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Abstract

Microarray studies with human subjects often have limited sample sizes which hampers the ability to detect reliable
biomarkers associated with disease and motivates the need to aggregate data across studies. However, human gene
expression measurements may be influenced by many non-random factors such as genetics, sample preparations, and
tissue heterogeneity. These factors can contribute to a lack of agreement among related studies, limiting the utility of their
aggregation. We show that it is feasible to carry out an automatic correction of individual datasets to reduce the effect of
such ‘latent variables’ (without prior knowledge of the variables) in such a way that datasets addressing the same condition
show better agreement once each is corrected. We build our approach on the method of surrogate variable analysis but we
demonstrate that the original algorithm is unsuitable for the analysis of human tissue samples that are mixtures of different
cell types. We propose a modification to SVA that is crucial to obtaining the improvement in agreement that we observe.
We develop our method on a compendium of multiple sclerosis data and verify it on an independent compendium of
Parkinson’s disease datasets. In both cases, we show that our method is able to improve agreement across varying study
designs, platforms, and tissues. This approach has the potential for wide applicability to any field where lack of inter-study
agreement has been a concern.
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Introduction

Microarray based expression profiling is widely used to

investigate molecular changes associated with disease states and

has the potential to elucidate clinically useful biomarkers that can

be used for diagnosis, monitoring or personalized treatment. Since

studies with human subjects often have limited size, meta-analysis

methods that seek to improve the detection of differentially

expressed genes through aggregation have received considerable

attention. The varying approaches include explicit parametric

models of error in gene expression measurements [1–4], heuristic

aggregation of top differentially expressed genes [5],and using

literature derived knowledge to find common network based

patterns [6–8]. However, a key question that is typically not

addressed in these methods is how to deal with studies that

produce discordant results despite addressing similar biological

questions. A lack of inter-study concordance is a common finding

in human datasets [8–10], and it is well established that combining

disagreeing or outlier studies can reduce the statistical power as

well as lead to erroneous conclusions [11–14]. This becomes a

problem of increasing concern as meta-analysis efforts are scaled

up via searchable databases that allow biologists and clinicians to

aggregate differentially expressed genes across related studies

without carrying out explicit statistical analysis [15,16].

Multiple sclerosis (MS) is a relatively common autoimmune

disease that provides an informative case study in biomarker

discovery and validation. Heterogeneity of clinical subtypes,

episodes of relapse and remission, and varying response to

treatment make the progression of the disease unpredictable and

difficult to evaluate [17]. For that reason, there is considerable

interest in the establishment of reliable molecular biomarkers that

can be used to diagnose and monitor the disease. To improve our

understanding of the molecular mechanisms involved, a number of

microarray studies comparing various clinical groups have been

undertaken. While many of the studies produce intriguing results

on the nature of immune dysregulation [18–27], most findings

have not been confirmed in independent studies, and MS

biomarker discovery has been hampered by this lack of

reproducibility. For example, the report that IL17F serum

concentration was predictive of a lack of response to interferon

therapy [28] was not confirmed by a subsequent study [29]. Meta-

analytic approaches that combine data from different studies have

the potential to elucidate biomarkers that are more likely to

capture the underlying disease biology rather than differences

limited to the specific patient cohort.

In this study, we demonstrate a novel statistically based

approach to meta-analysis using a compendium of publicly

available studies. Rather than simply aggregating the datasets for

greater statistical power, we propose a method that improves inter-

study agreement by applying an automated statistical correction to

datasets on an individual basis. Our approach is based on the

method of Surrogate Variable Analysis (SVA) [30] which uses the

correlation structure of each dataset to estimate and correct for
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latent sources of variation. However, we demonstrate that the

correlation structure of human disease studies may deviate

considerably from the assumptions underlying SVA and propose

an alternative approach that is essential to producing the improved

agreement we observe. We demonstrate that the modified method

improves agreement in our MS compendium and we verify this

effect in an independent set of Parkinson’s disease datasets. While

it is often possible to extract more meaningful information from

individual datasets by applying ad hoc analysis methods, we

demonstrate that latent variable correction is a generalizable

approach that can be applied in bulk to public datasets to achieve

improved results.

Results

The fundamental underlying assumption of MS biomarker

studies is that there is a disease associated neuroinflammatory

signature that can be observed in gene expression measurements.

In principle, meta-analysis should be able to elucidate genes that

may not be the top differentially expressed candidates in any one

study, but that are nevertheless reproducibly changed across

multiple expression profiles and are thus more likely to be related

to the underlying disease process.

The current understanding of disease pathology is that it

involves the infiltration of CNS tissue by blood derived leukocytes,

and existing therapies target either immune cell activation or

blood-brain permeability [31], suggesting that aberrant regulation

of these processes should be detectable at the molecular level. In

order to evaluate whether a common molecular signature can be

observed in gene expression measurements of multiple sclerosis

patients, we compiled a compendium of publicly available multiple

sclerosis datasets (Table 1). While the complexity of this disease has

led to studies of varying designs, all the studies in our compendium

aim to evaluate patient groups with different multiple sclerosis

phenotypes, and molecular changes that segregate these groups

should in principle reflect the underlying neuroinflammatory

process.

Multiple sclerosis studies have low agreement
In order to accommodate studies with multi-group designs, we

employ analysis of variance for determining differential expression,

a technique that has been previously used in a multi-group meta

analysis setting [32]. We expect that the number of reproducibly

altered genes to be small and in order to quantify the extent of

non-random overlap in differential expression ranking within our

compendium we follow the ‘‘concordance at the top’’ approach

proposed in [33]. We select the top 5% of the genes in each dataset

and score the overlap between all pairs of datasets using a

hypergeometric test.

The hypergeometric test does not produce a true p-value in this

case, as genes are not independent of one another, and not all

genes have the same chance of being called differentially

expressed. For that reason, we generate an empirical null

distribution specific to each pair of datasets by permuting group

labels in the two datasets and computing consensus tests from the

resulting randomized data (see Methods for details). The resulting

null distributions are then used to compute empirical p-values for

the hypergeometric score. The results of this analysis are displayed

in Figure 1.

We observe a general lack of consensus, as most datasets pairs

have overlap no greater than what would be expected from

randomized data. Given the diversity of our compendium, we

expect that not all study designs should produce agreement, even

in principle, and we expect outliers as well as groups of studies with

similar designs that would manifest as clusters of high consensus.

However, we do not observe such clusters. In fact, the overall

distribution of empirical p-values is not significantly different from

uniform (KS test p-value = 0.1215). The low overlap of multiple

sclerosis microarray studies has been noted previously [34], and

there are several possible explanations for this finding. There could

in fact be no underlying biological signature that is common to the

various patient cohorts and can be detected in the gene expression

profile of immune cells. The other possibility is that the studies are

simply too noisy relative to the sample size to detect any such

signature.

Although a simple power calculation would dictate that a large

sample size is required to detect what we expect are small

transcriptional alterations in measurements with high variance,

much of this variance may not be due to noisy measurements per

se but may result from variation in genetic background, sample

preparation, and other demographic and technical variables.

Variation that is due to such variables can be largely corrected for

by their explicit inclusion in downstream analysis. For that reason,

most human studies will report demographic information such as

gender and ethnicity. However, other biological variables, such as

Table 1. Datasets included in our MS compendium.

Dataset Platform Factors Tissue

E-MTAB-358 Illumina(HT-12 V3.0) Disease[RRMS(12), PPMS(14), SPMS(16), Control(30)] PBMC

E-MTAB-69 U133-Plus2 Disease[MSrelapse(12), MSremission(14), non-inflamatory(18)] CSF, PBMC

GSE14895 U133A, U133A-2 Disease[CIS(13), Control(4)] PBMC

GSE15245 U133A, U133A-2 Disease[CIS(18), MS(11)] PBMC

GSE16461 U133-Plus2 Disease[MS(8), Control(8)], Cell[CD4,CD8] T cells

GSE17048 Illumina(HT-12 V3.0) Disease[RRMS(36), PPMS(43), SPMS(20), Control(45)] Whole blood

GSE17449 U133A-2 Disease[MS(17), Control(11)], Pregnancy[Yes,No] PBMC

GSE19285 U133-A,B Prognosis[good(17), poor(7)] PBMC

GSE23832 HuGene-1.0st Disease[MS(8), control(4)] PBMC

GSE24427 U133-A,B Prognosis[good(18), poor(7)] PBMC

GSE26484 U133-Plus2 Disease[MS(6),control(4)], Sem4A[low,high] PBMC

GSE26927 Illumina(Ref-8 v2.0) Disease[MS(10), other(10)] Brain

doi:10.1371/journal.pone.0091272.t001
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detailed genetic information, may be too costly to record and

many of the technical variables are simply unknown; thus, the

resulting variation cannot be modeled directly.

It was recently shown by Leek and Storey that, as such latent

variables affect the expression of many genes at once, they can in

principle be recovered from the dataset correlation structure via a

procedure termed surrogate variable analysis (SVA) [30,35]. This

procedure produces ‘‘surrogate variables’’ that span the space

covered by the latent variables, and can be treated similarly to any

known covariate. Including the surrogate variables in differential

expression analysis can dramatically alter the differential expres-

sion results and the authors demonstrate via a simulation study

that applying SVA produces ranked gene lists that are more stable

across repeated experiments. While SVA has been demonstrated

to have favorable properties in a variety of real data applications,

its rank-stabilizing effect has not been investigated in a practical

setting. Given that the algorithm has the potential to improve

reproducibility in theory, we hypothesized that it is indeed possible

to use SVA as a normalization step when integrating public disease

related studies where a common disease signature may be masked

by dataset specific latent variables that conspire to produce

discordant results.

We applied the SVA algorithm as implemented in the current

Bioconductor version (SVA version 3.6.0) to our MS compendi-

um. Although the ranked list of differentially expressed genes was

significantly altered, no overall improvement in concordance was

observed. In principle, this was not surprising as we expect to see

improvement only in the cases where reproducible signal is

masked by variance induced by latent variables. There is no

guarantee that this condition is met in the MS compendium.

However, upon closer inspection, it became apparent that for

some datasets the SVA algorithm was producing surrogate

variables that had significantly different means within the

experimental groups. Including them in the analysis as covariates

significantly reduced the differential expression signal, thus

producing nearly random gene rankings.

Heterogeneous mixture samples complicate latent
variable estimation

The SVA algorithm is based on the observation that if a gene-

by-sample matrix X arising from a microarray experiment is

modeled as

X~BSzE ð1Þ

where S is the study design matrix (which includes the primary

effect such as disease status as well as any known covariates), the

rows of the residual matrix E are not independent random errors

as is typically assumed, but are correlated. In fact, the data is better

modeled as

X~B’SzCGzU ð2Þ

where G represents the latent variables that explain the residual

correlation of E, and the rows of U are truly independent. The

SVA algorithm is aimed at estimating G by exploiting dataset

correlation structure.

A simple procedure to estimate the latent variable space would

be to perform singular value decomposition (SVD) on the residual

matrix, X{B̂BS, however this assumes that any latent variables are

completely balanced among the experimental groups, which is not

true in practice. In order to allow latent variables that are non-

orthogonal to the main effect, the algorithm of Leek and Storey

employs a complex iterative procedure, whereby the singular

vectors from the residual SVD are used as initial estimates of G,

Figure 1. Quantifying agreement among multiple sclerosis datasets. Genes are ranked for differential expression by an F-test with respect to
the multiple sclerosis phenotype. The degree of the overlap between lists of the top 5% of differentially expressed genes is evaluated for significance
against a null distribution obtained by permuting the sample labels. The relative significance of the overlap study pairs is indicated by the color scale.
The overall agreement among lists of genes predicted to be associated with multiple sclerosis phenotypes is low.
doi:10.1371/journal.pone.0091272.g001
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and the surrogate variables are recomputed using a reweighting of

the genes in the original data matrix.

The pseudocode for the iterative procedure is as follows:

Require: Gene expression matrix X, design matrix S

1: Estimate k, the dimensionality of the latent variable space

2: Fit model X = BS+E

3: Perform singular value decomposition (SVD) of the residual

X{B̂BS

4: Set G to the first k eigenvectors {This initial estimate of G is

orthogonal to S}}

5: for i in 1:B{number of iterations} do

6:    C ompute gene weights using the posterior probability that a

G but has no association with S

7:    Perform SVD of a weighted matrix

8:    Set G to the first k eigenvectors

9: end for

10: return G

For many studies within our MS compendium this procedure

produced one or two surrogate variables that were heterogeneous,

i.e. showed highly significant differences between groups. While it

is possible that the studies are not well randomized and some

technical variable is correlated with the phenotype of interest in all

of these cases, a detailed investigation revealed a surprising pattern

inconsistent with this conclusion.

The heterogeneous surrogate variables were most pronounced

in the largest and most comprehensive study in our compendium,

GSE17048. Indeed, differentially expressed genes could not be

deconvolved from the latent structure of the dataset; they tended

to be correlated with each other. However, the pattern of

correlation was different from what might be expected if it were

driven by confounding variables. For many differentially expressed

genes the correlation was only observed in the disease state

(Figure 2 A for an illustrative example of group specific

correlation).

Rather than representing non-randomized latent variables we

argue that this effect arises from a more fundamental phenomenon

that is particular to complex tissue samples. Tissue samples

obtained from human subjects tend to vary considerably in their

cell-type composition and this is especially true of human blood

where the proportion of different cell-types can vary four fold in

healthy individuals [36]. Moreover, when assaying mixture

samples we expect that for some genes the expression is altered

in a cell-type specific manner. We believe that this effect in

conjunction with the overall cell type composition variation is

responsible for the unusual correlation structure which in turn

makes SVA difficult to apply.

We model this situation in order to study its impact of

differential expression analysis. For simplicity let us assume that

there are three different cell types and the observed differential

expression is arising from an altered state in one of the cell types.

Figure 2. Disease-specific correlation produces heterogeneous surrogate variables. When SVA is applied to the multiple sclerosis dataset
GSE17048, some of the resulting surrogate variables are unequally distributed among the experimental groups. These surrogate variables (SV) follow
the pattern of disease specific correlation present in this dataset. (A) An example of a correlated pair of top ranked differentially expressed genes. The
group specific correlation coefficients and their significance is noted above the plot: the correlation between these genes is only observed in the
relapse-remitting MS (RRMS) samples. (B) The disease specific pattern of correlation is captured in a surrogate variable. (C) The surrogate variable in
(B) recapitulates the differential expression observed in the individual genes.
doi:10.1371/journal.pone.0091272.g002
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Formally, if ei,j denotes the expression of a gene i in cell type j and

pj,k denotes the proportion of cell type j in sample k the expression

measurements can be modeled as

gi,k~ei,1p1,kzei,2p2,kzei,3p3,kzEi,k ð3Þ

for the control group and as

g�i,k~e�i,1p1,kzei,2p2,kzei,3p3,kzEi,k ð4Þ

for the disease group, where e�i,1 represents a disease related

expression state in cell type 1.

If we consider a set of genes that in the control population are

expressed at approximately the same level in all the cell types in

the mixture so that ei,1&ei,2&ei,3, then in the control population

the expression of these genes will be independent of sample-

specific cell type compositions and the series of measurements ~ggi

can be modeled as

~ggi~�eeiz~EEi ð5Þ

where �eei is the average expression value across the three cell types

and~EEi is random error. Consequently, genes in this category will

not show correlation with each other.

If however, in the disease state, these genes are overexpressed in

a particular cell type, so that we have e�i,1&ei,2 and e�i,1&ei,3 their

expression values will be dominated by the expression in that

single cell type, so that the measurement can be approximated as

~gg�i ~e�i,1~pp1z~EEi ð6Þ

These expression measurements will correlate with the proportion

of the first cell type in each sample,~pp1, thereby making the genes

correlate with each other.

In order to demonstrate how this data structure effects

differential expression analysis, we follow the procedure similar

to that outlined in [30] to generate a simulated dataset. We

generate a dataset with two groups and a single artificial latent

variable. Of the 1000 simulated genes, 250 are background noise,

250 have a group effect, 250 are affected by the latent variable,

and 250 are affected by both. However, unlike the procedure in

[30] the baseline expression is modeled not as random values but

as a random mixture of the expression vectors of 3 different cell

types with differential expression arising from an altered expres-

sion state in one of the three cell types (as in equations 3 and 4).

Under this model, we are able to reproduce the group-specific

correlation in the differentially expressed genes (Figure 3B) which

in turn leads the SVA algorithm to estimate a heterogeneous latent

variable (Figure 3C).

In order to remedy this problem, we propose a modification of

the Leek-Storey SVA algorithm which uses a different function to

weight the genes (step 5 in the pseudocode above). The goal of

SVA and related methods can be viewed as partitioning the

variation in the dataset into that which is due to legitimate (and

Figure 3. Performance of different SVA methods in simulated mixture dataset. We simulated a microarray dataset derived from a
heterogeneous mixture of 3 different cell types. The 1000 simulated genes were assigned 4 classes: 250 are background noise (black), 250 have a
group effect (red), 250 are affected by an artificial latent variable (blue), and 250 are affected by both (green). The group effect is modeled as
differential expression in one of the three cell types. (A) Heatmap of an example dataset with gene class denoted in the color on the right. Aside from
the structure imposed by the group effect and the linear latent variable both affecting 500 genes the dataset has global correlation structure,
imposed by the mixture model. (B) Under this model we are able to recapitulate the group specific correlation in the differentially expressed genes
that we observe in real datasets, see example in Figure 2. (C) Applying SVA to the simulated datasets produces surrogate variables that are strongly
correlated with the experimental group. (D) Boxplot representing distribution of AUCs, area under receiver operating characteristic curve, for
discriminating the green differentially expressed genes from the blue and black sets resulting from 20 repeats of the simulation. While the original
SVA algorithm does not perform well in this simulation, the modified algorithm is robust to the confounding latent structure.
doi:10.1371/journal.pone.0091272.g003

Disease Biomarker Consistency

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e91272



thus reproducible) difference between the clinical groups and that

which is due to latent variables (which may be confounded with

the group effect). This is accomplished by computing SVD on a

reweighted matrix and the original approach is to use local FDR

as the posterior probability that a gene is affected by latent

variables, G, and is not affected by the primary group effect. While

this approach is statistically grounded, it does not work well on

mixture datasets, as the posterior probabilities eventually converge

to values near 1 thus weighting most genes similarly. In this case

surrogate vectors approximate the eigenvectors of the unweighted

SVD and thus capture all the variation in the dataset, including

the differential expression. While this is desirable in cases when the

groups are not randomized with respect to some technical or

biological variable, this becomes problematic in complex mixture

samples where differential expression may be confounded with the

correlation structure even under perfect randomization. Though

variations of the original SVA method have been proposed, most

notably SVA-PLS [37] and ISVA [38], they do not address this

aspect of latent variable estimation and perform no better on the

simulated mixture dataset (see Figure S1)

We propose an alternative weighing approach that is less

aggressive. In place of the posterior probability our approach uses

the raw p-value for both the primary and the latent effects. In

doing so we are not equating the p-values with posterior

probability but rather using them as an alternative gene-weighing

scheme which has the effect of restricting the degree to which

surrogate vectors can vary among the clinical groups. We compute

the p-value via a permutation test, since in real datasets we observe

genes that do not conform to a normal distribution. Using the p-

value directly has the effect of generating surrogate variables that

only show association with the primary effect that might be

expected by chance alone in a completely randomized study. The

resulting surrogate vectors are thus still allowed to be non-

orthogonal and may in fact show large deviations from orthog-

onality if the sample size is small however this approach prevents

the generation of surrogate variables with significantly different

group means. While this method will not fully recover the correct

latent structure when studies are not well randomized, it is able to

handle correlation that is induced by interaction with the primary

variable, as is the case in mixture samples.

To illustrate the effect of our approach, we apply the different

methods to the simulation described above. SVA should in

principle increase our power to detect the 250 differentially

expressed genes that are also affected by the artificial latent

variable. Because in this simulation the correlation structure of the

data is complex, and includes correlation induced by the mixture

model itself, the SVA algorithm produces multiple surrogate

variables some of which have significantly different within group

means and the intended effect of SVA is canceled out. Our

modification, however, is robust to this effect and, as intended, is

able to improve the detection of differentially expressed genes

(Figure 3D).

Modified SVA* algorithm successfully improves inter-
study agreement

Using the modified SVA* algorithm we were able to achieve

a significant improvement in dataset concordance within our

MS compendium, confirming our initial hypothesis that latent

variable modeling can be effective in a meta-analysis context.

The method is applied to each dataset independently, and it

doubles the number of significant pairwise overlaps between

sets of differentially expressed genes over what is produced by

standard differential expression analysis (Figure 4). The

modified SVA* algorithm also produces much better agree-

ment than the original SVA algorithm, demonstrating that our

modification to the weighting function is crucial to achieving

the desired effect.

Since we demonstrate that the weighting function and heavily

biased surrogate vectors are indeed the problem, it is natural to

investigate how the algorithm would perform with no weighting at

all. Leek and Storey reject this approach of using the initial

orthogonal surrogate variable estimates. While they believe it

would be effective at correcting for latent structure, it produces

anti-conservative p-values. In our study we are not concerned with

p-values, but rather with gene ranking; nevertheless, we find that

the orthogonal method is not effective at improving dataset

concordance, demonstrating that some variation of the weighting

approach, which allows surrogate variables to correlate with

clinical variables, is required in order to observe improvement in

agreement.

We have demonstrated that our modified SVA approach is

effective at improving overall dataset agreement. However, the

particular pattern of agreement (Figure 5) gives us further

confidence that this improvement is biologically meaningful.

While the naive approach produces agreement that barely

deviates from what is expected by chance, with pairs of

agreeing datasets seemingly randomly distributed, the modified

SVA approach reveals a cluster of highly overlapping studies.

Importantly, several of the studies that cluster together are

studies that are a priori expected to be of high quality because

they have large sample sizes. The clustering is also indepen-

dent of platform, which further supports its biological

relevance.

Figure 4. Comparisons of the inter-study agreement generated
by various SVA algorithms. For each p-value threshold we plot the
number of pairwise comparisons (out of 120 possible) reaching that
level of significance. SVA* produces the most comparisons with small p-
values. The overall differences between the agreement curves plotted
were evaluated using a single tailed signed rank test on the log
transformed empirical p-values which evaluates the hypothesis that
SVA* improves the significance of individual pairwise comparisons.
Overall agreement using the modified SVA algorithm was significantly
improved over the uncorrected analysis (p = 0.015) and the Leek-Storey
SVA (p = 0.022).
doi:10.1371/journal.pone.0091272.g004
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The modified SVA* algorithm also improves inter study
agreement in an independent compendium of
Parkinson’s disease datasets

While our modified SVA algorithm was developed from basic

considerations and we did not perform any parameter fitting or

optimizations, our approach was informed by a detailed investi-

gation of the datasets in our MS compendium. In order to confirm

that the proposed SVA* algorithm can be useful in multiple

contexts we use the algorithm without modification on an

independent gene expression compendium of PD datasets. This

compendium comprises publicly available datasets used in a recent

Parkinson’s meta-analysis [39], and differs significantly from our

MS compendium. Most of the datasets in the Parkinson’s

compendium use brain samples, with many from the regions

directly affected by neuron loss (Table 2), and are thus studying the

tissue where macroscopic disease pathology can be observed.

Thus, we expect that the disease signal should be considerably

larger which in turn should lead to better inter-dataset correspon-

dence. Indeed, we find that unlike in the MS compendium, the

baseline uncorrected correspondence is appreciably better than

random.

We expect that the agreement can be improved further with an

application of latent variable correction. However, like blood,

brain tissue is a complex mixture of multiple cell types and

heterogeneity in relative cell proportions may be exaggerated in

the disease state [39,40]. Hence, brain samples can produce the

same kind of confounded correlation structure that interferes with

latent variable correction making our modified SVA algorithm

particularly useful.

As is the case with the MS compendium, no improvement is

observed with the original, Leek-Storey, SVA algorithm. Howev-

er, confirming our expectations, the modified SVA* algorithm is

able to significantly improve the inter-dataset concordance

producing a greater number of comparisons with small p-values

(see Figure 6).

Unlike multiple sclerosis PD is a disease for which concrete

molecular mechanisms are established, making it possible to

evaluate the results from a biological rather than statistical point of

view. For example, SNCA, a gene whose product is known to be

directly involved in disease pathology is downregulated in many of

the datasets (ranked in the top 10% for 7 out of the 14 datasets)

and applying SVA* improves its overall ranking (SNCA is 5th

instead of 11th in mean rank). One interesting observation is that

SVA* is particularly effective at improving the agreement of a

whole blood dataset GSE6316 (which we expect is subject to large

cell proportion variation) with datasets that assayed brain tissue.

Changes in the expression of SNCA can be observed in this blood

dataset even without any correction but applying SVA* shifts

SNCA differential expression ranking from 139 to 34 (out of 9062

evaluated genes). On the other hand using Leek-Storey SVA

SNCA is ranked 3312, further corroborating our hypothesis that

the original SVA algorithms is most compromised in mixture

datasets with large proportion variation.

Discussion

Given that reproducibility in microarray studies with human

subjects is a recognized problem, alternative analysis methods that

are capable of resolving disagreements are of great interest.

Improved concordance would provide independent validation for

findings of individual studies, improve our ability to do meta-

analysis, and provide more trustworthy predictions regarding

differentially expressed genes. Moreover, inter-study concordance

presents a unique evaluation for the analysis methods themselves.

Improved agreement, when carefully evaluated against permuted

datasets, must be achieved by extracting more biologically

meaningful information from the data. For example, it has been

Figure 5. Heatmap of inter-study agreement after modified SVA correction. We observe dramatic agreement over a simple F-test using
explicitly provided covariates only (uncorrected) as well as the unmodified SVA.
doi:10.1371/journal.pone.0091272.g005
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shown that pathway level analysis, which can improve power of

individual studies, also improves the agreement among indepen-

dent datasets [8].

We present a method that is able to achieve improvement in

agreement through estimating and modeling latent variables. Our

method builds on surrogate variable analysis, a previously

described approach for latent variable estimation. However, we

demonstrate that unique correlation structure present in complex

mixture samples can compromise the effectiveness of SVA, and we

propose a robust alternative that overcomes this problem. The fact

that improvement in agreement could only be observed with the

modified SVA* algorithm highlights the importance of under-

standing the correlation structure in detail. Further work is needed

to determine whether additional improvements in SVA can be

achieved, and whether other modifications will be necessary for

different types of datasets. Currently SVA operates without any

knowledge of gene identities and as such differentiating between

confounded latent variables and correlation structure that is due to

a legitimate biological phenomenon may not always be possible. It

is likely that approaches that use control genes, such as one

described in reference [41], can be combined with unsupervised

SVD based techniques to achieve superior results.

Despite the potential for further improvements, our study has

demonstrated that latent variable modeling can be used as an

effective out-of-the-box pre-processing approach in integrating

human disease datasets and thus can be applied effectively to

Table 2. Datasets included in our Parkinson’s compendium.

Dataset Platfrom Tissue Samples(PD/controls)

GSE22491 Agilent(G4112F) PBMCs 8/10

GSE20159 Illumina(HT-12 V3.0) Brain, substantia nigra 16/17

GSE20141 U133-Plus2 Brain, substantia nigra 8/10

GSE20146 U133-Plus2 Brain, globus pallidus interna 8/10

GSE20163 U133A Brain, substantia nigra 10/10

GSE20164 U133A Brain, substantia nigra 9/8

GSE20168 U133A Brain, prefrontal cortex 15/14

GSE20291 U133A Brain, putamen 20/15

GSE20292 U133A Brain, substantia nigra 18/11

GSE20314 U133A Brain, cerebellum 4/4

GSE8397 U133A Brain, substantia nigra 18/29

GSE7307 U133-Plus2 Brain (multiple) 182/26

GSE7621 U133-Plus2 Brain, substantia nigra 9/16

GSE6613 U133A Whole blood 22/50

doi:10.1371/journal.pone.0091272.t002

Figure 6. Improvement in inter-study agreement in the Parkinson’s compendium. Comparisons of the inter-study agreement generated
by various SVA algorithms. For each p-value threshold we plot the number of pairwise comparisons (out of 91 possible) reaching that level of
significance. The overall differences between the agreement curves plotted were evaluated using a single tailed signed rank test on the log
transformed empirical p-values. Overall agreement using the modified SVA algorithm was significantly improved over the uncorrected analysis
(p = 6.8?1026) and the Leek-Storey SVA (p = 1.8?1024).
doi:10.1371/journal.pone.0091272.g006
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extract valuable new insight from the huge number of existing

datasets.

Methods

Data Processing
Expression data and associated information was downloaded

from GEO or ArrayExpress. Affymetrix data was processed using

GCRMA. Illumina data was background adjusted with the

bg.adjust() function from the ‘‘affy’’ BioConductor package, log-

transformed, and quantile normalized. Data for the Agilent

dataset, GSE22491, was downloaded from GEO in the processed

format supplied by the authors. Probes were mapped to gene

names using GEO GPL files and when several probes mapped to

the same gene, the one with the maximum mean expression was

kept as the representative. The number of genes before filtering

varied from 13000 to 20000 depending on platform. The bottom

20% of genes with low expression or low variance were removed

from each dataset before processing for differential expression.

Using these criteria approximately 25% of the genes are filtered

out since low expression and low variance genes largely overlap.

Differential expression was evaluated with an F-statistic comparing

a model that includes the disease related phenotype with one that

includes only covariates. The covariates included gender and other

experimental covariates provided by the authors (see Table 1).

Corrected differential expression lists were produced by appending

surrogate variables computed with various modifications of SVA

to the design matrices.

Overlap Computation
Our goal for the overlap computation was to evaluate

consistency of gene rankings while taking into account that the

number of differentially expressed genes is small and therefore

ranking in the bottom of the list is not biologically meaningful.

Thus, we evaluate the extent of nonrandom overlap in the top 5%

of differentially expressed genes from each dataset. We compute

raw pairwise overlap values as the hypergeometric probability p(k,

m, n, N) where m and n are the number of genes in the candidate

list of each dataset that was also present in the other dataset, k is

the number of genes present in the overlap, and N is the total

number of genes present in both datasets after filtering.

Null distributions of the raw overlap score were generated by

permuting the phenotype labels of each dataset (while keeping

covariates the same) and applying the differential expression

pipelines to the permuted labels. For each dataset we generated 20

permutation based gene rankings and these were used to generate

400 dataset pair specific null overlap scores. Each dataset pair

generates a unique null distribution with some being close to

uniform while others are skewed towards small p-values due to

gene-wise dependence. By comparing the real hypogeometric

value to this distribution we arrive at an empirical p-value that

corresponds to the amount of agreement we might expect by

chance alone. We include a R script that applies this analysis to

simulated mixture datasets in the supplement (File S1).

Simulations
Our simulation is based on that described in Leek and Storey

[30] with the alteration that the baseline expression of each gene

(the expression unaffected by the latent variable or the group

effect) is modeled not as independent random values but as a

random mixture of 3 expression vectors representing pure cell

types. The vectors are added in linear expression space and the

data is subsequently logged. The dataset is divided in half to

represent two experimental groups. Overexpression in the

‘‘disease’’ group is simulated by altering 500 genes in one of the

pure cell expression vectors. We also model a artificial, that is

distinct from those induced by the mixture model, latent variable

as a random vector drawn from a uniform distribution. The gene

specific effects for the latent variable are then drawn from a

normal distributions and the outer products of the effect vector

with the latent variable is added to the expression matrix. Finally,

random noise is added to create the final matrix. The dataset was

evaluated for differential expression using a T-test with no

covariates and a T-test with covariates generated by the original

SVA algorithm and our modified version. All the code necessary to

run the simulation and reproduce Figure 3 is provided in the

supplement (File S1).

Supporting Information

Figure S1 Performance of original Leek-Storey SVA and
alternatives on a mixture dataset with cell type specific
regulation Simulation in Figure 3 was repeated with other SVA

alternatives. Neither SVA-PLS or ISVA address the complex

correlation structure of mixture datasets and do not improve

differential expression discovery.

(TIF)

File S1 Source code for modified SVA and simulations.

(ZIP)
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