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Abstract: Heat transcription factors (Hsfs) belong to a large gene family classified into A, B, and C
groups, with classes A and B Hsfs being well-characterized and known for their roles in plant
tolerance to abiotic stresses. The functions and roles of Class C Hsfs are not well-documented.
The objectives of this study were to characterize a class C Hsf gene (FaHsfC1b) cloned from tall
fescue (Festuca arundinacea), a perennial grass species, and to determine the physiological functions of
FaHsfC1b in regulating heat tolerance by overexpressing FaHsfC1b in Arabidopsis thaliana. Full length
cDNA of FaHsfC1b was cloned and the sequence alignment showed that it had high similarity to
OsHsfC1b with typical DNA binding domain, hydrophobic oligomerization domain, and a nucleus
localization signal. Transient expression with FaHsfC1b-eGFP in protoplasts of Arabidopsis leaves
indicated its nucleus localization. qRT-PCR analysis showed that FaHsfC1b responded to heat,
osmotic, salt, and cold stress in leaves and roots during 48-h treatment. Physiological analysis showed
that FaHsfC1b overexpression enhanced plant survival rate, chlorophyll content, and photochemical
efficiency, while it resulted in decreases in electrolyte leakage, H2O2 and O2− content under heat stress.
qRT-PCR showed that endogenous HsfC1 was induced in transgenic plants and the expression levels
of heat protection protein genes, including several HSPs, AtGalSyn1, AtRof1, and AtHSA32, as well as
ABA-synthesizing gene (NCED3) were significantly upregulated in transgenic plants overexpressing
FaHsfC1b under heat stress. Our results first demonstrate that HsfC1b plays positive roles in plant
tolerance to heat stress in association with the induction and upregulation of heat-protective genes.
HsfC1b may be used as a candidate gene for genetic modification of cool-season plant species for
improving heat tolerance.
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1. Introduction

Heat stress is one of the major environmental factors that adversely affects plant growth
and development. Early perception and transduction of heat stress signal in plants are mainly
mediated by heat stress transcription factors (Hsfs), Hsfs play an important role in regulating plant
responses to environmental stresses [1]. There are 21 Hsfs in Arabidopsis (Arabidopsis thaliana),
26 in rice (Oryza sativa) and 30 in maize (Zea mays) [2–4]. Hsfs are classified into three classes:
A, B, and C. The functions of Hsfs vary among different classes. HsfA1a is reported to be a
master regulator of heat shock response in tomato (Lycopersicon esculentum) [5]. HsfA2 is known
to positively regulate plant tolerance to salt stress or osmotic stress [6], oxidative stress [7], anoxia [8]
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and heat stress [9,10]. HsfA2 also formed super activator heterodimers with HsfA1 to synergistically
activate target heat stress genes [11]. FaHsfA2c cloned from tall fescue (Festuca arundinacea) was
found to confer improved heat tolerance in transgenic tall fescue [12]. FaHsfA2c was later found
to act downstream of abscisic acid (ABA) signaling [13]. Contrary to HsfA, members of Class B,
such as HsfB1 and HsfB2b, were shown to act as repressors of the expression of heat-inducible
Hsfs but to positively regulate the acquired heat tolerance [14]. Class C Hsfs have been found in
many species and HsfC2 is only found in monocotyledonous plants [15]. Transcription analysis
showed that HsfC genes were upregulated by heat stress in various plant species, such as rice [16],
wheat (Triticum aestivum) [15], cabbage (Brassica rapa) [17], ponkan (Citrus reticulata Blanco) [18],
carrot (Daucus carota) [19], soybean (Glycine max) [9] and salix (Salix suchowensis) [20]. In some of
these species, HsfC genes also responded to osmotic stress, cold stress, or ABA [21]. TaHsfC2a-B in
wheat activated heat protection genes and acted through the ABA-mediated regulatory pathway to
confer heat protection to developing wheat grains [21]. The function of HsfC1b was only analyzed
in rice in a hsfc1b mutant and two artificial micro-RNA (amiRNA) knockdown lines. OsHsfC1b had
transactivation potential that can be induced by osmotic stress and salt stress [22]. The functions of
HsfC1b gene in plant adaptation to heat stress are not well characterized.

Heat shock proteins (HSPs) are involved in heat-induced transcriptional changes [23,24]. HSPs are
highly conserved proteins that are classified as high molecular-mass proteins or small-molecular-mass
proteins (sHSP) [25]. Some HSPs, such as HSP70 and HSP90 are constitutively expressed, although their
expression can be upregulated by heat stress, while most sHSPs, such as HSP18 and HSP22,
are heat-inducible and can be found in the cytoplasm, endoplasmic reticulum, and chloroplasts [25–27].
The stress-protective function attributed to HSPs is as molecular chaperones, and in the case of
sHSPs, also as membrane-stabilizing factors [28]. Promoters of Hsp18.1-CL and Hsp26.5-P(r) contain
cis-acting heat-shock elements (HSEs), which are able to bind to both HsfA1 and HsfA2 [29],
and Hsp18.1-Cl, Hsp22.0-ER, Hsp26.5-P(r), Hsp-70-b were related to thermostability in many Hsf
transgenic plants [10,30,31]. Other heat protection proteins such as galactinol synthase (GalSyn),
FK506-binding protein (Rof), and heat-stress-associated 32-KD protein (HSA32) are also reported to be
the downstream factors of Hsfs and play roles in heat tolerance [32–35].

In response to heat stress, Hsfs bind to HSEs to regulate the expression of HSP genes [36].
For example, HsfA1/HsfA2 superactivator complex formation precedes the recognition of HSEs in
tomato to activate HSP gene expression [11]. Direct interaction between ascorbate peroxidase (APX1),
HSE, and HSF was detected via gel shift assays in Arabidopsis [37]. Hsp70 interacts with HSF to
prevent the trimerization and binding of HSF to HSE, thereby inhibiting the transcriptional activation
of HSP genes by their Hsfs [38]. In reverse, HSPs can also influence the transcription of Hsfs, and Hsp70
together with HsfA1 and HsfA2 modulate the abundance of HsfB1 [39]. The same regulation is found
between Hsfs and other heat protection genes. For example, TaHsfC2a in wheat acts as a direct regulator
of TaGalSyn, and HSE present in the promoter of TaGalSyn is responsible for both heat induction and
transactivation by TaHsfC2a-B [21]. Despite the knowledge of the interactive effects of Hsfs and HSP
genes on heat responses, changes in HSPs and the expression of other heat protection genes due to
Class C Hsfs related to improved heat tolerance in plants are not well documented.

Tall fescue is a perennial cool-season grass widely used as forage and turf grass [40]. Heat stress is
often a major problem in cool-season grasses through the duration of summer and results in declined
turf quality and forage yield [12,13,40,41]. Given the current global warming situation with potentially
intensified and prolonged heat stress, studying mechanisms of heat tolerance by characterizing
heat-responsive genes and the related regulatory network of genes in cool-season grasses such as tall
fescue is of great importance for developing heat-tolerant germplasm.

We hypothesized that HsfC1b may play positive roles in regulating plant heat tolerance and that
the positive effects of HsfC1b may be associated with the induction or upregulation of heat-protective
genes. Therefore, the objectives of this study were to characterize FaHsfC1b, a Class C Hsf, cloned from
tall fescue, a perennial grass species, by sequence analysis and subcellular localization, and to determine
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the physiological functions of FaHsfC1b in plant tolerance to heat stress by overexpressing it in
Arabidopsis and analyzing the expression patterns of selected heat protection genes conferring heat
tolerance as a result of its overexpression.

2. Results

2.1. FaHsfC1b Encoded a Class C Hsf and the Gene Product is Localized in the Nucleus

A 945-bp homology sequence was obtained by Local BLAST (‘tblastn’ program) from our
transcriptome database of tall fescue using the OsHsfC1b (XP_015633152) protein sequence as the
query. The blastx program showed that the protein sequence shared 73% and 75% identity with
Brachypodium distachyon and rice, respectively. A full-length open reading frame (ORF) was predicted
by the FGENESH program and a 744 bp nucleotide sequence encoding 247 amino acids was obtained.
Primers were designed (Table S1) based on the predicted sequence and the fragment was amplified
from the tall fescue cultivar ‘Regenerate’. The nucleotide sequence was confirmed by sequencing.
Homology comparison of amino acid sequence showed that the sequence had high similarity with
HsfC1b in other monocot plants but is very different from HsfC1 in Arabidopsis, especially at the
C-terminal end of the protein (Figure 1).
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Figure 1. Sequence alignment of FaHsfC1b with HsfC1b from Brachypodium distachyon, Triticum aestivum,
Zea mays, Setaria italica, Oryza sativa and HsfC1 in Arabidopsis thaliana. Conserved DNA binding domain
(DBD), oligomerization domain (OD) and nuclear localization signal (NLS) are indicated by purplish
red, dark blue and red color lines. The sequence of FaHsfC1b had been submitted to NCBI and the
accession number is KY475613. Amino acid sequences of other genes were derived from phytozome
(www.phytozome.net) and https://www.arabidopsis.org/index.jsp. Accession numbers of protein
sequences are listed in materials and methods.

According to the phylogenetic tree, the sequence obtained was most closely related to the
HsfC1b clade (Figure 2). Therefore, it was designated as Festuca arundinacea HsfC1b (FaHsfC1b).
Characteristic domains of Class C Hsf, such as a DNA binding domain (DBD) close to the N-terminus
and a short oligomerization domain (OD), also named the HR-A/B region, were found in FaHsfC1b.
The nuclear localization signal (NLS) domain was located at the C-terminal of FaHsfC1b (Figure 1).

www.phytozome.net
https://www.arabidopsis.org/index.jsp
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Figure 2. Phylogenetic tree of FaHsfC1b and other HSFC proteins. The tree was constructed by MEGA
5.1 software, based on alignment of complete protein sequences. The red dot indicates FaHsfC1b
protein. Accession numbers of protein sequences are listed in materials and methods.

Transient transformation of Arabidopsis protoplasts was performed. As shown in Figure 3,
the GFP signal was overlapped with the DAPI stained nucleus. This indicated that FaHsfC1b protein
was localized in the nucleus.
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Figure 3. Subcellular localization of FaHsfC1b protein. FaHsfC1b-eGFP fusion protein was localized in
nucleus of Arabidopsis mesophyll protoplast. Bar = 10 µm.

2.2. Expression Pattern of FaHsfC1b Under Different Abiotic Stresses

To investigate the response of FaHsfC1b to stresses, relative mRNA levels were analyzed by
qRT-PCR. The expression levels of FaHsfC1b in roots and leaves increased during 48 h of exposure to
heat, cold, osmotic, and salt stress (Figure 4). FaHsfC1b expression patterns in response to different
stresses varied among different tissues. For heat treatment, the mRNA levels of FaHsfC1b increased
in leaves and reached peak value (by 40-fold) within 1 h, while in roots FaHsfC1b increased in 4 h
and reached the peak (by 20-fold) in 48 h (Figure 4a). Under cold stress, FaHsfC1b expression level
increased in 4 h in leaves and in 12 h in roots, and the gene expression level in leaves reached the
peak (by 80-fold) in 12 h in leaves and in 24 h in roots (by 52-fold) (Figure 4b). Under osmotic stress,
FaHsfC1b expression level elevated in 8 h and reached the highest level at 12 h (by 48-fold) in leaves
and 48 h in roots (by 41-fold) (Figure 4c). For salt stress (Figure 4d), the expression of FaHsfC1b in roots
increased in 1 h of treatment and reached the peak (by 94-fold) in 4 h. Leaf FaHsfC1b expression level
increased in 8 h and reached the peak (by 19-fold) in 12 h. At 48 h, the mRNA level of FaHsfC1b in
leaves and roots under salt stress decreased back to initial levels.
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Figure 4. FaHsfC1b expression patterns in different abiotic stress conditions. Plants were treated
under heat stress at 45 ◦C (a), cold stress at 4 ◦C (b), osmotic stress (20% PEG-6000), (c) or salt
stress (150 mM NaCl) (d) during a 48 h period. qRT-PCR values were means ± SD of three
biological repetitions (three technical repetitions for each biological repetition). Asterisks indicated
significant differences of mean values at each time period of stress treatment regarding the value at 0 h
(nontreated plants) for each tissue analyzed (root and leaf).

2.3. FaHsfC1b-Transgenic Arabidopsis Exhibited Improvement in Heat Tolerance

In order to investigate the function of FaHsfC1b, we transformed pEarleyGate103-FaHsfC1b into
Arabidopsis by the Agrobacterium-mediated floral-dip method. Twenty T1 transgenic Arabidopsis
lines were obtained by glufosinate ammonium selection and PCR validation (Figure S1). T2 seedlings
and WT were exposed to 45 ◦C for 5 h. Four FaHsfC1b-overexpression transgenic lines which showed
significantly higher survival rates under heat stress were selected for further analysis. The survival
rates of the four transgenic lines, OE5 (with survival rate of 46%), OE6 (74%), OE16 (77%), OE17 (37%),
were significantly greater than that of the WT (8%) (Figure 5a,b). The transgenic lines did not show
any different phenotype from the WT under nonstress conditions (Figures 5a and 6a). Expression of
FaHsfC1b was detected in transgenic lines but not in WT, with OE16 having the highest expression
(Figure 5c). GFP-fused FaHsfC1b protein was detected in roots of transgenic Arabidopsis but not in
WT roots (Figure 5d). The protein was localized to the nucleus (Figure 5e). Tolerance to osmotic and
salt stress was also examined on MS medium supplemented with mannitol and NaCl in petri dishes,
and no significant differences in lateral root number and primary root length were detected between
WT and transgenic lines (Figure S2).
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Figure 5. Physiological characterization of FaHsfC1b-transgenic Arabidopsis seedlings. (a) Showed
three-week-old WT and transgenic Arabidopsis recovered from heat treatment (45 ◦C for 5 h) or
grown in normal conditions. (b) Percentage of plants that survived after 7-day recovery from
heat treatment. Values were means ± SD of five independent lines, fifteen seedlings in each dish
for each line, and three biological replications. Asterisks on the top of bars indicated significant
differences between WT and transgenic lines according to Fisher’s protected LSD test (p < 0.05).
(c) Relative mRNA expression levels of FaHsfC1b in different lines. Values are means ± SD of
five independent lines and three biological replicates (with three technical replications for each
biological replication). N.D. indicated ‘not detectable’. (d) Expression of FaHsfC1b-GFP fusion
protein in FaHsfC1b transgenic lines. Five-day-old seedlings in culture dish were observed under stereo
fluorescence microscope. The upper row indicates seedlings under fluorescence light, while the lower
row indicates seedlings under white light. (e) Localization of FaHsfC1b protein in root tips of transgenic
plants. Five-day-old seedlings in culture dishes were observed under fluorescence microscope BX53
with higher magnification.
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Figure 6. Heat tolerance of FaHsfC1b-overexpression Arabidopsis. (a) Performance of 6-week-old
WT and transgenic plants in pots before heat treatment, after heat treatment (12-h 45 ◦C/12-h 40 ◦C),
and after recovery (25 ◦C). (b) Leaf yellowing rate, photochemical efficiency (Fv/Fm), total chlorophyll
content (Chl), and relative electrolyte leakage (EL) of plants in Figure 6a after 7-day recovery.
Values were means ± SD of four different biological replications. Asterisks on the top of bars indicated
significant differences between WT and transgenic lines according to Fisher’s protected LSD test
(p < 0.05).

The heat tolerance of four FaHsfC1b-overexpression lines and the WT were also evaluated for
mature plants growing in substrate (Figure 6a). After 3 days of heat treatment at 45 ◦C/40 ◦C,
transgenic lines had less severe leaf wilting compared with the WT. During a recovery period of 7 days
at optimal growth temperature following heat stress, most of wilted leaves in the WT became yellow,
whereas transgenic plants had lower leaf yellowing rates than the WT. Leaf photochemical efficiency
(Fv/Fm) and chlorophyll content in OE lines were significantly higher than those in the WT. Fv/Fm and
chlorophyll content of OE6 and OE16 were about 6- and 3-folds higher, respectively, than those of the
WT. Leaf relative electrolyte leakage (EL) in OE lines (about 60%) was significantly lower than that in
the WT (80%) (Figure 6b).



Int. J. Mol. Sci. 2018, 19, 2702 8 of 19

The DAB and NBT stain assay was carried out to examine the production of H2O2 and O2−

of leaves in all lines grown under optimal temperature or heat stress at 37 ◦C for 1 h (Figure 7).
Under the optimal growth temperature, there were no differences between the WT and transgenic
lines (Figure 7a,c). Leaves showed a darker blue color in the WT compared to a light blue in OE
lines (Figure 7d) and darker brown in the WT compared to light brown in OE lines (Figure 7b),
demonstrating more O2− and H2O2 produced in the WT than in the transgenic lines under heat stress.
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Figure 7. Detection of ROS of FaHsfC1b-transgenic Arabidopsis and WT. Plants stained by DAB (a) and
NBT (c) under normal conditions. Plants stained by DAB (b) and NBT (d) after heat stress at 37 ◦C for
1 h.

2.4. Upregulation of Endogenous Erabidopsis Hsf1C Gene, Heat Protection Protein Genes, and ABA-Related
Genes Associated with Overexpression of FaHsfC1b in Response to Heat Stress

In order to further confirm the roles of FaHsfC1b in plant adaptation to heat stress, the relationship
between FaHsfC1b and endogenous Arabidopsis HsfC1 was determined. HsfC1 expression level in
Arabidopsis was significantly upregulated in OE6 and OE16, as indicated in Figure 8, which suggests
that endogenous HsfC1 was activated by overexpression of FaHsfC1b in Arabidopsis. However,
under heat stress for 4 h, HsfC1 expression decreased to the initial level and no significant difference of
HsfC1 expression was detected between the WT and transgenic lines (Figure 8).
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Figure 8. Relative mRNA expression level of endogenous HsfC1 in WT and transgenic lines. Leaves of
WT, OE6, and OE16 were collected under normal temperature and heat stress (37 ◦C) conditions for
4 h. Values were means ± SD of three different biological replications (with two technical replications
for each biological replication). Asterisks on the top of bars indicated significant differences between
WT and transgenic lines at each time period according to Fisher’s protected LSD test (p < 0.05).

In order to further determine the underlying mechanisms for the positive effects of FaHsfC1b on
heat stress, or specifically whether FaHsfC1b may induce or upregulate the expression of selected genes
with known heat-protective functions, four HSP genes (AtHsp18.1-CI, AtHsp22.0-ER, AtHsp26.5-P(r),
AtHsp70b), GalSyn1, AtRof1, and AtHSA32, as well as four ABA-related genes, were compared between
the WT and plants overexpressing FaHsfC1b. The gene expressions were analyzed in leaves but not
in roots of FaHsfC1b-overexpressing transgenic plants, since FaHsfC1b expression was found to be
induced earlier and more intensely in leaves than in roots in heat stress (Figure 4).
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Under optimal growth temperature conditions, no significant differences between WT and
transgenic plants in the expression levels of all selected HSP genes were detected. In response to heat
stress at 37 ◦C, the expression levels of AtHsp18.1-CI, AtHsp22.0-ER, AtHsp26.5-P(r), and AtHsp70b
were significantly elevated and higher in OE6 and OE16 than in WT (Figure 9).
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Figure 9. Relative mRNA expression levels of heat shock protein genes. OE6 and OE16 were selected to
be tested in thermal environment (37 ◦C), and leaf samples were collected at 0 and 4 h after heat stress.
Values were means ± SD of three different biological replications (with two technical replications for
each biological replication). Asterisks indicated significant differences between means of WT and
transgenic lines at each time period according to Fisher’s protected LSD test (p < 0.05).

The expression level of AtGalSyn1 was significantly higher in OE6 and OE16 than in the WT
under normal temperature and heat stress conditions (Figure 10). The expression level of AtGalSyn1
was further upregulated in both WT and transgenic plants in response to heat stress, and to a greater
extent for OE6 and OE16 than the WT. AtRof1 and AtHSA32 did not exhibit differences in expression
levels between the WT and transgenic plants under normal temperature, but were upregulated to a
significantly higher level in OE6 and OE16 than in WT in response to heat stress (Figure 10).
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Figure 10. Relative mRNA expression levels of other heat protection genes. OE6 and OE16 were
selected to be tested in thermal environment (37 ◦C) and leaf samples were collected at 0 and 4 h
after heat stress. Values were means ± SD of three different biological replications (with two technical
replications for each biological replication). Asterisks indicated significant differences between means
of WT and transgenic lines at each time period according to Fisher’s protected LSD test (p < 0.05).
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For ABA-related genes, overexpressing FaHsfC1b lead to strong upregulation of the key
gene involved in ABA biosynthesis, 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), under normal
temperature and heat stress (Figure 11a) but did not cause significant changes in the expression levels
of ABA deficient 1 (ABA1, codes for zeaxanthin epoxidase (ZEP)), ABA2 (codes for short chain alcohol
dehydrogenase/reductase (SDR)), and ABA insensitive 1 (ABI1) that are involved in ABA biosynthesis
(ABA1 and ABA2) and signaling (ABI1) (Figure S3). In turn, FaHsfC1b expression was induced by ABA
treatment in both leaves and roots in tall fescue (Figure 11b).
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Figure 11. Relative mRNA expression levels of NCED3 and FaHsfC1b. (a) Relative mRNA expression
levels of NCED3 in WT and transgenic Arabidopsis plants. OE6 and OE16 were selected to be tested
in thermal environment (37 ◦C) and leaf samples were collected at 0 h and 4 h after heat stress.
Values were means ± SD of three different biological replications (with two technical replications for
each biological replication). Asterisks indicated significant differences between means of WT and
transgenic lines at each time period according to Fisher’s protected LSD test (p < 0.05). (b) Relative
mRNA expression levels of FaHsfC1b in leaves and roots under 100 µM ABA treatment in tall fescue.
qRT-PCR values were means ± SD of three biological repetitions (three technical repetitions for every
biological repetition). Asterisks indicated significant difference of mean values at each time period of
stress treatment regarding the value at 0 h (nontreated plants) for each tissue analyzed (root and leaf).

3. Discussion

As argued in the introduction, Class C Hsfs were less characterized compared to Class A and
Class B Hsfs [22]. This study first identified and cloned a Class C Hsf in tall fescue (FaHsfC1b),
which is located in the nucleus, suggesting that this gene is a putative transcription factor (Figures 1–3).
FaHsfC1b had a highly structured DNA binding domain located close to the N-terminus, a hydrophobic
oligomerization domain, and a nucleus localization signal (Figure 1). The OD-dependent interactions
were found to form hetero-oligomeric complexes between HsfA1 and HsfA2 and between HsfA4 and
HsfA5 [11,42]. FaHsfC1b may interact with other Hsfs through OD-dependent manner, but this needs
further investigation.

OsHsfC1b controlled plant development in addition to its function in abiotic stress, since retarded
growth was observed in the hsfc1b mutant and knock-down lines under nonstress conditions [22].
However, transgenic Arabidopsis overexpressing FaHsfC1b did not exhibit phenotypic differences
when compared with the WT. This may be caused by the plant’s heterologous system, since Arabidopsis
is a dicot, while tall fescue is a monocot. Furthermore, only one HsfC1 was presented in Arabidopsis,
while tall fescue had several HsfCs, and each gene may function divergently.

Hsfs are known to play roles in stress adaptation for various plant species, but differential
functions of different types of Hsfs may be involved with different stresses and stress severities.
HsfC1b was previously showed to be upregulated by heat and many other environmental
stresses [16,43–45]. In this study, FaHsfC1b was found to responsive to heat, cold, osmotic, and salt
stress, which was similar to previous reports (Figure 4). The function of HsfC1b was only analyzed in



Int. J. Mol. Sci. 2018, 19, 2702 11 of 19

rice by inserting a T-DNA sequence to disturb the expression of OsHsfC1b, and OsHsfC1b was found
to be associated with plant tolerance to osmotic stress and salt stress, as demonstrated by shorter shoot
and root length in mutants compared with the WT [22]. Unlike OsHsfC1b, overexpression of FaHsfC1b
in Arabidopsis did not have significant effects on plant tolerance (no significant difference in primary
root length and lateral root number between WT and transgenic lines) to osmotic stress and salt stress
in our study (Figure S2). In wheat, TaHsfC2a was significantly upregulated by drought treatment,
but transgenic plants showed no obvious increase in tolerance to drought stress [21]. Our findings
showed the same phenomenon, however the underlying mechanisms need further clarification. To our
knowledge, the physiological functions of HsfC1b in plant tolerance to heat stress have not been
reported. In our study, to further investigate the functions of FaHsfC1b in heat tolerance, survival rates
of seedlings and physiological traits of mature plants, including leaf yellowing rate, photochemical
efficiency, chlorophyll content and membrane stability, as well as the production of relative oxygen
species were analyzed in transgenic Arabidopsis lines overexpressing FaHsfC1b. Seedlings of transgenic
lines exhibited significantly higher survival rate under heat stress and better recovery following heat
stress compared with the WT (Figure 5). Furthermore, transgenic lines of mature plants exhibited
significantly lower leaf yellowing rate and higher chlorophyll content and photochemical efficiency
(Figure 6). Those results indicated that FaHsfC1b helped to alleviate heat damage to the photosynthetic
systems. In addition, transgenic lines exhibited a lower degree of EL and H2O2 and O2− production
than the WT under heat stress, indicating the positive roles of FaHsfC1b in protecting plants from
oxidative damage and maintaining cellular membrane stability (Figures 6 and 7). Results from this
study strongly suggested that FaHsfC1b conferred heat tolerance.

HSPs are known targets of Hsfs, as stated in the introduction. In this study, three sHsps
(Hsp18.1-Cl, Hsp22.0-ER, Hsp26.5-P(r)) and one high molecular-mass proteins (Hsp70-b) were
examined. All four Hsp genes were upregulated after heat treatment (Figure 9). Hsp18.1 was located
in cytoplasm [46], and it was positively related to cellular thermotolerance and is used as a biomarker
together with other Hsps (Hsp17.9A, Hsp17.7 and Hsp16.9A) for screening plants with superior
heat stress tolerance [47]. The interaction of hetero-oligomeric complexes of Hsp18.1 and Hsp17.7 is
essential for the formation of heat shock granules so that bound proteins are covered and protected
under heat stress [48]. Promoters of Hsp18.1 and Hsp26.5 are able to bind to both HsfA1 and HsfA2,
and co-expression of early (HsfA1a and HsfA1b) and late Hsfs (HsfA2) caused additive effects only
when the induction of Hsp18.1 promoter occurred [29]. Hsp22 was located in endoplasmic reticulum
and was found to have a high expression level in seeds and responded to heat stress in plants [49,50].
Hsp70 is essential for normal growth and contributes to plant tolerance to heat stress [39]. In this
study, gene expression levels of Hsp18.1, Hsp22, Hsp26.5, and Hsp70 were higher in transgenic lines of
Arabidopsis (OE6 and OE16) overexpressing FaHsfC1b than that in the WT under heat stress (Figure 9),
suggesting that the elevated expression of those HSP genes due to overexpression of FaHsfC1b could
contribute to the improved heat tolerance of transgenic lines. Meanwhile, other heat protection
genes like AtGalSyn1, AtRof1 and AtHSA32 also showed higher expression level in transgenic plants
under heat stress (Figure 10). GalSyn participated in the synthesis of galactinol, which contributed
to osmoprotection that has been proved to positively regulate plant thermotolerance [35]. Notably,
AtGalSyn1 was activated by overexpressing FaHsfC1b under normal temperature which is consistent
with the endogenous upregulation of HsfC1 in Arabidopsis (though HsfC1 was not induced at 4 h
after heat stress and no difference between WT and transgenic plants was detected which may be
caused by dynamic expression pattern of HsfC1 or regulation of unknown factors) (Figure 8). In wheat,
TaHsfC2a could bind to HSE element in TaGalSyn promoter [21], but whether FaHsfC1b can directly
activate FaGalSyn needs further study. As a novel HSP, HSA32 is heat stress inducible and crucial
for thermotolerance during long recovery in Arabidopsis [32–34]. Rof1 interacted with HSP90.1 to
modulate thermotolerance by affecting the accumulation of certain sHSPs [33]. All these results
suggested that FaHsfC1b may function through regulating these heat protection genes to confer
thermotolerance. However, the specific heat protection proteins serving as target genes for FaHsfC1b
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are still largely unknown, this study may be approached by RNA-Seq or microarray analysis in
the future.

It is found that pre-treatment with ABA confers enhanced thermotolerance in monocot species
like tall fescue, maize and creeping bentgrass (Agrostis stolonifera) [13,51,52]. Heat-stressed winter rape
contained higher ABA content compared with the control plants [53]. ABA was found to be involved
in heat stress in alga, as heat stress significantly increased endogenous ABA content in the alga [54].
Two ecotypes of reed (Phragmites communis Trin.), ‘dune reed’, and ‘swamp reed’ exhibited different
tolerance levels to heat stress due to their differential ABA synthesis abilities under heat stress [55].
All these evidences suggested that ABA may play an important function in plant thermotolerance.
The key enzyme NCED3 that is involved in ABA biosynthesis was significantly upregulated by
overexpressing FaHsfC1b (Figure 11a). However, expression levels of another two genes involved in
ABA biosynthesis (ABA1 and ABA2) and one gene participating in ABA signaling (ABI1) showed no
significant differences between WT and transgenic lines both under control and heat stress conditions
(Figure S3). Meanwhile, exogenous ABA induced the expression of FaHsfC1b in tall fescue (Figure 11b).
These results suggest that ABA may be involved in FaHsfC1b regulation of heat tolerance, but the
relationship of ABA and FaHsfC1b deserves further investigation. One possible explanation is that
FaHsfC1b and ABA interacted with each other to regulate plant tolerance to heat stress. Some HSP
genes are regulated by ABA [56–59]. In wheat, TaHsfC2a acts downstream of ABA to directly or
indirectly activate heat protection genes to enhance heat tolerance [21]. In tall fescue, FaHsfA2c and
HSPs were upregulated by ABA which contributed to better heat tolerance [13]. OsHsfC1b was found
to have a transactivation function to bind with the HSE element [60]. Since sequence alignment showed
that FaHsfC1b had high similarity to OsHsfC1b, we postulated that these two genes may have similar
binding characteristics. It is particularly interesting that FaHsfC1b may directly activate the expression
of NCED3. Further research would be necessary to identify the binding elements between FaHsfC1b
and the promoter of downstream target genes in order to better understand the molecular components
of the regulatory network where FaHsfC1b is involved in contributing to tolerance to heat stress.

4. Materials and Methods

4.1. Plant Growth Conditions and Treatments

Tillers of tall fescue (cv. ‘Regenerate’) were collected from stock plants and planted in pots
filled with a mixture of peat, vermiculite, and pearl stone (3:1:1 v/v/v). Plants were maintained in
a greenhouse with natural sunlight and average day/night temperature of 25/20 ◦C. Plants were
watered every three days and fertilized once a week during the seedling establishment.

For detection of relative expression levels of FaHsfC1b under different abiotic stress, tillers from
stock plants were transplanted into to half-strength Hoagland’s nutrient solution [61] for two weeks in
an environment-controlled growth chamber (MT8070iE, Xubang, Henan, China). The nutrient solution
was changed once every week. Abiotic stress was carried out in hydroponic conditions. Plants were
exposed to osmotic stress (20% polyethylene glycol 6000 solution (PEG-6000)), salt stress (150 mM
NaCl), cold stress at 4 ◦C, or heat stress at 45 ◦C for 48 h. Each treatment had four biological replicates
in four containers. All the treatments were conducted in environment-controlled growth chambers at a
12-h photoperiod with PAR of 500 µmol photons m−2·s−1. Roots and leaves were sampled at 0, 1, 2, 4,
8, 12, 24, and 48 h, and stored in a −80 ◦C freezer (Haier, Qingdao, China). 0.0264 g ABA powder was
dissolved in 2 mL ethanol to make a 50 mM stock solution. For ABA treatment, ABA stock solution
was added to half-strength Hoagland’s nutrient solution to reach a final concentration of 100 µM.
Plant roots were subjected to ABA for 12 h, and leaves and roots were collected at 0, 1, 2, 4, 8 and 12 h.

For analysis of heat tolerance of transgenic Arabidopsis overexpressing FaHsfC1b,
Arabidopsis ecotype Columbia (col-0) was used as the wild-type (WT). WT and T2 transgenic seeds
were germinated on MS medium which contained 3% sucrose, 0.7% agar and supplemented without or
with 20 µg·mL−1 glufosinate ammonium (Sigma, St. Louis, MO, USA). Both WT and transgenic seeds
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were placed in dark conditions at 4 ◦C for 3 days and maintained in the environment-controlled growth
chamber controlled at 23/20 ◦C (day/night) with a 12-h photoperiod, and 70% relative humidity
for germination.

For the heat stress treatment on seedlings of Arabidopsis in the MS medium, 5-day-old WT and
transgenic plants were transferred to petri plates of MS medium in a growth chamber for 3 weeks
and were then exposed to heat stress at 45 ◦C for 5 h followed by exposure to 23 ◦C for 7 days to
examine post-stress recovery. For osmotic and salt stresses, one-week-old plants in MS medium were
transferred to MS with 400 mM mannitol or 160 mM NaCl supplemented. Primary root length and
lateral root number were measured for WT and transgenic plants (OE5, OE6, OE16 and OE17) after
14 days treatment.

For heat stress treatment on mature plants of Arabidopsis grown in substrate, four transgenic
lines (OE5, OE6, OE16 and OE17) and the WT were transferred to pots filled with peat-vermiculite
mix (3:1 v/v) for 6 weeks and then were subjected to heat stress at 45/40 ◦C (day/night) for 3 days
followed by exposure to 23 ◦C for 10 days to examine post-stress recovery.

For qRT-PCR analysis of FaHsfC1b and downstream heat protective gene expression in response
to heat stress, 3-week-old plants on MS medium were exposed to heat stress at 37 ◦C. Samples were
collected after 4 h of heat stress treatment.

4.2. Isolation Fahsfc1b Gene from Tall Fescue

For gene isolation, 30-day-old tall fescue plants were subjected to 45 ◦C for 1 h in a growth
chamber to induce Hsf gene expression. Total RNA was extracted from leaf tissues using the Plant
RNA Kit (50) (Omega Bio-Tec, Norcross, GA, USA). RNA quality and integrity was checked by
gel electrophoresis and Tecan Infinite 200 Pro (Austria GmbH, Grödig, Austria), and quantity was
determined by Tecan Infinite 200 Pro. cDNA was synthesized using the PrimeScript 1st strand cDNA
Synthesis Kit (Takara, Otsu, Japan). Primers were designed according to our transcriptome database
of tall fescue using the software Primer Premier 5.0 (All primers used in this study were listed in
Table S1). By using touch-down PCR [62], full length open reading frames (ORFs) were obtained.
The PCR conditions were set as follows: the initial denaturation started at 98 ◦C for 30 s, followed
with a succession of different cycles, 5 cycles of PCR (98 ◦C for 10 s, 70 ◦C for 30 s, 72 ◦C for 3 min),
5 cycles of PCR (98 ◦C for 10 s, 68 ◦C for 30 s, 72 ◦C for 3 min), 10 cycles of PCR (98 ◦C for 10 s, 65 ◦C
for 30 s, 72 ◦C for 3 min), 15 cycles of PCR (98 ◦C for 10 s, 62 ◦C for 30 s, 72 ◦C for 3 min), and finally
72 ◦C for 10 min. The blunted-end fragment was then cloned into pJET 1.2/blunt vector. The inserted
fragment was confirmed by colony PCR before samples were sent for sequencing (Springen Co., Ltd.,
Nanjing, China).

4.3. Subcellular Localization of Fahsfc1b Protein

Arabidopsis protoplasts were isolated using the method described by Wu et al., 2009.
Large amounts of Arabidopsis protoplasts were obtained by peeling off the lower side of the
epidermal cell layer and then digesting them in 15 mL enzyme solutions in light for 1 h.
After washing with W5 solution, resuspended protoplasts were prepared for transient transformation.
Linearized pENTR1A-FaHsfC1b had a LR recombination with p2GWF7.0 vector (~6.7 Kb) to construct
p2GWF7.0-FaHsfC1b vector with eGFP fused at the C-terminal of the FaHsfC1b protein. Ten µg
of the p2GWF7.0-FaHsfC1b plasmid were introduced into protoplasts by Polyethylene glycol
4000 (PEG-4000) (Fluka, Milwaukee, WI, USA) mediated method [63]. Followed by 16 h incubation
at 25 ◦C under light in six-well plates, protoplasts were observed and photographed by a confocal
laser scanning microscope (Carl Zeiss, Jena, Germany). For the transgenic Arabidopsis, root tips of
5-day-old seedlings were observed under a BX53 fluorescence microscope (Olympus, Tokyo, Japan).
In the above two experiments, DAPI dyeing was performed to indicate the nucleus by adding DAPI
solution to a 10 µg·mL−1 final concentration.
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4.4. Plasmid Construction and Plant Transformation

pJET 1.2-FaHsfC1b was digested with EcoRI and EcoRV to get a FaHsfC1b ORF without a
stop codon, which was then inserted into pENTR1A dual Selection Vector by T4 ligase. Linearized
pENTR1A-FaHsfC1b was recombined with a pEarleyGate 103 plasmid using the LR Clonase II enzyme
mix (Invitrogen, Carlsbad, CA, USA). The CaMV35S::FaHsfC1b construct was transformed into
Arabidopsis by floral dip method [64]. T1 seeds were selected first on MS medium (3% sucrose,
0.7% agar, and 20 µg·mL−1 glufosinate ammonium), and germinated seedlings, supposedly the
positive transgenic ones, were transferred into pots, followed by PCR detection using the primers for
FaHsfC1b (reverse primer) and pEarleyGate 103 expression vector (forward primer). T2 seeds were
collected for the following experiment.

4.5. qRT-PCR Analysis

For qRT-PCR, total RNA was extracted from samples using the Plant RNA Kit (50) (Omega Bio-Tec,
Norcross, GA, USA) and was then reverse-transcribed to cDNA using the PrimeScript RT reagent Kit
with the gDNA Eraser (Perfect Real Time) (Takara, Otsu, Japan). qRT-PCR was finished with the SYBR
Green I Master reaction system (Roche Diagnostic, Rotkreuz, Switzerland). The operating procedure
by Roche LightCycler480 II machine (Roche Diagnostic, Rotkreuz, Switzerland) for qRT-PCR was as
follows: Pre-denaturation at 95 ◦C for 10 min, followed by 40 cycles (15 s at 95 ◦C, 15 s at 60 ◦C and 20 s
at 72 ◦C), with data having been collected at 65 ◦C in each cycle. During qRT-PCR, in order to obtain
more accurate data, there were three biological replicates for every treatment and each cDNA sample
had three technical replicates. The data was standardized by the reference genes, Fatublin for tall fescue
and AtActin2 for Arabidopsis. Gene expression levels were calculated by the 2−∆∆Ct method [65].

4.6. Physiological Characterization of Transgenic and Wild Type Arabidopsis Under Heat Stress

For photochemical efficiency of leaves, Fv/Fm was detected by a fluorescence induction monitor
(OPTI-Sciences, Hudson, USA) after 30 min of dark adaption.

For cell membrane stability, relative electrolyte leakage (EL) was measured. Fully expanded
leaves (0.2 g) were washed and immersed in 30 mL deionized water in a 50 mL centrifuge tube,
in which leaves were wrapped in a Kim-wipe. Initial value of electrolyte leakage, Ci, was collected
after centrifuge tubes were shaken on a shaker for 24 h. Leaf samples were then autoclaved for 20 min
at 121 ◦C, and Cmax was collected after another 24 h of shaking at 180 r min−1. The data were measured
by a conductance meter (Thermo Scientific, Baverly, MA, USA). The value of EL was calculated by
formula: EL = (Ci/Cmax) × 100.

For chlorophyll content, 0.1 g fully expanded leaves were clipped and immersed in 10 mL 95%
ethanol in 15 mL centrifuge tubes. After incubating in the dark at 25 ◦C for 72 h, light absorption value
was obtained by a spectrophotometer (GE Healthcare Life Sciences, Cambridge, UK) under 663 nm
and 645 nm wavelength light. Leaves were dried at 80 ◦C to get their dry weight. The formula used to
calculate chlorophyll content is as follows: C = ((13.95 × A663 − 6.88 × A645 + 13.95 × A645 − 7.23 ×
A663) × 0.01)/dry weight.

For phenotypic characterization, photographs were taken by single lens reflex camera
(Nikon D5100, Bangkok, Thailand). Photographs of seedlings in MS medium were collected at
7 days after heat stress treatment while photographs of mature plants grown in soil were taken prior to
heat treatment, 3 days after heat treatment, and 10 days after post-stress recovery. The rate of survival
was determined for seedlings in MS medium following recovery from heat damage and the yellow
leaves (with at least 1/3 of the leaf being yellow) of mature plants were counted following recovery
from heat treatment.
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4.7. Histochemical Detection of Oxidation Resistance

For detection of O2−, nitroblue tetrazolium (NBT) method [59] was used for reference. Leaves were
sampled from 7-day-old WT and transgenic lines in MS medium before and after heat treatment at
37 ◦C for 1 h. Seedlings were carefully clipped from the medium and then immersed in 25 mM
HEPES buffer (pH 7.6), which contained 0.1 mg mL−1 NBT (Sigma-Aldrich, St. Louis, MO, USA).
After coloration for 2 h in dark conditions at 25 ◦C, NBT solution was changed with 85% ethanol in
order to dislodge chlorophyll in plants, and after 24 h photographs were taken by stereomicroscope
(Olympus, Tokyo, Japan).

Detection of H2O2 was based on the 3,3′-diaminobenzidine (DAB) method [66]. 0.1 mg·mL−1

DAB (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 50 mM CAT buffer (pH 5.0). Samples were
selected as mentioned before. After coloration for 24 h in dark conditions at 25 ◦C, DAB solution was
changed with 85% ethanol. Finally, photographs were taken.

4.8. Statistical Analyses

Data in all experiments were analyzed using the general linear model test, using the analysis
of variance program of SAS (SAS 9.0, Cary, NC, USA). Mean values between different WT and
overexpression lines or different treatments at different times were defined as significant when the
value of Fisher’s protected least significant difference (LSD) was lower or equal to 0.05 probability.

4.9. Accession Numbers

Accession numbers of the proteins used in this study were as follows: FaHsfC1b (KY475613),
BdHsfC1b (Bradi2g489), TaHsfC1b (AHZ44773), ZmHsf30 (GRMZM2G086), SiHsfC1b (Si002580m),
OsHsfC1a (Os01g43590), OsHsfC1b (Os01g53220), OsHsfC2a (Os02g13800), OsHsfC2b (Os06g35960),
HsfC1 (At3G24520).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/9/
2702/s1.
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