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Background: There is lack of discrimination as to traditional imaging diagnostic methods of cystic renal 
lesions (CRLs). This study aimed to evaluate the value of machine learning models based on clinical data and 
contrast-enhanced computed tomography (CECT) radiomics features in the differential diagnosis of benign 
and malignant CRL. 
Methods: There were 192 patients with CRL (Bosniak class ≥ II) enrolled through histopathological 
examination, including 144 benign cystic renal lesions (BCRLs) and 48 malignant cystic renal lesions 
(MCRLs). Radiomics features were extracted from CECT images taken during the medullary phase. Using 
the light gradient boosting machine (LightGBM) algorithm, the clinical, radiomics and combined models 
were constructed. A comprehensive nomogram was developed by integrating the radiomics score (Rad-
score) with independent clinical factors. Receiver operating characteristic (ROC) curves were plotted. The 
corresponding area under the curve (AUC) value was worked out to quantify the discrimination performance 
of the three models in training and validation cohorts. Calibration curves were worked out to assess the 
accuracy of the probability values predicted by the models. Decision curve analysis (DCA) was worked out to 
assess the performance of models at different thresholds.
Results: Maximum diameter and Bosniak class were independent risk factors of patients with MCRL in the 
clinical model. Twenty-one radiomics features were extracted to work out a Rad-score. The performance of 
the clinical model in the training cohort was AUC =0.948, 95% confidence interval (CI): 0.917–0.980, and 
the performance in the validation cohort was AUC =0.936, 95% CI: 0.859–1.000 (P<0.05). The performance 
of the radiomics model in the training cohort was AUC =0.990, 95% CI: 0.979–1.000, and the performance 
in the validation cohort was AUC =0.959, 95% CI: 0.903–1.000 (P<0.05). Compared with the above models, 
the combined radiomics nomogram had an AUC of 0.989 (95% CI: 0.977–1.000) in the training cohort 
and an AUC of 0.962 (95% CI: 0.905–1.000) in the validation cohort (P<0.05), showing the best diagnostic 
efficacy.
Conclusions: The radiomics nomogram integrating clinical independent risk factors and radiomics 
signature improved the diagnostic accuracy in differentiating between BCRL and MCRL, which can provide 
a reference for clinical decision-making and help clinicians develop individualized treatment strategies for 
patients.
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Introduction

Compared with other traditional noninvasive diagnostic 
approaches, computed tomography (CT) scan has emerged 
as the most extensively utilized imaging modality for 
preoperative assessment and risk stratification of complex 
cystic renal masses, leading to the development of the 
Bosniak classification for cystic renal masses in 1986 (1,2). 
Based on plain scan and contrast-enhanced CT (CECT), 
the Bosniak classification system captures information 
related to the edge of the mass, cystic components, the 
shape and thickness of the partition, the shape and number 
of wall nodules, and fine enhancement in the tissue, 
providing more information for the preoperative qualitative 
diagnosis of cystic renal lesions (CRLs) (3). It has been 
recognized by radiologists and urologists for over 30 years. 
In the 2019 version of the Bosniak classification of cystic 
renal masses, additional quantitative and discriminative 
criteria were introduced to further enhance the specificity 
in predicting the likelihood of malignancy in CRLs (4). On 
the other hand, no significant improvement in diagnostic 
performance and interreader agreement is shown between 
v2005 and v2019 (5). Interobserver agreement remains to 
be solved mainly in Classes II, IIF (in which F represents 
follow-up) and III. High-risk CRLs (Classes IIF, III, and IV) 
also have a certain possibility of being benign. Tremendous 
previous Bosniak III lesions are inclined to be reidentified 
as Class IIF according to Bosniak v2019, leading to lessened 
sensitivity (6,7). The incorrect dependence on the Bosniak 

classification may bring about unexpected consequences 
such as renal impairment, unplanned reoperation and 
potential neoplastic transplantation (8).

Although routine interpretation of CT scan primarily 
focuses on the qualitative analysis of imaging features, 
there is a host of extra quantitative information that can 
be utilized for further research to enhance the overall 
accuracy of preoperative differentiation between benign 
cystic renal lesions (BCRLs) and malignant cystic renal 
lesions (MCRLs). Radiomics, a noninvasive reproducible 
low-cost technique extracting high-dimensional features 
from routinely acquired images, has been applied in 
oncology and development of machine learning methods, 
showing great prospects in differential diagnosis, treatment 
response assessment and prognosis prediction for diverse 
cancers (9,10). Machine learning and textural analysis have 
been successfully applied into the differential diagnosis 
of different kinds of renal cell carcinoma (RCC) in solid 
renal lesions, as reported in the literature (11-14). Yet, 
corresponding research on CRL has rarely been reported. 
Therefore, to enhance diagnosis sensitivity and overcome 
the limitations of biased visual image evaluation, we were 
dedicated to investigating the role of the CECT-based 
radiomics nomogram in preoperative differentiation 
between BCRL and MCRL. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tau.amegroups.com/article/view/10.21037/tau-
23-656/rc).

Methods

Data acquisition

The study was approved by the Ethics Committee of 
The Affiliated Hospital of Xuzhou Medical University 
(No. XYFY2023-KL118-01), and the ethics committee 
clarified that informed consent could be waived due to data 
anonymization. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 
During data collection and analysis, the privacy and 
confidentiality of the participants’ information were strictly 
protected. There were 192 patients with histologically 
confirmed BCRL or MCRL from January 2014 to 
December 2023 included in our study on the ground of 
specific inclusion and exclusion criteria (Figure 1). Patients’ 
genernal clinical information (age, gender, hematuria, etc.) 
and imaging features (Bosniak class, maximum diameter, 
etc.) were obtained from medical records and CT images.

Highlight box

Key findings
• We developed a contrast-enhanced computed tomography-based 

comprehensive nomogram to distinguish between benign and 
malignant cystic renal lesions.

What is known and what is new? 
• There remains a certain ambiguity that radiologists estimate 

probability of a malignancy among those classified as Class ≥ II 
(especially II, IIF and III) according to Bosniak v2019.

• Our developed nomogram combines radiomics features with 
clinical factors by means of the light gradient boosting machine 
algorithm.

What is the implication, and what should change now? 
• The developed nomogram holds the potential to improve 

diagnostic accuracy and patient management in the assessment of 
cystic renal lesions.

https://tau.amegroups.com/article/view/10.21037/tau-23-656/rc
https://tau.amegroups.com/article/view/10.21037/tau-23-656/rc
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Search for keywords (‘renal cysts’, ‘cystic renal masses’, ‘cystic renal lesions’, 

‘complex renal cyst’, ‘cystic renal cell carcinoma’, etc.) in the electronic medical 

record system from 2014 to 2023

n=2,593

Reclassification with Bosniak v2019 by 2 authors

Randomly selected

n=240

n=192

All patients were assigned to the training and validation cohorts with a ratio of 8:2

153 patients were assigned to the training 

cohort with 115 BCRLs and 38 MCRLs

39 patients were assigned to the validation 

cohort with 29 BCRLs and 10 MCRLs

Inclusion criteria:

(I) Complete CECT examination included 

in patients’ preoperative diagnosis 

within 14 days prior to surgery; 

(II) Adequate image quality;

(III) Definite postoperative pathologic 

diagnosis of either BCRL or MCRL

Exclusion criteria:

(I) Maximum diameter <1 cm;

(II) Solid portion >25%;

(III) Kidney surgery history;

(IV) Polycystic kidney disease;

(V) Von Hippel-Lindau syndrome

2,065 Bosniak I 426 Bosniak ll

138 Bosniak ll 42 Bosniak llF 27 Bosniak lll 33 Bosniak lV

48 Bosniak l
(excluded)

126 Bosniak ll 26 Bosniak llF 13 Bosniak llI 27 Bosniak IV

Figure 1 Flowchart demonstrating how the study cohort of 192 cystic renal lesions was derived and assigned into two groups. CECT, 
contrast-enhanced computed tomography; BCRLs, benign cystic renal lesions; MCRLs, malignant cystic renal lesions.

Imaging equipment

Each CT scan was conducted using the same CT scanner 
(Philips, Ingenuity CT, Suzhou, China) with the following 
parameters: tube voltage of 120 kVp; tube current of  
260 mA; slice thickness of 1.5 mm; slice increment of 1.5 

mm; field-of-view of 400 mm; image matrix of 512×512; 
iterative reconstruction algorithm (iDose). The scanning 
range included the inferior margin of the diaphragm to the 
pelvic cavity. An 80–100 mL volume of non-ionic contrast 
agent (loversol, Jiangsu Henrui Pharmaceutical Co., LTD., 
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China) was injected into the anterior vein of the elbow using 
an electric syringe at an injection rate of 2.5 mL/s. CECT 
images of cortical phase, medullary phase and excretory phase 
were acquired at 30, 70 and 150 seconds after the injection. 
Voxel of each image is uniformly set to 0.5×0.5×3.

Image evaluation and segmentation

CT imaging analysis was performed independently 
by two senior radiologists, both of whom had at least  
15 years of experience in urinary system imaging and were 
blind to participants’ medical records. By referring to 
Bosniak v2019, they perused CT images to elaborate the 
following features and reached a consensus: wall thickness, 
wall calcification, intracystic fluid density, internal septa, 
and the size and number of cysts. Any discrepancies or 
disagreements were resolved through consultation. The 
region of interest (ROI) segmentation was also performed 
by two experienced radiologists independently using the 

ITK-SNAP software (version 4.0, http://www.itksnap.
org). Firstly, the CT images of each patient were loaded 
into the software. Then, the radiologists manually outlined 
the boundaries of the cystic renal masses through each 
consecutive axial slice on the images of the medullary phase, 
carefully including all relevant structures and excluding any 
adjacent normal tissues and artifacts. To ensure consistency 
and minimize interobserver variability, a consensus meeting 
was held to resolve any disagreements or discrepancies in 
the ROI segmentation between the two radiologists, which 
guaranteed the accuracy and reliability of the segmented 
ROIs. After the ROI segmentation, image preprocessing 
techniques were applied to standardize the CT images and 
correct for any variations in image acquisition and patient 
positioning. This step included intensity normalization, 
image resampling, and noise reduction, ensuring that all CT 
images were in a uniform format for subsequent radiomics 
feature extraction and analysis. Figure 2 depicts the analysis 
workflow of radiomics.

Figure 2 Analysis workflow of radiomics. (A) Specific ROIs are identified and segmented from the images. (B) Quantitative information 
is extracted from the ROIs, such as geometry, intensity and texture. (C) The most relevant and informative features are selected to reduce 
dimensionality and improve the model’s performance. (D) A model is constructed using the selected features and machine learning methods 
for tasks such as classification, prediction or other analytical objectives. ROI, region of interest; glcm, gray-level co-occurrence matrix; 
gldm, gray-level dependence matrix; glrlm, gray-level run length matrix; glszm, gray-level size zone matrix; ngtdm, normalized gray-level 
transition matrix; MSE, mean standard error; AUC, area under the curve; CI, confidence interval; DCA, decision curve analysis. 

ROI segmentation Feature extraction Feature selection Model constructionA B C D

http://www.itksnap.org
http://www.itksnap.org
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Radiomics feature extraction

The handcrafted features were categorized into 3 types: 
geometry, intensity and texture. Geometric features 
encompassed the shape and size characteristics of the ROI 
in the image. Intensity features focused on the statistical 
properties of pixel intensities within the ROI, including 
mean, standard deviation, maximum and minimum values. 
Texture features captured the spatial distribution and patterns 
of pixel intensities within the ROI using methods such as gray-
level co-occurrence matrix (GLCM), gray-level dependence 
matrix (GLDM), gray-level run length matrix (GLRLM), 
gray-level size zone matrix (GLSZM) and neighborhood 
gray-tone difference matrix (NGTDM) (15). All of the 
aforementioned features were extracted with PyRadiomics, 
a Python package specifically designed for medical image 
analysis, which allows for the extraction of a wide range 
of quantitative features from medical images. For detailed 
information and usage instructions, please refer to its 
official website: https://pyradiomics.readthedocs.io.

Development of the radiomics model, clinical model and 
radiomics nomogram

Two feature selection methods for dimension reduction, 
Pearson’s correlation coefficient and the least absolute 
shrinkage and selection operator (LASSO), were put into 
application to remove redundant information, improve 
computational efficiency and make data visualized. Firstly, 
Pearson’s correlation coefficient was utilized to assess 
the linear relationship between different features and 
identify redundant or highly correlated ones. Secondly, 
the LASSO algorithm was applied to select and retain 
the most relevant and informative features for further 
analysis. Based on the tuning parameter λ, LASSO shrank 
all regression coefficients to zero, effectively setting the 
coefficients of many irrelevant features to precisely zero. 
To find the optimal λ, a fivefold cross-validation approach 
was employed, where the final value of λ yielded the lowest 
cross-validation error. The retained features with nonzero 
coefficients were combined to form a radiomics signature, 
and each patient’s radiomics score (Rad-score) was obtained 
by weighting the selected features with their respective 
LASSO model coefficients. Afterwards, we attained a Rad-
score for each patient that captured the most discriminative 
radiomics features, enabling a more precise and informative 
characterization of the studied images.

The differences in clinical data and CT features between 

BCRL and MCRL were assessed using univariate analysis. 
Univariate Logistic regression analysis was first performed 
to determine the relationship between each clinical factor 
and the malignant potential of CRL. The significant 
features identified from the univariate logistic regression 
analysis in the training cohort were then included in the 
stepwise multivariate logistic regression to construct the 
clinical signature. Odds ratios (ORs) and 95% confidence 
intervals (CIs) were calculated for each independent factor.

A comprehensive model was built, combining the 
radiomics signature with the clinical model by means of the 
light gradient boosting machine (LightGBM) algorithm. 
After finishing LASSO feature screening, the final features 
were input to construct the risk model through fivefold 
cross-validation. Furthermore, to evaluate the incremental 
prognostic value of the radiomics signature in combination 
with clinical risk factors, a radiomics nomogram was 
constructed and applied to the validation cohort using the 
LightGBM analysis.

Statistical analysis

Statistical analysis was performed with the Statistical 
Product Service Solutions (SPSS) software (version 24.0, 
IBM). Continuous variables following a normal distribution 
were compared using the t-test, while the Mann-Whitney 
U test was used for non-normally distributed continuous 
variables. Categorical variables were compared using the 
Chi-squared test or Fisher’s exact test as appropriate. 
Calibration efficiency of the nomogram was assessed 
through calibration curves, and Hosmer-Lemeshow 
analytical fit was employed to assess its calibration ability.

Results

Clinical variables and construction of the clinical model

There were 192 patients enrolled in our study (Table 1). 
The univariate logistic regression analysis demonstrated 
there were significant differences in maximum diameter 
and Bosniak classification between BCRL and MCRL 
patients (P<0.05). As was shown in the multivariate logistic 
regression analysis, maximum diameter and Bosniak class 
were independent clinical factors in the clinical model  
(Table 2). Larger maximum diameter [odds ratio (OR) 
=0.959; 95% CI: 0.903–1.000; P=0.003] and higher Bosniak 
class (OR =1.542; 95% CI: 1.446–1.644; P<0.001) were 
more frequently observed in patients with MCRL. The 

https://pyradiomics.readthedocs.io
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Table 1 Clinical baseline statistical analysis of CRLs

Clinical factors
Training cohort (n=153) Validation cohort (n=39)

All BCRLs MCRLs P value All BCRLs MCRLs P value

Age (years) 59.15±11.48 59.47±11.35 58.18±11.96 0.45 57.44±14.60 58.86±14.25 53.30±15.58 0.27

BMI (kg/m2) 25.15±3.18 24.94±2.66 25.78±4.38 0.21 25.70±3.79 25.66±3.18 25.82±5.41 0.69

Maximum diameter (cm) 5.93±1.83 6.16±1.65 5.25±2.18 0.02 6.25±1.97 6.84±1.45 4.52±2.32 0.005

Gender 0.17 0.77

Male 108 (70.59) 85 (73.91) 23 (60.53) 23 (58.97) 18 (62.07) 5 (50.00)

Female 45 (29.41) 30 (26.09) 15 (39.47) 16 (41.03) 11 (37.93) 5 (50.00)

Hypertension 0.57 0.87

Yes 37 (24.18) 26 (22.61) 11 (28.95) 9 (23.08) 6 (20.69) 3 (30.00)

No 116 (75.82) 89 (77.39) 27 (71.05) 30 (76.92) 23 (79.31) 7 (70.00)

Hematuria, n (%) >0.99 >0.99

Yes 2 (1.31) 1 (0.87) 1 (2.63) 1 (2.56) 1 (3.45) Null

No 151 (98.69) 114 (99.13) 37 (97.37) 38 (97.44) 28 (96.55) 10 (100.00)

Lumbago, n (%) 0.42 0.29

Yes 42 (27.45) 34 (29.57) 8 (21.05) 6 (15.38) 6 (20.69) Null

No 111 (72.55) 81 (70.43) 30 (78.95) 33 (84.62) 23 (79.31) 10 (100.00)

Amount of masses, n (%) 0.36 0.62

Simple 93 (60.78) 67 (58.26) 26 (68.42) 31 (79.49) 22 (75.86) 9 (90.00)

Multiple 60 (39.22) 48 (41.74) 12 (31.58) 8 (20.51) 7 (24.14) 1 (10.00)

Bosniak class, n (%) <0.001 <0.001

II 104 (67.97) 93 (80.87) 11 (28.95) 22 (56.41) 21 (72.41) 1 (10.00)

IIF 20 (13.07) 17 (14.78) 3 (7.89) 6 (15.38) 5 (17.24) 1 (10.00)

III 11 (7.19) 5 (4.35) 6 (15.79) 2 (5.13) 2 (6.90) Null

IV 18 (11.76) Null 18 (47.37) 9 (23.08) 1 (3.45) 8 (80.00)

Data are presented as mean ± SD or n (%). CRLs, cystic renal lesions; BCRLs, benign cystic renal lesions; MCRLs, malignant cystic renal 
lesions; SD, standard deviation; BMI, body mass index. 

ultimate clinical model exhibited an area under the curve 
(AUC) of 0.948 (95% CI: 0.917–0.980) in the training cohort 
and 0.936 (95% CI: 0.859–1.000) in the validation cohort.

Construction of radiomics signature and radiomics model

There were 1,834 radiomics features extracted from CT 
images in the medullary phase, including 7 categories: 
14 shape-based features, 360 firstorder statistics features, 

440 GLCM features, 280 GLDM features, 320 GLRLM 
features, 320 GLSZM features and 100 NGTDM features. 
One hundred and six features were first selected by 
Pearson’s correlation coefficient, and 21 meaningful features 
were then selected by LASSO. Mean standard error (MSE) 
and coefficients of fivefold cross-validation were calculated 
(Figure 3). The coefficients value in the final selected 
nonzero features are included in the Rad-score calculation 
as follows: 
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Table 2 Univariate and multivariate logistic regression analysis of the predictive clinical factors

Clinical factors
Univariate logistic regression analysis Multivariate logistic regression analysis

P value OR 95% CI P value OR 95% CI

Maximum diameter 0.007 0.950 0.921–0.980 0.003 0.959 0.937–0.981

Bosniak class <0.001 1.552 1.454–1.657 <0.001 1.542 1.446–1.644

Gender 0.12 0.887 0.781–1.006 – – –

Age 0.55 0.998 0.993–1.003 – – –

BMI 0.16 1.016 0.997–1.035 – – –

Hypertension 0.43 1.067 0.931–1.221 – – –

Hematuria 0.41 1.290 0.774–2.151 – – –

Lumbago 0.31 0.923 0.811–1.051 – – –

Amount of masses 0.27 0.923 0.820–1.040 – – –

OR, odds ratio; CI, confidence interval; BMI, body mass index. 
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Figure 3 Utilizing the LASSO regression model for the selection of pertinent radiomics features. (A) The minimum criterion was employed 
to determine the optimal tuning parameter “λ”. (B) The coefficient profile plot was generated based on the chosen log “λ” value. (C) A 
total of 21 selected features are presented alongside their respective non-zero coefficients. MSE, mean standard error; gldm, gray-level 
dependence matrix; glrlm, gray-level run length matrix; glszm, gray-level size zone matrix; glcm, gray-level co-occurrence matrix; MCC, 
Matthews correlation coefficient; ngtdm, normalized gray-level transition matrix; 3D, three-dimensional; Idn, inverse difference normalized; 
LASSO, least absolute shrinkage and selection operator.
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Rad-score 0.250000 0.175024 A 0.013175 B 
0.009303 C 0.060584 D 0.070590 E
0.041914 F 0.161672 G 0.048359 H
0.149733 I 0.037847 J 0.107719 K
0.056369 L 0.124391 M 0.139222 N
0.004722 O 0.040029 P 0.05

= + × + ×
− × − × + ×
− × + × − ×
+ × − × − ×
+ × − × + ×
− × − × + 8905 Q

0.007749 R 0.015885 S 0.065277 T
0.019327 U

×
− × + × − ×
− ×

 [1]

The variables A to U represent the selected radiomics 
features (Table 3). The radiomics model showed good 
discrimination ability in the training cohort (AUC =0.990; 
95% CI: 0.979–1.000). In the validation cohort, the AUC 

was 0.959 (95% CI: 0.903–1.000).

Construction and evaluation of the combined model and 
the nomogram

The Rad-score and independent clinical variables including 
maximum diameter and Bosniak class were combined to 
create the radiomics nomogram. The nomogram model 
utilizing the LightGBM algorithm and combining the 
clinical signature with the radiomics signature demonstrates 
the best performance in the receiver operating characteristic 
(ROC) curves for both the training cohort (AUC =0.989; 
95% CI: 0.977–1.000) and the validation cohort (AUC 
=0.962; 95% CI: 0.905–1.000) (Figure 4A,4B, Table 4). 

The nomogram calibration curves yielded acceptable 
agreement in predicting and observing MCRL between 
the training and validation cohort (Figure 4C,4D). The 
decision curve analysis (DCA) was assessed for each model’s 
clinical utility (Figure 4E,4F). Compared to scenarios 
where no prediction model is used (i.e., treat-all or treat-
none scheme), the radiomics nomogram demonstrates 
a significant benefit for intervention in patients with a 
prediction probability compared to the clinical model.

The Hosmer-Lemeshow test P values for the clinical 
model, the radiomics model and the radiomics nomogram 
indicate no significant difference in both the training and 
validation cohorts (P>0.05) (Table 5). Additionally, in order 
to compare these three models, DeLong’s test was utilized. 
In the training cohort, there was a significant difference 
between the AUC of the radiomics nomogram and the 
clinical model (P=0.002), while there was no significant 
difference between the AUC of the radiomics nomogram 
and the radiomics model (P=0.23). In the validation 
cohort, there was a significant difference in AUC between 
the radiomics nomogram and the clinical model (P=0.048), 
while there was no significant difference in AUC between 
the radiomics nomogram and the radiomics model 
(P=0.20).

We also developed a nomogram to visualize the 
combined model, which allows adding points for each 
variable to the respective axes, thus assessing the risk of 
MCRL (Figure 5). The higher total scores a patient gets, 
the greater risk of MCRL the patient is exposed to.

Discussion

Our study developed a CECT-based comprehensive 
model to distinguish between BCRL and MCRL, which 

Table 3 Radiomics feature selection results

Variables Radiomics feature name

A original_firstorder_RootMeanSquared

B original_firstorder_TotalEnergy

C original_glcm_ClusterShade

D original_glcm_Idn

E original_glcm_MCC

F original_glcm_SumSquares

G original_gldm_DependenceNonUniformityNormalized

H original_glrlm_LongRunLowGrayLevelEmphasis

I original_glrlm_RunEntropy

J original_glrlm_ShortRunEmphasis

K original_glrlm_ShortRunHighGrayLevelEmphasis

L original_glrlm_ShortRunLowGrayLevelEmphasis

M original_glszm_GrayLevelVariance

N original_glszm_LargeAreaHighGrayLevelEmphasis

O original_glszm_LargeAreaLowGrayLevelEmphasis

P original_ngtdm_Busyness

Q original_ngtdm_Strength

R original_shape_Maximum3DDiameter

S original_shape_Sphericity

T original_shape_SurfaceVolumeRatio

U original_shape_VoxelVolume

glcm, gray-level co-occurrence matrix; Idn, inverse difference 
normalized; MCC, Matthews correlation coefficient; gldm, gray-
level dependence matrix; glrlm, gray-level run length matrix; 
glszm, gray-level size zone matrix; ngtdm, neighborhood gray-
tone difference matrix; 3D, three-dimensional.
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combines radiomics features, maximum diameter and 
Bosniak class, demonstrating excellent predictive value and 
fit with an AUC of 0.989 in the training cohort and 0.962 
in the validation cohort. Besides, the combined model 
outperformed the clinical model alone in terms of predictive 

performance in both the training and validation cohorts. As 
it has been revealed, a radiomics nomogram is a noninvasive 
reproducible low-cost technique for differential diagnosis 
between BCRL and MCRL and related clinical decisions.

Despite the effectiveness of the Bosniak classification 
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Figure 4 Results of the LightGBM models. (A,B) ROC curves, (C,D) calibration curves and (E,F) DCA of the three models in both the 
training and validation cohorts. AUC, area under the curve; CI, confidence interval; LightGBM, light gradient boosting machine; ROC, 
receiver operating characteristic; DCA, decision curve analysis. 
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as a preoperative diagnostic tool for complex cystic renal 
masses since its introduction in 1986 (16), there remains a 
certain ambiguity that radiologists estimate probability of a 
malignancy among those classified as Class ≥ II (especially II, 
IIF and III) according to Bosniak v2019. Not in the slightest 
is Bosniak I of malignant potential, defined by a series of strict 
criteria, and any CRLs that do not satisfy these criteria ought 
to be “complicated” or “atypical” rather than “simple” (4,17). 
The composition and internal structure of Bosniak II lesions, 
compared to Class I, assumes a certain degree of complexity 
and a low risk of malignancy (accounting for approximately 
1–5%) (9,18,19). As for Bosniak ≥ IIF lesions, there exists a 
higher risk that approximately 10–20% of Bosniak IIF lesions, 
50% of Bosniak III lesions and 80% Bosniak IV lesions are 
diagnosed as malignancy (4,18,20,21). In short, none of 
the classes except Class I are adequately predictive of the  
lesion (22), and there is manifested interobserver variability 
among Bosniak II, IIF and III lesions (23). More attention 
should be paid to the preoperative screening for malignant 
cystic renal neoplasms. To address this, the present CECT-
based radiomics nomogram to distinguish between BCRL 
and MCRL was developed, aiming to pursue better treatment 
strategies and improve patients’ medical experience.

Clinical and imaging information is in favor of correct 
differentiation between BCRL and MCRL. Previous research 
linked male gender, younger age, obesity, hypertension history 
to the likelihood of malignancy in CRL (24,25); whereas, the 
present study did not find significant correlations between 
these clinical factors [i.e., gender, age, body mass index 
(BMI) and hypertension] and the risk of malignancy in CRL, 
which may require a larger cohort study to validate these 
findings. Hematuria and lumbago serve as warning signs 
that necessitates further evaluation and imaging leading to 
a diagnosis and treatment plan (26). Based on the Bosniak 
classification, CECT is widely recognized as the diagnostic 
criterion for assessing CRL (20). The 2019 version of the 
Bosniak classification system employs several parameters to 
evaluate the malignant potential of renal cysts, including the 
thickness of the cyst wall, the degree of wall enhancement, the 
presence of wall nodules, internal enhancement patterns and 
the existence of internal hemorrhage or calcification (4). The 
clinical model predicted a higher probability of malignancy for 
CRL with a higher Bosniak class observed in the medullary 
phase. Moreover, maximum diameter, which is not directly 
involved in the Bosniak classification, turned out associated 
with the malignancy probability of CRL in our study. Volpe  
et al. (27) showed that if small renal masses that were presumed 
to be RCCs were managed conservatively and monitored with 
regular imaging, approximately one-third of them would show 
growth. Masses with larger sizes are more likely to have a risk 
of malignancy than those with smaller sizes.

The rationale for utilizing CT texture analysis to 
discriminate between BCRL and MCRL is predicated 
on three key considerations. Firstly, heterogeneous cystic 
masses are more likely to exhibit malignancy compared to 

 Table 4 Diagnostic performance of the clinical model, radiomics model and combined model

Models ACC AUC (95% CI) SENS SPEC PPV NPV Precision Recall F1 Threshold

Training cohort (n=153)

Clinical model 0.837 0.948 (0.917–0.980) 0.895 0.817 0.618 0.959 0.618 0.895 0.731 0.183

Radiomics model 0.948 0.990 (0.979–1.000) 0.947 0.948 0.857 0.982 0.857 0.947 0.900 0.335

Radiomics nomogram 0.948 0.989 (0.977–1.000) 0.947 0.948 0.857 0.982 0.857 0.947 0.900 0.216

Validation cohort (n=39)

Clinical model 0.744 0.936 (0.859–1.000) 0.800 0.897 0.571 0.963 0.571 0.800 0.667 0.179

Radiomics model 0.897 0.959 (0.903–1.000) 0.900 0.897 0.750 0.963 0.750 0.900 0.818 0.157

Radiomics nomogram 0.923 0.962 (0.905–1.000) 0.700 1.000 1.000 0.906 1.000 0.700 0.824 0.468

ACC, accuracy; AUC, area under the curve; CI, confidence interval; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; 
NPV, negative predictive value; F1, F1 score.

Table 5 P values of Hosmer-Lemeshow test of the clinical model, 
radiomics model and combined model

Models Training cohort Validation cohort

Clinical model 0.053 0.58

Radiomics model 0.98 0.16

Radiomics nomogram 0.14 0.16
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their homogeneous counterparts. Secondly, texture analysis 
offers an automated approach, thereby minimizing the 
influence of reader interpretation. Lastly, the feasibility 
of applying texture analysis to single-phase CT scans is 
of paramount importance, given the frequent detection 
of cystic renal masses through such scans. Notably, the 
assignment of Bosniak class in CT often necessitates a 
comprehensive examination, encompassing scans both 
prior to and following intravenous contrast administration. 
Hence, the ability to assess CRL solely through single-
phase CT scans holds the potential to obviate the need for 
supplementary examinations.

Previous studies showed that texture analysis of CT 
images can be utilized to differentiate between BCRL and 
MCRL. Dana et al. (28) structured a decision algorithm 
in combination with consensus radiological readings of 
Bosniak classification and radiomics-based risks, and 
the result showed that the machine learning model 
demonstrated excellent diagnostic accuracy (AUC =0.96; 
balanced accuracy =94%) in predicting malignant tumors 
within the validation cohorts, superior to the Bosniak 
classification management guidelines. Wang et al. (29) 
optimized a machine learning model by combining a logistic 
regression classifier and the synthetic minority oversampling 
technique algorithm. They established a nomogram that 
incorporated the radiomics signature and independent 
clinical variables, resulting in an impressive AUC of 0.972 
(95% CI: 0.942–1.000). Miskin et al. (30) conducted an 
efficiency analysis of three texture-based machine learning 
algorithms (random forest, multivariate logistic regression 
and support vector machine) of 144 CRLs, all of which 
showed fine performance with an AUC of 0.79, 0.80 and 
0.76, respectively. Alhussaini et al. (31) used 5 maximum 
likelihood (ML) algorithms to train models of 3 cohorts and 
gained an AUC of 1.00±0.000, 1.00±0.000 and 0.87±0.073 

in the best model, respectively, which proved that ML-
based radiomics signatures were potentially useful for 
distinguishing chromophobe RCC and renal oncocytomas. 
For predicting low- and high-grade clear cell RCC, He 
et al. (32) constructed five predictive models by selecting 
conventional image features and radiomic features, in which 
the CIF-CMP-minMSE (CIF, conventional image feature; 
CMP, cortico-medullary phase; minMSE, minimum mean 
squared error) was the optimal predictive model, with 
an AUC of 0.986. Compared with the aforementioned 
investigations, our study using the LightGBM algorithm 
highlights the potential of the radiomics nomogram as 
a valuable tool for distinguishing between BCRL and 
MCRL. The utilization of advanced radiomics techniques 
in combination with machine learning algorithms allows 
for a comprehensive analysis of complex imaging data. 
The superior discriminative capability of the radiomics 
nomogram, as evidenced by higher AUC values, suggests its 
potential as a non-invasive and reliable method for accurate 
tumor identification. Furthermore, the incorporation 
of diverse radiomic features into the nomogram offers a 
more comprehensive representation of the underlying 
tumor characteristics, enhancing its predictive power. This 
comprehensive approach may aid clinicians in making 
well-informed decisions, leading to more personalized and 
effective treatment strategies for patients with CRLs.

Although our study has demonstrated promising results 
in differentiating between BCRL and MCRL using the 
CECT-based radiomics nomogram, there are several 
limitations that should be acknowledged. Firstly, the sample 
size of our study is relatively small. The ratio between 
benign and malignant is 75%:25% indicating a potential 
class imbalance, which may restrict the generalizability 
of our findings to larger and more diverse populations. 
Secondly, the data were assembled from a single institution, 
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which could introduce institutional bias and may not fully 
represent the broader patient population. Thirdly, although 
we have taken measures to ensure data quality and accuracy, 
inherent variability in image acquisition and radiomic 
feature extraction may still be present. Future prospective 
studies with larger and multi-institutional cohorts are 
warranted to validate the performance and reproducibility 
of the radiomics nomogram in clinical practice. While the 
radiomics nomogram exhibits promising performance, its 
clinical implementation will require rigorous validation and 
integration into existing diagnostic protocols. 

Conclusions

Our study proposes a CECT-based radiomics nomogram 
as an advanced and promising tool for preoperative 
differentiation between BCRL and MCRL. The developed 
nomogram demonstrates favorable discriminative capability, 
providing valuable insights for clinical decision-making 
and patient management. With further validation and 
integration into routine clinical practice, this radiomics 
approach holds the potential to enhance diagnostic accuracy 
and improve patient outcomes in the assessment of CRLs.
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