyl-8,8-dimethyl-4,8-
dihydrobenzol[1,4]thiazine-3,5-dione-(2-O-caffeoyl)-β-D-glucopyranoside (161) [52],
and xanthialdehyde (162) [53] were identified from this plant (Figure 10).
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A few studies have been focused on anthraquinones in X. strumarium. In one report in 2005,
Huang et al. found chrysophanic acid (163), emodin (164) and aloe emodin (165) in the fruits of X.
strumarium [54]. Then, the 5-hydroxy-3,6-dimethoxy-7-methyl-1,4-naphthalenedione (166), a new
naphthoquinone, was isolated from the roots of X. strumarium [28] (Figure 11).
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4.8. Other Compounds

Apart from these major types of phytochemical compounds mentioned above, there are some
other chemical ingredients isolated from X. strumarium, including 5-methyluracil (167), uracil (168) [39],
sibiricumthionol (169) [19], indole-3-carbaldehyde (170) [45], N-(1’-D-deoxyxylitolyl)-6,7-dimethyl-1,4-
dihydro-2,3-quinoxalinedione (171) [38], nonadecanoic acid (172) [39], hexadecanoic acid (173) [32]
(Figure 12).
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5. Pharmacology

5.1. Anti-AR Effect

X. strumarium is a traditional medicine widely used in the treatment of nasal diseases, especially
allergic rhinitis (AR). In modern pharmacological study, the mechanism of X. strumarium in treating
AR has been studied extensively. In 2003, it was reported that WEX inhibited compound 48/80 (C
48/80)-induced systemic anaphylaxis in mice (0.01 to 1 g/kg, p.o.), and the mechanism may be related
to the inhibition of histamine and TNF-α released from rat peritoneal mast cells (RPMC) [61,62].
In 2008, Zhao et al. found that WEX (0.25–1 mg/mL) can modulate the human mast cell-mediated and
peripheral blood mononuclear cell (PBMNC)-mediated inflammatory and immunological reactions
which induced by pro-inflammatory cytokines including interleukin (IL)-4, IL-6, IL-8, GM-CSF and
TNF-α [63]. Furthermore, the MEX is found to possess the inhibitory effect on the activation of C
48/80 stimulated mast cells, and the mechanism was correlated to inhibit Ca2+ uptake and histamine
release, and increase cAMP in RPMC [64]. In addition, in 2014, Peng et al. demonstrated that the
caffeoylxanthiazonoside (CXT) (5, 10, 20 mg/kg, p.o.) isolated from the fruits of X. strumarium
was helpful to alleviate the nasal symptoms of ovalbumin (OVA) induced AR rats via anti-allergic,
down-regulating IgE, anti-inflammatory and analgesic properties [65].

5.2. Anti-Tumor Effect

Anti-tumor effects are also regarded as primary pharmacological properties of X. strumarium,
and have been extensively investigated in lung cancer, breast cancer, cervical cancer, colon cancer,
liver cancer, meningioma, and leukemia.

Tao et al. studied the inhibitory effect of xanthatin (1–40 µM), an active agent in X. strumarium,
against lung cancer cells (Cell lines of A549, H1975, H1299, H1650 and HCC827) and its potential
mechanisms [66,67]. It found that xanthatin could downregulate the STAT3, GSK3β and β-catenin,
moreover, xanthatin could also trigger Chk1-mediated DNA damage and destabilize Cdc25C via
lysosomal degradation [66–68]. In 1995, Ahn et al. isolated three cytotoxic compounds from the
leaves of X. strumarium, among them, xanthatin and 8-epi-xanthatin possessed obvious anti-tumor
activity on A549 cells with IC50 (half maximal inhibitory concentration) values of 1.3 and 1.1 µg/mL,
respectively [17]. Later, in 2002, it was reported that 1,8-epi-xanthatin epoxide has notable anti-tumor



Molecules 2019, 24, 359 20 of 40

effect against A549 cells with IC50 value of 3.0 µM [69]. Furthermore, Wang et al. and Ferrer et al.
reported that 8-epi-xanthatin-1α,5α-epoxide, 1β-hydroxyl-5α-chloro-8-epi-xanthatin and EEXA can
inhibit the proliferation of A549 cells (IC50 = 9.5 µM, 20.7 µM and 52.2 µg/mL, respectively) [25,70].

In 2007, by using CellTiter 96 assay in vitro, Ramı’rez-Erosa et al. found that xanthatin and
xanthinosin, two sesquiterpene lactones isolated from the burs of X. strumarium, obviously restrain
the proliferation of breast cancer MDA-MB-231 cells with the IC50 values of 13.9 and 4.8 µg/mL,
respectively [71]. Furthermore, Takeda et al. studied the mechanism of xanthatin against breast
cancer MDA-MB-231 cells in 2011, and the results indicated that xanthatin (5–25 µM) inhibits cell
growth via inducing caspase independent cell death which were irrelevant with FTase inhibition [72].
In addition, xanthatin (2.5–10 µM) can also up-regulate GADD45 γ tumor suppressor gene, and induce
the prolonged expression of c-Fos via N-acetyl-L-cysteine-sensitive mechanism [73,74]. In 2016,
the anti-tumor activity of EEXA on MFC7 cells was reported as well, with an IC50 value of
70.6 µg/mL [70].

In 2015, Vaishnav et al. demonstrated that WEX with a concentration of 12.5–50 µg/mL were
able to induce death in HeLa cervical cancer cells by altering the antioxidant levels [75]. Recently,
Liu et al. revealed that xanthatin (5–20 µM) targeted the selenocysteine (Sec) residue of thioredoxin
reductase (TrxR) and inhibited the enzyme activity irreversibly [76]. Meanwhile, the inhibition of TrxR
by xanthatin promoted oxidative stress-mediated apoptosis of HeLa cells.

In 1995, Ahn et al. reported that xanthatin and 8-epi-xanthatin were remarkably cytotoxic to colon
cancer HCT-15 cells with ED50 (median effective dose) values of 1.1 and 0.1 µg/mL, respectively [17].
Later, in 2007, Ramı’rez-Erosa et al. (2007) found that xanthatin (IC50 = 6.15 µg/mL) and xanthinosin
(IC50 = 6.15 µg/mL) possessed the function of inhibiting WiDr cells growth [71]. Furthermore,
eremophil-1(10),11(13)-dien-12,8β-olide,8-epi-xanthatin-1β,5β-epoxide and tomentosin were isolated
from the aerial parts of X. strumarium, and their anti-tumor activities on BGC-823 cells and KE-97
cells were aslo determined. The related results showed that the IC50 values of three compounds on
BGC-823 cells are 13.22, 2.43, and 4.54 µM, respectively. Similarly, IC50 values of three compounds
on BGC-823 cells are 4.41, 1.44, and 3.47 µM, respectively [77]. Moreover, Zhang et al. reported
that xanthatin (3.9–18.6 µM) inhibited the proliferation of MKN-45 cells by inducing G2/M cell
cycle arrest and apoptosis [78]. Later, in 2015, Karmakar et al. found that xanthinosin (8 µM) and
lasidiol p-methoxybenzoate (16 µM) potentiate both extrinsic and intrinsic TRAIL-mediated apoptosis
pathways and also decreased the level of cell survival protein Bcl-2 in AGS cells [20]. Simultaneously,
fructusnoid C (IC50 = 7.6 µM) also reported to exhibit cytotoxic effects on AGS cells [79]. EEXA and
CFEEXA have been identified as the active ingredients against the growth of CT26 cells with IC50

values of 58.9 and 25.3 µg/mL, respectively [70].
Furthermore, the anti-tumor effects of X. strumarium on liver cancers have also been reported in

recent years. In 2013, Wang et al. found that the 1β-hydroxyl-5α-chloro-8-epi-xanthatin possessed
significant in vitro cytotoxicity with an IC50 value of 5.1 µM against SNU387 cells [25]. Later, in 2017,
the cytotoxic effects of MEX and EAFMEX on HepG2 cells were verified as LC50 (Lethal Concentration
50) values of 112.9 and 68.739 µg/mL [80]. Furthermore, Liu et al. demonstrated that xanthatin
(5–40 µM) can induce HepG2 cells apoptosis by inhibiting thioredoxin reductase and eliciting oxidative
stress [76].

Additionally, an investigation in 1995 indicated that Xanthatin and 8-epi-xanthatin both have
cytotoxic effects on SK-MEL-2 cells with ED50 values 0.5 and 0.2 µg/mL, respectively [17]. In 2012,
the EEXS showed notable inhibitory activity on Mel-Ab cells through downregulation of tyrosinase
via GSK3β phosphorylation at concentrations of 1–50 µg/mL [81]. Later, in 2013, Li et al. reported the
anti-tumor effects of xanthatin both in vitro and in vivo. Previous results showed that xanthatin
(2.5–40 µM) possess a remarkable anti-proliferative effect against B16-F10 cells, and the related
mechanism probably associated with activation of Wnt/β-catenin pathway as well as inhibition
of angiogenesis. Meanwhile, the in vivo evidence in mice (xanthatin, 0.1–0.4 mg/10 g, i.p.) also
verified the results mentioned above [82].
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In 1994, DFEEXA was reported to be toxic to leukemia P-388 cells with an IC50 value of
1.64 µg/mL [83]. In addition, results of Nibret et al. showed that xanthatin has significant cytotoxic on
HL-60 cells in 2011 [84]. Another report in 2017 reported that both MEX and EAFMEX have inhibitory
effects on Jurkat cells, and EAFMEX showed higher toxicity to Jurkat cells when compared to MEX [80].

Besides, in 1995, Ahn et al. found that xanthatin and 8-epi-xanthatin have cytotoxic effects on
CNS carcinoma XF-498 cells, and the ED50 values were 1.7 and 1.3 µg/mL, respectively [17]. In 2013,
Pan et al. reported that WEX can cause significant cytotoxic effects on arcoma S180 cells in vivo (S180
cells bearing mice, 5–20 g/kg) [85]. The in vitro anti-proliferative activity of CEXR and MEXR on
laryngeal cancer HEP-2 cells were implemented at doses of 12.5–100 µg/mL, and the two extracts of X.
strumarium showed potent cytotoxic activities against the HEP-2 cells [86].

5.3. Anti-Inflammatory and Analgesic Effects

In 2004, it was reported that WEX (10, 100 and 1000 µg/mL) inhibited inflammatory responses
in Lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages via decreasing IFN-γ,
LPS-induced NO production and TNF-α production in a dose dependent manner [87]. Furthermore,
in 2005, Kim et al. evaluated the anti-inflammatory and anti-nociceptive activities of MEX both in vitro
and in vivo, it showed that the MEX (30, 60 and 90 mg/mL) can down-regulate the production of NO,
PGE 2 and TNF-α, and MEX treatment (100 and 200 mg/kg/day, p.o.) clearly reduced carrageenan
induced hind paw edema in rats [88]. In addition, MEX (100 and 200 mg/kg/day, p.o.) significantly
reduced the amount of writhing induced by acetic acid, and increased jumping response latency in a
hot plate test. Later, in 2008, xanthatin and xanthinosin were reported to inhibit LPS-induced inducible
nitric oxide synthase and cyclooxygenase-2 (COX-2) expression in microglial BV-2 cells with IC50

values of 0.47 and 11.2 µM, respectively [89]. By using LPS inhibition assay and animal model of
inflammation (carrageenan induced hind paw edema), the MEXL (100, 200 and 400 mg/kg) showed
obvious anti-inflammatory activity both in vitro (IC50 = 87 µg/mL) and in vivo [90]. A report in 2015
showed that MEXR (50–400µg/mL) can suppress inflammatory responses via the inhibition of nuclear
factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in LPS-induced murine
macrophages [91]. Moreover, the WEX was found to restrain LPS-induced inflammatory responses
through suppressing NF-κB activation, inhibiting JNK/p38 MAPK phosphorylation, and enhancing
HO-1 expression in macrophages [92]. In 2016, Hossen et al. demonstrated that the inhibitory
effect of MEX on the inflammatory disease possibly related to signaling inhibition of MAPK and
AP-1 [93]. In another study, Hossen et al. found the potential anti-inflammatory activity of MEXA
on LPS-treated macrophages and an HCl/EtOH-induced mouse model of gastritis by inhibiting
PDK1 kinase activity and blocking signaling to its downstream transcription factor, NF-κB [94]. Later,
in 2017, Jiang et al. found a new phenylpropanoid derivative named Xanthiumnolic E isolated from X.
strumarium, which has notable inhibitory effect on LPS-induced nitric oxide (NO) production with
IC50 value of 8.73 µM [26].

Additionally, X. strumarium was confirmed to inhibit some other kinds of inflammatory and
painful diseases. In 2011, Huang et al. suggested that WEX inhibited the development of paw
edema induced by carrageenan, and exhibited inhibitory activity on acetic acid effect and reduced
the formalin effect at the late-phase (0.1, 0.5 and 1.0 g/kg, p.o.) [95]. In addition, the NFEEX at doses
of 0.5, 0.75 and 1.0 mg/ear showed strong anti-inflammatory activity in the croton-oil-induced ear
edema test, and reduced the amount of writhing induced by acetic acid in mice in a dose-dependent
manner (100, 200 and 400 mg/kg) [96]. A report in 2011 demonstrated the anti-inflammatory activity of
xanthatin by inhibiting both PGE 2 synthesis and 5-lipoxygenase activity at doses of 100 and 97 mg/mL,
respectively [84]. Furthermore, Park et al. first explained the anti-inflammatory mechanism of EEX,
which inhibited TNF-α/IFN-γ-induced expression of Th2 chemokines (TARC and MDC) by blocking
the activation of the NF-κB, STAT1 and ERK-MAPK pathways in HaCaT keratinocytes [97]. The hot
plate test, acetic acid induced writhing test and formalin test were applied to evaluate the analgesic
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activity of EEX, and it showed significant analgesic activity at concentrations of 250 and 500 mg/kg
body weight [98].

5.4. Insecticide and Antiparasitic Effects

In 1995, Talakal et al. reported that EEXL possess anti-plasmodial activity against Trypanosoma
evansi both in vitro and in vivo. The EEXL exhibited trypanocidal activity at all the four tested doses
at 5, 50, 500 and 1000 µg/mL in vitro, and it can significantly prolong the survival period of the
T. evansi infected mice at concentrations of 100, 300 and 1000 mg/kg [99]. In 2011, xanthatin was
demonstrated to be the dominating insecticidal active compound against Trypanosoma brucei brucei
with an IC50 value of 2.63mg/mL and a selectivity index of 20 [84]. In addition, Go¨kce et al. showed
that MEX exhibited both ingestion toxicity and ovicidal activity to Paralobesia viteana with an LC50 of
11.02% (w/w) [100]. In 2012, by using schizont inhibition assay, the anti-plasmodial activity of EEXL
against Plasmodium berghei was assessed, and it showed significant activity (IC50 = 4 µg/mL) and high
selectivity index in vitro [101]. Later, in 2014, Roy et al. found that WEXL had distinct insecticidal
properties against Callosobruchus chinensis with strong toxicity, repellent properties, inhibited fecundity
and adult emergence of the insects at 1%, 2% and 4% concentrations [102]. Moreover, it is reported
that EEX revealed anti-nematode activity against Meloidogyne javanica in inhibiting egg hatching and
inducing mortality among second stage juveniles (J2s) [103]. Furthermore, the effect of MEX on the
mortality rates of Aedes caspius and Culex pipiens were investigated, and the results revealed that the
LC50 values of MEX were found to be 531.07 and 502.32 µg/mL against A. caspius and C. pipiens,
respectively [80].

5.5. Antioxidant Effect

In 2010, it was reported that CEXR and MEXR showed significant free radical scavenging
activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method with LC50 values of 10.28 and 40.40 µg/mL,
respectively [86]. After administration of PEEXW (250 and 500 mg/kg, p.o., for 20 days), the contents
of superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase significantly
increased in rats’ brain [104]. Later, in 2011, Huang et al. found that WEX exhibited 70.6% to
76.4% and 35.2% to 79.1% scavenging activity on 2,2’-Azinobis-(3-ethylbenzthiazoline-6-sulphonate)
(ABTS) radicals and DPPH radical scavenging in the concentration of 0.05–0.2 mg/mL;
simultaneously, the reducing activity of WEX increased and liposome protection effect enhanced
in a concentration-dependent manner with the same doses [95]. In the treatment with the MEXS
(100 and 200 mg/kg, p.o. for 10 days), the contents of SOD, CAT, GSH and GPx were obviously
increased in the diabetic rats’ tissues [105]. Moreover, in 2011, Sridharamurthy et al. evaluated
the antioxidant effect of EEXR and CEXR by the scavenging activity of free radicals such as DPPH,
super oxide, nitric oxide, and hydrogen peroxide [106]. Results showed that the IC50 values of
EEXR were 29.81, 495.30, 395.20 and 10.18 µg/mL, respectively, and the IC50 values of CEXR were
24.85, 418.30, 415.18 and 9.23 µg/mL, respectively. In addition, Kamboj et al. demonstrated that
EEXL possessed strong scavenging capacity against DPPH, nitric oxide and hydrogen peroxide with
IC50 values of 85, 72 and 62 µg/mL. In addition, the antioxidant activity was possibly due to the
presence of compounds in the extracts like flavonoid and phenolic [107]. In 2015, hexadecanoic acid,
α-amyrin and 14-methyl-12,13-dehydro-sitosterol-heptadeconate were isolated from the leaves of X.
strumarium, and their antioxidant potential was also evaluated. These three chemical components
showed significant antioxidant activity in a dose dependent manner by DPPH and hydroxyl radical
assay methods with the IC50 values of 106.4, 64.16, 76.18 µg/mL and 127.4, 83.96 and 84.4 µg/mL,
respectively [32]. A study in 2017 revealed that the EOX displayed notable activity for DPPH radicals
with an IC50 value of 138.87 µg/mL [108]. Furthermore, the antioxidant effects of the MEX obtained by
the response surface methodology were measured by the scavenging activity towards the DPPH radical
and Ferric ion reducing antioxidant power (FRAP). These results showed that methanol concentration
and solid to solvent ratio were demonstrated to possess obvious effects on DPPH and FRAP values [28].
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5.6. Antibacterial and Antifungal Effects

In 1983, Mehta et al. reported that the WEXFT possessed antimicrobial properties against Vibrio
cholera [109]. Later, a study in 1997 revealed that the xanthatin isolated from the leaves of X. strumarium
had notable potent activities against Staphylococus epidermidis, Bacillus cereus, Klebsiella pneumoniae,
Pseudomonas aeruginosa and Salmonella fyphi with minimum inhibitory concentration (MIC) values of
31.3, 62.5, 31.3, 125 and 125 µg/mL, respectively [110]. In addition, it is reported that MEXL (500 and
100 mg/mL) exhibited strong activity against K. pneumoniae, Proteus vulgaris, P. aeruginosa, Pseudomonas
putida, Salmonella typhimurium, B. cereus, Bacillus subtilis and S. epidermidis [111]. In 2015, Chen et al. also
reported that β-sitosterol and β-daucosterol isolated from the X. strumarium have significant inhibitory
effects against Escherichia coli, with MIC values of 0.17 and 0.35 mg/mL, respectively [112]. By using
the disc diffusion method, Devkota et al. determined the antibacterial activity of MEXL and WEXL,
and results showed that the two extracts inhibited growth towards K. pneumoniae, Proteus mirabilis,
E. coli, B. subtilis, Enterococcus faecalis and Staphylococcus aureus at concentrations of 50, 100, 150, 200
and 250 mg/mL [113]. Moreover, Sharifi-Rad et al. revealed that EOXL can significantly suppress
the growth of S. aureus, B. subtilis, K. pneumoniae and P. aeruginosa with MIC values of 0.5, 1.3, 4.8
and 20.5 µg/mL, respectively; additionally, EOXL (30, 60 and 120 mg/mL) also exhibited obvious
antibacterial activity against Shiga toxin-producing Escherichia coli [114,115]. Furthermore, Wang et
al. revealed that WEX possessed antibacterial potentials against S. aureus and E. coli with MIC values
of 31.25 and 7.81 mg/mL, respectively [116]. Using the disk diffusion, the antibacterial activity of
EOXF on Rathayibacter toxicus and Pyricularia oryzae was evaluated, and the MIC values were 25 and
12.5 µg/mL, respectively [108].

Similar to the antibacterial potentials, the antifungal activities of X. strumarium were also deeply
investigated. In the year of 2002, Kim et al. found an antifungal constituent from X. strumarium,
which was named deacetylxanthumin. It can inhibit mycelial growth and zoospore germination of
Phytophthora drechsleri with a MIC value of 12.5 µg/mL [117]. In 2011, Yanar et al. used radial growth
technique to test the antifungal activities of MEX against Phytophthora infestans, and the MEX showed
the lowest MIC value of 2.0% w/v which was lower than the standard fungicide (Metalaxyl 4% +
Mancuzeb 64%, MIC value was 2.5%, w/v) [118]. Later, in 2015, Sharifi-Rad et al. investigated the
antifungal ability of EOXL on Candida albicans and Aspergillus niger, and the MIC values were 55.2 and
34.3 µg/mL, respectively [114]. In vitro, using the disk diffusion method, the EOXL exhibited strong
inhibition against Pyricularia oryzae and Fusarium oxysporum with MIC values of 12.5 and 50 µg/mL,
respectively [108]. Furthermore, the EOXL showed remarkable growth inhibition of a wide spectrum
of fungal strains, such as A. niger, Aspergillus flavus, F. oxysporum, Fusarium solani, Alternaria alternata
and Penicillium digitatum with both MIC and MBC (minimum bactericidal concentration) values of
8 µg/mL [119].

5.7. Antidiabetic Effect

In 1974, Kupiecki et al. found that the WEX (15 and 30 mg/kg, i.p.) exhibited potent hypoglycemic
activity in normal rats in a dose-dependent manner [120]. In 2000, the antidiabetic effect of caffeic acid
isolated from X. strumarium was investigated on both streptozotocin-induced and insulin-resistant
rat models. The results showed that caffeic acid (0.5–3.0 mg/kg, i.v.) can decrease the plasma
glucose level via increasing the glucose utilization [121]. In 2011, Narendiran et al. found that
MEXS at the doses of 100 and 200 mg/kg (p.o., for 30 days) had remarkable diabetic activity in
normal-glycemic and streptazocin induced hyperglycemic rats [105]. A report in 2013 demonstrated
that the methyl-3,5-di-O-caffeoylquinate showed strong ability to counteract diabetic complications via
competitive inhibition of aldose reductase (AR) and galactitol formation in rat lenses [47]. In addition,
it is reported that the CFMEXL exhibited notable inhibitory activity on α-glucosidase enzyme with the
IC50 value of 72 µg/mL [122]. Similarly, another study found that MEX also had a strong α-glucosidase
inhibitory effect with IC50 value of 15.25 µg/mL [28].
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5.8. Antilipidemic Effect

Recently, investigations into the antilipidemic effects of X. strumarium have been conducted.
In 2011, the CEXR and EEXR were evaluated for anti-lipidemic activity in Triton WR-1339 induced
hyperlipidemia in Swiss albino rats. The results showed that CEXR and EEXR (200 and 400 mg/kg
p.o.) can significantly decrease the contents of plasma cholesterol, TG, LDL, and VLDL and increase
plasma HDL levels, which was possiblely related to their significant antioxidant activity [106]. Later,
in 2016, Li et al. found that WEX (570 and 1140 mg/kg, p.o., for 6 weeks) could improve the synthesis
of fatty acid and TG, thus decreased the circulating free fatty acid (FFA) levels, indicating that WEX
is involved in solving the abnormality of FFA in the circulation, which is executed by promoting the
storage of the excess fat, rather than the elimination of added fat [123]. Furthermore, after treatment
with WEX (3.7 and 11.11 g/kg, p.o., for 4 weeks), the blood glucose, TC, TG, LDLC levels decreased
and HDLC levels increased in diabetic mice [124].

5.9. Antiviral Activity

In 2009, it was reported that the WEX (0.01, 0.1 and 1.0 g/kg, i.g., for 10 days) possessed antiviral
activity against duck hepatitis B virus, and it can delay pathological changes [125]. In addition, five
compounds were isolated from the fruits of X. strumarium, and their antiviral abilities were also
evaluated. The results indicated that norxanthantolide F, 2-desoxy-6-epi-parthemollin, xanthatin,
threo-guaiacylglycerol-8′-vanillic acid ether and caffeic acid ethyl ester exhibited notable activity
against influenza A virus with IC50 values of 6.4, 8.6, 8.4, 8.4 and 3.7 µM, respectively by a cytopathic
effect (CPE) inhibition method [13].

5.10. Other Pharmacological Effects

Apart from the pharmacological effects displayed above, X. strumarium also possesses some
other activities. In 2016, the CXT (10, 20, and 40 mg/kg, i.p.) isolated from fruits of X. strumarium
showed significant anti-septic activity in animal models of Cecal ligation and puncture (CLP) operation.
Meanwhile, the CXT can increase survival rates of septic mice induced by CLP and decrease TNF-α and
IL-6 levels induced by LPS in serum of mice [126]. After treatment with WEX (570 and 1140 mg/kg p.o.,
for 6 weeks), the glucose tolerance and insulin sensitivity improved, meanwhile, lipogenesis increases
and lipid oxidation decreased in the liver of high-fat diet rats [127]. In 2014, Lin et al. demonstrated that
the EEX (75 and 300 mg/kg, p.o.) can significantly inhibit paw swelling and arthritic score and increase
body weight loss and decrease the thymus index in animal model of rheumatoid arthritis induced
by Complete Freund’s Adjuvant (CFA) [128]. Moreover, the overproduction of TNF-α and IL-1β was
notably suppressed in the serum of all EEX-treated rats. The anti-pyretic activity of MEXW (200 and
400 mg/kg, p.o.) was estimated on yeast induced hyperpyrexia, and it showed significant reduction in
elevated body temperature [129]. Using Maximal Electroshock (MES) and Pentylenetetrazole (PTZ)
induced seizures models, the anticonvulsant activity of PEEXW was tested, and results showed that
PEEXW can reduce the mean duration of extensor phase and delay onset of myoclonic spasm and
clonic convulsion of treated groups at doses of 250 and 500 mg/kg [130]. In 2016, Panigrah et al.
explored the antiurolithiatic effect of HEEXB, and showed that HEEXB can restore the impairment
induced by ethylene glycol including hyperoxaluria, crystalluria, hypocalciuria, polyurea, raised
serum urea, creatinine, erythrocytic lipid peroxidise and nitric oxide, kidney calcium content as well
as crystal deposition. The mechanism may be related to inhibition of various pathways involved in
renal calcium oxalate formation, antioxidant property and down regulation of matrix glycoprotein,
osteopontin (OPN) [131]. A report in 2012 indicated the antiulcer effect of EEXL in pylorus ligation
induced gastric ulcers, and its gastro-protective mechanism may be due to DNA repair, free radical
scavenging and down regulation of oxidativenitrosative stress along with cytokines [132]. In an in vivo
study, with the CXT treatment (10, 20 and 40 mg/kg, p.o.), the cardiac hypertrophy reduced and
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fractional shortening (FS), ejection fraction (EF), cardiac output (CO) and heart rate (HR) reversed via
suppressing the expression of pro-inflammatory cytokines and the NF-κB signaling pathway [133].

5.11. Summary of Pharmacologic Effects

In conclusion, X. strumarium has a wide range of pharmacological effects including anti-AR
effects, anti-tumor effects, anti-inflammatory and analgesic effects, insecticide and antiparasitic effects,
antioxidant effects, antibacterial and antifungal effects, antidiabetic effects, antilipidemic effects,
and antiviral effects. (Table 3). It is noteworthy that the research areas of modern pharmacy primarily
focus on chemical components and extracts, which indicated the promising potential of X. strumarium
for treating disease. Nevertheless, the chemical constituents and corresponding pharmacological effects
of X. strumarium are not systematically sorted out and analyzed. Therefore, it is necessary to investigate
the pharmacological activity, structure-activity relationship and mechanism of X. strumarium both
in vitro and in vivo experiments in the future.

Table 3. Pharmacological effects of X. strumarium.

Effects Detail Extracts/Compounds Concentration/
Dose

In Vivo/
In vitro Reference

Anti-AR effects

Inhibiting C 48/80-induced systemic
anaphylaxis WEX Mice, 0.01–1 g/kg

(p.o.) in vivo [61,62]

Inhibiting histamine and TNF-α released
from RPMC WEX RPMC, 0.01–1

mg/mL in vitro [63]

Modulating the HMC-1- and
PBMNC-mediated inflammatory and

immunological reactions
WEX HMC-1, PBMNC,

0.25–1 mg/mL in vitro [63]

Inhibiting histamine and cAMP released
from RPMC MEX RPMC, 20–500

µg/mL in vitro [64]

Ameliorate the nasal symptoms of OVA
induced AR rats via anti-allergic;

down-regulating IgE; anti-inflammatory and
analgesic properties

CXT Rats, 5, 10, 20
mg/kg (p.o.) in vivo [65]

Anti-tumor
effects

Lung cancer

Growth inhibition by suppression of STAT3,
GSK3β and β-catenin xanthatin Cell lines of A549,

H1975, H1299,
H1650 & HCC827,

1–40 µM

in vitro [66–68]
Triggering Chk1-mediated DNA damage and

destabilization of Cdc25C via lysosomal
degradation

xanthatin

Cytotoxic effects on A549 cell

8-epi-xanthatin IC50 = 1.1 µg/mL in vitro [17]
8-epi-xanthatin epoxide IC50 = 3.0 µM in vitro [69]

xanthatin IC50 = 1.3 µg/mL in vitro [17]
8-epi-xanthatin-1α,

5α-epoxide IC50 = 9.5 µM in vitro [25]

1β-hydroxyl-5α-
chloro-8-epi-xanthatin IC50 = 20.7 µM in vitro [25]

EEXA IC50 = 52.2 µg/mL in vitro [70]

Breast cancer

Cytotoxic effects on MDA-MB-231 cells xanthatin IC50 = 13.9 µg/mL in vitro [71]
Cytotoxic effects on MDA-MB-231 cells xanthinosin IC50 = 4.8 µg/mL in vitro [71]

Inhibiting cell growth via inducing caspase
independent cell death xanthatin MDA-MB-231 cells,

5–25 µM in vitro [72]
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Table 3. Cont.

Effects Detail Extracts/Compounds Concentration/
Dose

In Vivo/
In vitro Reference

Anti-tumor
effects

Up-regulating GADD45 γ tumor suppressor
gene; inducing the prolonged expression of

c-Fos via N-acetyl-L-cysteine-sensitive
mechanism

xanthatin MDA-MB-231 cells,
2.5–10 µM in vitro [73,74]

Cytotoxic effects on MFC7 cells EEXA IC50 = 70.6 µg/mL in vitro [70]

Cervical cancer

Altering the antioxidant levels WEX Hela cells, 12.5–50
µg/mL in vitro [75]

Promoting apoptosis via inhibiting
thioredoxin reductase and eliciting oxidative

stress
xanthatin Hela cells, 5–20 µM in vitro [76]

Colon cancer

Cytotoxic effects on HCT-15 cells xanthatin ED50 = 1.1 µg/mL in vitro [17]
8-epi-xanthatin ED50 = 0.1 µg/mL in vitro [17]

Cytotoxic effects on WiDr cells xanthatin IC50 = 6.15 µg/mL in vitro [71]

xanthinosin IC50 = 2.65 µg/mL in vitro [71]

Cytotoxic effects on BGC-823 cells

eremophil-1(10),11(13)-
dien-12,8β-olide IC50 = 13.22 µM in vitro [77]

8-epi-xanthatin-1β,5β-
epoxide IC50 = 2.43 µM in vitro [77]

tomentosin IC50 = 4.54 µM in vitro [77]

Cytotoxic effects on KE-97 cells

eremophil-1(10),11(13)-
dien-12,8β-olide IC50 = 4.41 µM in vitro [77]

8-epi-xanthatin-1β,5β-
epoxide IC50 = 1.44 µM in vitro [77]

tomentosin IC50 = 3.47 µM in vitro [77]
Inducing G2/M cell cycle arrest and

apoptosis xanthatin MKN-45 Cells,
3.9–18.6 µM in vitro [75]

Potentiating both extrinsic and intrinsic
TRAIL-mediated apoptosis pathways and

also decreased the level of cell survival
protein Bcl-2

xanthinosin AGS cells, 8 µM in vitro [18]
lasidiol

p-methoxybenzoate AGS cells, 16 µM in vitro [18]

Cytotoxic effects on CT26 cells EEXA IC50 = 58.9 µg/mL in vitro [70]
CFEEXA IC50 = 25.3 µg/mL in vitro [70]

Cytotoxic effects on AGS cells fructusnoid C IC50 = 7.6 µM in vitro [79]

Liver cancer

Cytotoxic effects on SNU387 cells 1β-hydroxyl-5α-chloro-
8-epi-xanthatin IC50 =5.1 µM in vitro [25]

Cytotoxic effects on HepG2 cells MEX LC50 = 112.9
µg/mL in vitro [80]

EAFMEX LC50 = 68.739
µg/mL in vitro [80]

Induction of apoptosis via inhibiting
thioredoxin reductase and eliciting oxidative

stress
xanthatin HepG2 cells, 5–40

µM in vitro [76]

Meningioma

Cytotoxic effects on SK-MEL-2 cells xanthatin ED50 = 0.5 µg/mL in vitro [17]
8-epi-xanthatin ED50 = 0.2 µg/mL in vitro [17]

Inhibiting melanin synthesis through
downregulation of tyrosinase via GSK3β

phosphorylation
EEXS Mel-Ab cells, 1–50

µg/mL in vitro [81]

Inhibiting cell proliferation associated with
activation of Wnt/β-catenin pathway and

inhibition of angiogenesis

xanthatin
B16-F10 cells,

2.5–40µM in vitro [82]

Mice, 0.1–0.4
mg/10 g(i.p.) in vivo [82]

Anti-tumor
effects

Leukemia
Cytotoxic effects on P-388 cells DFEEXA IC50 = 1.64 µg/mL in vitro [83]

Cytotoxic effects on HL-60 cells xanthatin IC50 = 52.50
µg/mL in vitro [84]

Cytotoxic effects on Jurkat cells MEX LC50 = 50.18
µg/mL in vitro [80]

EAFMEX LC50 = 48.73
µg/mL in vitro [80]

Other tumors

Cytotoxic effects on XF-498 cells xanthatin ED50 = 1.7 µg/mL in vitro [17]

8-epi-xanthatin ED50 = 1.3 µg/mL in vitro [17]
Cytotoxic effects on S180 cells WEX Mice, 5–20 g/kg in vivo [85]

Cytotoxic effects on HEP-2 cells CEXR 12.5–100 µg/mL in vitro [86]
MEXR 12.5–100 µg/mL in vitro [86]
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Table 3. Cont.

Effects Detail Extracts/Compounds Concentration/
Dose

In Vivo/
In vitro Reference

Anti-inflammatory
and analgesic

effects

Anti-inflammatory

Inhibitting LPS-stimulated inflammatory WEX 10, 100 and 1000
µg/mL in vitro [87]

Inhibitting LPS-stimulated inflammatory

MEX 30, 60 and 90
mg/mL in vitro [88]

xanthatin and
xanthinosin

IC50 = 0.47 and
11.2 µM in vitro [89]

MEXL IC50 = 87 µg/mL in vitro [90]
MEXR 50–400 µg/mL in vitro [91]

WEX 0.5, 1 and 2
mg/mL in vitro [92]

MEX 0–300 µg/mL in vitro [93]
MEXA 0–300 µg/mL in vitro [94]

xanthiumnolic E IC50 = 8.73 µM. in vitro [26]

Inhibiting carrageenan induced hind paw
edema

MEX 100, 200 mg/kg/d
(p.o.) in vivo [88]

WEX 0.1, 0.5 and 1.0
g/kg, (p.o.) in vitro [95]

MEXL
100, 200 and 400

mg/kg body
weight.

in vivo [90]

Inhibiting croton-oil-induced ear edema NFEEX Mice, 0.5, 0.75 and
1.0 mg/ear in vivo [96]

Inhibiting both PGE 2 synthesis and
5-lipoxygenase activity xanthatin 100 and 97 mg/mL,

respectively in vitro [84]

Inhibiting production of TARC/CCL17
and MDC/CCL22 induced by

TNF-α/IFN-γ
EEX 10 µg/mL in vitro [97]

Analgesic effect

Ameliorating HCl/EtOH-induced
gastritis lesions MEXA 50 and 200 mg/kg

(p.o.) in vivo [94]

Analgesic effect on acetic acid-induced
abdominal constriction test and a hot

plate test
MEX 100, 200 mg/kg/d

(p.o.) in vivo [88]

Reducing the number of writhings
induced by acetic acid NFEEX

Mice, 100,200 and
400 mg/kg body

wt.
in vivo [96]

Analgesic effect on writhing and formalin
tests WXF 0.1, 0.5 and 1.0

g/kg, (p.o.) in vivo [95]

Analgesic effect on hot plate test, acetic
acid induced writhing test and formalin

test
EEX 250 and 500 mg/kg

body weight in vivo [98]

Insecticide and
antiparasitic

effects

Antiplasmodial activity against T. evansi EEXL
5, 50, 500 and 1000

µg/mL in vitro [99]

100, 300 and 1000
mg/kg (i.p.) in vivo [99]

Insecticidal effects against T. b. brucei xanthatin IC50 = 2.63 µg/mL in vitro [84]

Anti-insect effects towards P. viteana MEX LC50 = 11.02
(w/w) in vitro [100]

Insecticide and
antiparasitic

effects

Antiplasmodial activity against P. berghei EEXL IC50 = 4 µg/mL in vitro [101]
Insecticidal properties against C.

chinensis WEXL 1%, 2% and 4%
concentration in vitro [102]

Anti-nematode activity against
Meloidogyne javanica EEX 3%, 6% and 12%

concentration in vitro [103]

Insecticidal effects against A. caspius, C.
pipiens MEX

LC50 = 531.07 and
502.32 µg/mL,

respectively
in vitro [80]
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Table 3. Cont.

Effects Detail Extracts/Compounds Concentration/
Dose

In Vivo/
In vitro Reference

Antioxidant effects

Scavenging DPPH

CEXR and MEXR LC50 = 10.28 and
40.40 µg/mL in vitro [86]

WEX 0.05–0.2 mg/mL in vitro [95]

EEXR and CEXR IC50 = 29.81 and
24.85 µg/mL in vitro [106]

EEXL IC50 = 85 µg/mL in vitro [107]

Scavenging DPPH

hexadecanoic acid;
α- amyrin;

14-methyl-12,
13-dehydro-sitosterol-heptadeconate

IC50 = 106.4, 64.16
and 76.18 µg/mL in vitro [32]

Scavenging DPPH EOX 138.87 µg/mL in vitro [108]
MEX Not mentioned in vitro [28]

Scavenging nitric oxide EEXR and CEXR IC50 = 395.20 and
415.80 µg/mL in vitro [106]

EEXL IC50 = 72 µg/mL in vitro [107]

Scavenging hydrogen peroxide EEXR and CEXR IC50 = 10.18 and
9.23 µg/mL in vitro [106]

EEXL IC50 = 62 µg/mL in vitro [107]
Increasing of superoxide dismutase,
glutathione peroxidase, glutathione

reductase and catalase contents
PEEXW

250 and 500 mg/kg
body weight (p.o

for 20 days)
in vivo [104]

Liposome protection WEX 0.05–0.2 mg/mL in vitro [95]
Scavenging ABTS WEX 0.05–0.2 mg/mL in vitro [95]
Reducing activity WEX 0.05–0.2 mg/mL in vitro [95]

Increasing of SOD, CAT, GSH and GPx
contents MEXS 100 and 200 mg/kg

(p.o., for 10 days) in vivo [105]

Superoxide anion EEXR and CEXR IC50 = 495.30 and
418.30 µg/mL in vitro [106]

Scavenging hydroxyl radicals

hexadecanoic acid;
α- amyrin;

14-methyl-12,
13-dehydro-sitosterol-heptadeconate

IC50 = 127.4, 83.96
and 84.4 µg/mL in vitro [32]

FRAP antioxidant activity MEX Not mentioned in vitro [28]

Antibacterial and
antifungal effects

Antibacterial
Inhibitory effects against V. cholerae WEXFT Not mentioned in vitro [109]

Inhibitory effects against S. epidermidis, B.
cereus, K. pneumoniae, P. aeruginosa and S.

fyphi
xanthatin

MIC = 31.3, 62.5,
31.3, 125 and 125

µg/mL
in vitro [110]

Inhibitory effects against K. pneumoniae, P.
vulgaris, P. Aeruginosa, P. putida, S.

typhimurium, B. cereus, B. subtilis, S.
epidermidis

MEXL 500 and 100
mg/mL in vitro [111]

Inhibitory effects against E. coli β-sitosterol and
β-daucosterol

MIC = 0.17 and
0.35 µg/mL in vitro [112]

Inhibitory effects towards K. pneumonia, P.
mirabilis, E. coli, B. subtilis, E. faecalis, S.

aureus

MEXL 50, 100, 150, 200
and 250 mg/mL,

respectively

in vitro [113]WEXL

Antibacterial and
antifungal effects

Inhibitory effects against S. aureus, B.
subtilis, K. pneumoniae and P. aeruginosa EOXL

MIC = 0.5, 1.3, 4.8
and 20.5 µg/mL,

respectively
in vitro [114]

Inhibitory effects against Shiga
toxin-producing E. coli EOXL 30, 60 and 120

mg/mL in vitro [115]

Inhibitory effects against S. aureus and E.
coli WEX

MIC = 31.25 and
7.81 mg/mL,
respectively

in vitro [116]

Inhibitory effects against R. toxicus, S.
aureus and P. S. syringae EOX

MIC = 25, 50 and
50 µg/mL,

respectively
in vitro [108]

Antifungal

Inhibitory effects against P. drechsleri deacetylxanthumin MIC = 12.5 µg/mL in vitro [117]
Inhibitory effects against P. infestans MEX MIC = 2.0% w/v in vitro [118]

Inhibitory effects against C. albicans and A.
niger EOXL

MIC = 55.2 and
34.3 µg/mL,
respectively

in vitro [114]

Inhibitory effects against P. oryzae and F.
oxysporum EOX

MIC = 12.5 and 50
µg/mL,

respectively
in vitro [108]

Inhibitory effects against A. niger, A.
flavus, F. oxysporum, F. solani, A. alternata

and P. digitatum
EOXL

MIC = 8 µg/mL
and MFC = 8
µg/mL

in vitro [119]
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Table 3. Cont.

Effects Detail Extracts/Compounds Concentration/
Dose

In Vivo/
In vitro Reference

Antidiabetic
effects

Exhibiting potent hypoglycemic activity WEX 15 and 30 mg/kg
(i.p.) in vivo [120]

Decreasing the plasma glucose in diabetic
rats caffeic acid 0.5–3 mg/kg (i.v.) in vivo [121]

Decreasing the blood glucose and HbA1C
level and increase the level of insulin MEXS 100 and 200 mg/kg

(p.o., for 30 days) in vivo [105]

Inhibitory effect against rAR and rhAR methyl-3,5-di-O-
caffeoylquinate

IC50 = 0.30 and 0.67
µM, respectively in vivo [47]

Inhibitory effect against α-glucosidase CFMEXL IC50 = 72 µg/mL in vitro [122]

Inhibitory effect against α-glucosidase MEX IC50 = 15.25
µg/mL in vivo [28]

Antilipidemic
effects

Decreasing plasma cholesterol,
triglyceride, LDL, and VLDL and

increasing plasma HDL levels
CEXR and EEXR 200 and 400 mg/kg

(p.o.) in vivo [106]

Improving lipid homeostasis WEX
570 and 1140

mg/kg (p.o., for 6
weeks)

in vivo [123]

Decreasing blood glucose, TC, TG, LDLC
levels and increasing HDLC levels. WEX 3.7 and 11.11 g/kg

(p.o., for 4 weeks) in vivo [124]

Antiviral activity

Antiviral activity against duck hepatitis B
virus WEX 0.01, 0.1 and 1 g/kg

(i.g., for 10 days) in vivo [125]

Antiviral activity against Influenza A
virus

norxanthantolide F IC50 = 6.4 µM in vitro [13]
2-desoxy-6-epi-
parthemollin IC50 = 8.6 µM in vitro [13]

xanthatin IC50 = 8.4 µM in vitro [13]

threo-guaiacylglycerol-
8′-vanillic acid ether IC50 = 8.4 µM in vitro [13]

caffeic acid ethyl ester IC50 = 3.7 µM in vitro [13]

Other
pharmacological

effects

Anti-septic activity CXT 10, 20 and 40
mg/kg(i.p.) in vivo [126]

Attenuating hepatic steatosis WEX
570 and 1140

mg/kg (p.o., for 6
weeks)

in vivo [127]

Anti-arthritic effect EEX 75 and 300 mg/kg
(p.o.) in vivo [128]

Other
pharmacological

effects

Anti-pyretic activity MEXW 200 and 400 mg/kg
(p.o.) in vivo [129]

Anti-epileptic activity PEEXW 250 and 500 mg/kg
(p.o., for 20 days) in vivo [130]

Antiurolithiatic effect HEEXB 500 mg/kg (p.o.) in vivo [131]
Antiulcer effect EEXL 200 and 400 mg/kg in vivo [132]

Cardioprotective effect CXT 10, 20 and 40
mg/kg (p.o.) in vivo [133]

6. Pharmacokinetics

Up to now, there are few reports on the pharmacokinetics of the extracts or monomers of
X. strumarium. Previous pharmacokinetics studies of X. strumarium mainly focused on its active
compounds including xanthatin, cryptochlorogenic acid, and toxic ingredient such as atractyloside.
In 2014, a sensitive, specific and rapid ultra-high performance liquid chromatography (UHPLC) tandem
mass spectrometry (UHPLC-MS/MS) method was applied to research pharmacokinetic properties of
xanthatin in rat plasma. After intravenous injection of xanthatin at a dose of 2.4 mg/200 g, 4.8 mg/200
g and 9.6 mg/200 g, respectively. The t1/2 of three concentrations were found to be 108.58 ± 32.82,
123.50 ± 66.69, and 181.71 ± 148.26 min, respectively; and the peak plasma concentration (Cmax)
values were 418.72 ± 137.51, 904.89 ± 193.53, and 1773.46 ± 1733.10 ng/mL, respectively. As the
dose increased, the AUC0–t and AUC0–∞ were gradually enlarged, and the AUC0–t of three doses
were 14,340.20 ± 7122.41, 32,149.52 ± 11,259.44, and 49,524.28 ± 28,520.88 n gh/mL, respectively;
furthermore, the AUC0–∞ of three levels are 15,538.97 ± 7733.12, 36,431.22 ± 14,498.16, and 61,885.45
± 30,704.80 n gh/mL, respectively. In addition, the total body CL were 0.13 ± 0.14, 0.17 ± 0.11,
0.22 ± 0.13 mL/min and Vd were 46.85 ± 20.19, 159.99 ± 30.49, and 208.22 ± 85.97 mL of three
concentrations [134].
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After intragastric administration of the atractyloside at doses of 11.4, 22.8, and 45.6 mg/kg,
the peak time (Tmax) values were determined to be 0.38, 1.85, 0.27 h, respectively, the t1/2 were
13.64, 9.62, 8.61 h, respectively, and the peak plasma concentration (Cmax) values were 41.98, 24.61,
263.40 µg/mL, respectively. In addition, the area under the concentration-time curve (AUC) was
also determined, and the AUC0–t was 132.70, 222.90, and 345.20 µ gh/L. The results showed that the
toxicokinetic behavior of atractyloside in rats was non-linear within the experimental dose range [135].

Furthermore, Shen et al. studied the pharmacokinetics of neochlorogenic acid and cryptochlorogenic
acid in X. strumarium and its processed products after intragastric administration in rats. The results
showed that the Tmax of neochlorogenic acid and cryptochlorogenic acid in processed fruits of X.
strumarium were 2.94 ± 0.18, and 3.00 ± 0.46 h, respectively; the t1/2 of neochlorogenic acid and
cryptochlorogenic acid in processed fruits of X. strumarium were 2.35 ± 1.11, 1.97 ± 0.66 h. Moreover,
the Tmax of neochlorogenic acid and cryptochlorogenic acid in raw fruits of X. strumarium were
3.75 ± 0.46, 2.75 ± 0.27 h, and the t1/2 of neochlorogenic acid and cryptochlorogenic acid in raw fruits
of X. strumarium were 1.70 ± 0.61, 2.12 ± 0.68 h. The neochlorogenic acid in fruits of X. strumarium,
after being processed, takes effect quickly and lasts for a long time, while the cryptochlorogenic acid
takes effect slowly and has a short action time [136].

7. Toxicity

In 1990, it was reported that X. strumarium has medium to strong allergenic effects and is
poisonous to mammals, and atractyloside and carboxyatractyloside are considered to be the major
toxic compounds [137]. X. strumarium is prudently ranked into the medium grade with less toxicity
in the Shennong Bencao Jing, a monograph of materia medica. Some other Chinese materia medicas
aslo record that X. strumarium possessed mild toxicity, such as Bencao Pinhui Jingyao, Bencao Huiyan.
Thus, it is obvious that the ancient Chinese people have had a clear understanding of the toxicity of X.
strumarium for a long time [138].

In recent years, many investigations have indicated the toxic effects and related mechanisms of
the extracts and monomers of X. strumarium (Table 4). In 2005, Li et al. found that the median lethal
concentration (LD50) value of the WEX in mice was 201.14 g/kg (i.g., crude herbs mass equal) [139].
In addition, a report in 2012 suggested that the LD50 value of the WEX in mice was 167.60 g/kg (crude
herbs mass equal, i.g.), however the LD50 value was 194.15 g/kg (i.g., crude herb mass equivalent) in
Fu’s research report [140,141]. These changes can be attributed to the toxicity of X. strumarium which
varied with the processing method, genetic characteristics and growing conditions [138]. Furthermore,
the LD50 value of the EEX in mice was 275.41 g/kg (crude herbs mass equal, i.g.), which was higher
than WEX [140]. Another study showed that the carboxyatractyloside (10–100 mg, i.v.) can induce
death in swine [142].

Recently, animal experiments and clinical studies on X. strumarium showed that hepatotoxicity is
the main toxicity. In 2011, Wang et al. demonstrated that kaurene glycosides including atractylosid
(50–200 mg/kg, i.p.) and carbxyatractyloside (50–150 mg/kg, i.p.) induced hepatotoxicity in mice by
way of its induction of oxidative stress as lipid peroxidation in liver [143]. Besides, the chief mechanism
of atractyloside poisoning is deemed to be inhibition of the mitochondrial ADP transporter [144].
Furthermore, the WFEEX and NFEEX (0.06, 0.3, 0.7 g/kg, i.g., for 28 days), which have marked
hepatotoxicity to rats, can cause pathological changes, such as enlarged hepatic cell space, karyolysis,
and inflammatory cell infiltration [145]. Moreover, it has been reported that WEX (21.0 g/kg i.g.,
for 28 days) significantly increased the content of ALT, AST in mice serum and decreased weight
loss [146]. In addition, a study in 2014 found that WEX (7.5, 15.0 and 30.0 g/kg, i.g., for 5 days) can
increased the serum ALT, AST, ALP, TBIL levels and the contents of LDL/vLDL, β-HB, glutamate,
choline, acetate, glucose in male rats [147]. Finally, in 2018, Zeng et al. indicated that the contents
of GLDH, α-GST increased and miRNA-122 decreased after administered WEX (16.7 g/kg i.g.,
for 7 days), which can be used as sensitive biomarkers for studying the regularity of hepatotoxicity of
X. strumarium [148]. Apart from hepatotoxicity, Mandal et al. studied the neurotoxicity of the MEXA
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in mice and results show that MEXA (100, 200, 300 mg/kg) can obviously depress the action of central
nervous system [149].

Table 4. Toxicities and side effects of X. strumarium.

Extracts/Compounds Animal/
Subjects LD50/Toxic Dose Range Toxic Reactions Reference

WEX mice LD50 = 201.14 g/kg (i.g., crude herb
mass equivalent) Death [139]

WEX mice LD50 = 167.60 g/kg (i.g., crude herb
mass equivalent) Death [140]

EEX mice LD50 = 275.41 g/kg (i.g., crude herb
mass equivalent) Death [140]

WEX mice LD50 = 194.15g/kg (i.g., crude herb
mass equivalent) Death [141]

carboxyatractyloside swine 10–100 mg (i.v.) Death [142]

atractyloside mice 50–200 mg/kg (i.p.) Increasing contents of ALT, AST, ALP,
MDA in mice serum [143]

carbxyatractyloside mice 50–150 mg/kg (i.p.) Increasing contents of ALT, AST, ALP,
MDA in mice serum [143]

NFEEX mice 0.06, 0.3, 0.7 g/kg (i.g., for 28 days)
Weight loss, enlarged hepatic cell
space, karyolysis and inflammatory
cell infiltration

[145]

WFEEX mice 0.06, 0.3, 0.7 g/kg (i.g., for 28 days)
Weight loss, enlarged hepatic cell
space, karyolysis, and inflammatory
cell infiltration

[145]

WEX mice 21.0 g/kg (i.g., for 28 days) Weight loss and increase of ALT, AST
in mice serum [146]

WEX mice 7.5, 15.0 and 30.0 g/kg (i.g., for 5 days)
Increasing contents of VLDL/LDL,
β-HB, glutamate, choline, acetate,
glucose in serum

[147]

WEX mice 16.7 g/kg (i.g., for 7 days) Increasing contents of GLDH, α-GST
and decreasing miRNA-122 [148]

MEXA mice 100, 200, 300 mg/kg Depressing the action of central
nervous system [149]

atractyloside rat
hepatocytes 0.01–0.05 g/L Reducing cell viability and

intracellular GSH content [150]

atractyloside,
carbxyatractyloside

L-02 cells,
BRL cells 100 µmol/L for 48 h Inhibiting cell proliferation,

improving LDH activity [147]

WEX HK-2 cells 100 µg/mL Inhibiting cell proliferation [151]
HEEXA CHO cells 25–100 µg/mL Inducing DNA damage [152]
EFEEX MIHA cells IC50 = 231.1 µg/ml Decreasing viability of cell [153]
WEX zebrafish 15 µg/mL Decreasing hatch rate [154]

Many other studies have demonstrated that different medicinal parts and extraction parts are also
cytotoxic to normal cells including hepatocytes, nephrocytes, ovary cells, etc. The cell inhibition ability
of atractyloside on rat hepatocytes was investigated, and the results demonstrated that atractyloside
(0.01–0.05 g/L) induced dose-dependent hepatotoxicity according to obvious decreases of cell viability,
intracellular gluta-thione (GSH) content and albumin secretion [150]. Furthermore, atractyloside
and carbxyatractyloside was reported to improve LDH activity and inhibit cell proliferation at the
concentration of 100 µmol/L [147]. In 2013, Yu et al. indicated that WEX at concentrations 100 µg/mL
can inhibit growth of HK-2 cells [151]. Moreover, HEXA (25–100 µg/mL) also causes in vitro DNA
damage at cytotoxic concentrations through sister chromatid exchanges, chromosome aberrations,
and comet assay, meanwhile, it also shows significant reduction in CHO cell viability [152]. In 2016,
Su et al. compared the cytotoxicities of the components with different polarities, and study indicated
that EAFEEX (IC50 = 231.1 µg/mL) was the most toxic part [153].

In recent years, few investigations have focused on the toxic effects of X. strumarium on
reproduction. In 2014, it was reported that the WEX possessed reproductive toxicity to zebrafish
embryos, including decreases in hatch rate, and increases in mortality rate, heart rate and swimming
speed [154].

8. Future Perspectives and Conclusions

In summary, X. strumarium, which possesses anti-AR effects, anti-inflammatory and analgesic
effects and anti-tumor effects, has been widely applied to clinical practice in many countries. In the
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meantime, many modern studies on X. strumarium were also carried out, and its pharmacological
activities and chemical compositions have been preliminarily investigated. Nevertheless, how to find
out the mechanism of pharmacological activities and its related compounds, develop clinical efficacy
of X. strumarium and ensure medication safety are still extremely crucial now.

First, the chemical compounds and pharmacological activity studies of X. strumarium mainly
focused on its fruits, but there are few investigations on the roots, leaves, stems and other parts of X.
strumarium. In order to enlarge the source domain of the active compounds and maximize the plant
utilization rate, it is very critical for researchers to conduct a comprehensive evaluation of other parts
of this plant. Second, the fruits of X. strumarium are officially recognized as Cang-Er-Zi in the Chinese
Pharmacopoeia (2015 Edition), but many other Xanthium species such as X. mongolicum Kitag, Xanthium
spinosum L. and Xanthium canadens Mill were used as X. strumarium alternatives in many areas of China.
Therefore, the physical properties, chemical compositions and pharmacological activities should be
used to identify and differentiate the different varieties, and it is important to guarantee the safety
and efficacy with these herbs to ensure its suitability for clinical use. Third, in China, X. strumarium
is commonly used after processing in clinical medicine, but the mechanism of its detoxification
still needs further study. The degree of processing depends mainly on the subjective experience
of people, and it is difficult to ensure the consistency of the quality of Chinese Medicine. Thus,
the intelligent sensory technology combined with artificial intelligence technology, such as machine
vision, electronic nose and electronic tongue can be applied to standardize processing methods. Fourth,
on the basis of current research progress in vivo and in vitro, many active compounds of X. strumarium
have been found and identified, which are probably developed into effective drugs. Among them,
xanthatin possessed strong anticancer activity against many kinds of tumors, which means that it
has the potential to become an anticancer drug in the future. However, systematic investigations
on pharmacokinetics, target-organ toxicity and clinical research of xanthatin will help to develop its
bioactive constituents as novel drugs. Fifth, traditional Chinese medicine has the characteristics of
multi-component, multi-target and multi-channel, and a single component cannot completely reveal its
pharmacological activity. Recently, quality marker (Q-Markers) technologies have started to contribute
to scientifically interpreting the correlation degree of effectiveness-material basis-quality control of
significant components in traditional Chinese Medicine. For X. strumarium, Q-Markers technologies
are able to clarify its possible action, toxicity mechanism and symbolic components, and it is helpful to
establish the whole quality control and quality traceability system of X. strumarium.
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Abbreviations

WEX water extracts of fruit of Xanthium strumarium
MEX methanol extracts of fruits of X. strumarium
EEXA ethanol extracts of aerial parts of X. strumarium
EEXS ethanol extracts of stems of X. strumarium
WFEEX water fraction of ethanol extracts of fruits of X. strumarium
NFEEX n-butanol fraction of ethanol extracts of fruits of X. strumarium
MEXA methanol extracts of aerial parts of X. strumarium
HEXA hydroalcoholic extracts of aerial parts of X. strumarium
EAFEEX ethylacetate fraction of ethanol extracts of fruits of X. strumarium
CFEEXA chloroform fraction of ethanol extracts of aerial parts of X. strumarium
CEXR chloroform extracts of roots of X. strumarium



Molecules 2019, 24, 359 33 of 40

MEXR methanol extracts of roots of X. strumarium
EAFMEX ethylacetate fraction of methanol extracts of fruits of X. strumarium
DFEEXA dichloromethane fraction of ethanol extracts of aerial parts of X. strumarium
EEX ethanol extracts of fruits of X. strumarium
MEXL methanol extracts of leaves of X. strumarium
WEXL water extracts of leaveas of X. strumarium
EEXL ethanol extracts of leaves of X. strumarium
EEXL ethanol extracts of leaves of X. strumarium
PEEXW petroleum ether extracts of whole plant of X. strumarium
MEXS methanol extracts of stems of X. strumarium
EEXR ethanol extracts of roots of X. strumarium
EOX essential oil of fruits of Xanthium strumarium
EOXL essential oil of leaves of Xanthium strumarium
WEXFT water extract of flowering twigs of Xanthium strumarium
CFMEXL chloroform fraction of methanol extracts of leaves of X. strumarium
MEXW methanol extracts of whole plant of X. strumarium
HEEXB hydro-ethanol extracts of burs of X. strumarium
HEEXA hydro-ethanol extracts of aerial parts of X. strumarium
EFEEX ethylacetate fraction of ethanol extracts of X. strumarium
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