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Aim: To determine if intranasally administered olfactory mucosa progenitor cells (OMPCs) migrate to
damaged areas of brain. Materials & methods: Rowett Nude (RNU) adult rats were injured using the
Marmarou model then 2 weeks later received intranasally-delivered human OMPC. After 3 weeks,
rats were sacrificed and brain sectioned. The mean distances from the human OMPCs to markers for
degenerative neuronal cell bodies (p-c-Jun+), axonal swellings on damaged axons (β-APP+) and random
points in immunostained sections were quantified. One-way ANOVA was used to analyze data. Results:
The human OMPCs were seen in specific areas of the brain near degenerating cell bodies and damaged
axons. Conclusion: Intranasally delivered human OMPC selectively migrate to brain injury sites suggesting
a possible noninvasive stem cell delivery for brain injury.

Plain language summary: As a first step toward helping those with brain or spinal cord injury, human
stem cells from the nose were applied to the inside of the nose of brain injured rats. These stem cells
migrated to specific areas of damage in the brain. Stem cells from the nose are special, in that these cells
continuously divide and form nerve cells. This study may lead to an uncomplicated treatment where tissue
is taken from one side of the nose and later the stem cells from the tissue are delivered to the other side
of the nose.

First draft submitted: 2 March 2022; Accepted for publication: 27 June 2022; Published online:
13 July 2022

Keywords: brain injury • homing • intranasal delivery • olfactory mucosa • progenitor cells • stem cells

Diffuse axonal injury (DAI) is the most common type of traumatic brain injury that affects 2.8 million people
in the USA alone in 2013 [1]. It is estimated that 1.1% of the US civilian population are dealing with long-term
disabilities due to head injury [2]. Stem cells hold great promise in treating brain injury [3] and other nervous system
disorders [4]. The optimal stem cell type and delivery method has yet to be determined as there are many different
types of stem cells and various delivery methods being investigated.

The ideal stem cell therapy for neural injuries would be using a person’s own cells with a neural fate that are
obtainable and deliverable with minimally invasive techniques. It is safer to use cells that normally become neurons
or glia, in that these cells are less likely to become other inappropriate cell types [5]. Although there are many
readily available stem cells such as bone marrow mesenchymal cells, fat cells and umbilical cord blood cells, none
of these cells are normally fated to be neural cells. Other sources of stem cells such as embryonic, fetal and induced
pluripotent stem cells suffer from problems of rejection and/or tumor formation [6–8].

Progenitor cells from the olfactory mucosa (OMPCs) are easily obtainable from the upper nasal cavity clinically.
Minimally or non invasive procedures can be used to obtain OMPCs from intranasal tissue without loss of
olfaction [9–11]. The olfactory mucosa is capable of lifelong neurogenesis in the adult nervous system, providing
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a viable source of progenitor cells. OMPCs improved function and lessened several indicators of ischemic brain
damage [12–14]. Olfactory mucosa contains two types of progenitor cells: basal epithelial progenitor cells and ecto-
mesenchymal lamina propria progenitor cells. Both types of cells divide rapidly in culture and give rise to neurons [15].
The basal progenitor cells continuously replace the olfactory bipolar neurons and maintain telomerase activity [16].
The ecto-mesenchymal cells differ from bone marrow mesenchymal cells in their propensity to form neurons and
reduce inflammation [17,18]. Based on the location of these ecto-mesenchymal cells and SOX17 expression, these
ecto-mesenchymal cells may be pericytes [19].

In terms of delivery, many methods are used to deliver stem cells including direct injection, intravenous, intra-
arterial, injections into the cerebrospinal fluid (CSF) and intranasal. In preclinical studies comparing the efficacy
of different delivery methods, there are conflicting results [20–23]. Direct injections result in the greatest number
of cells at the injury site but injections may damage normal tissue and the injury site may be an inhospitable
environment due to free radicals [24]. For DAI, injections would be extremely challenging as several very specific
sites such as corpus callosum, pyramidal tract and superior cerebellar peduncle are damaged [25,26]. Less invasive
methods such as intravenous, intra-arterial, CSF injections and intranasal rely on the homing capacity of the stem
cells. Intravenous is minimally invasive but few cells reach the injury site, as cells must pass through the lung and
other organs before reaching the brain or spinal cord [27,28]. Intra-arterial is more direct but there are reports of
micro-emboli formation [29,30]. CSF injections are done by minimally invasive methods and have been used in
several studies. [31,32] although there is slight risk of infection clinically [33].

Accessing the CSF is a common medical procedure but an even less invasive cellular delivery method was recently
described. Danielyan and colleagues found that when drops of buffer containing mesenchymal stem cells or human
glioma cells are placed on the end of the rat’s nose and aspirated, the cells reach the brain within 2 h [34,35]. Intranasal
allows better survival of cells than intracranial delivery [36,37]. This delivery method of stem cells is effective in animal
models spinal cord injury [38], Parkinson’s disease [39], brain injury [40], Alzheimer’s [41] and multiple sclerosis [42].
An obvious advantage due to lack of invasiveness is that repeated doses can be given [43]. We hypothesized that
intranasally applied OMPCs would migrate in close proximity to degenerated cell somas and axons at specific brain
regions in rats with DAI. In this study, the homing capacity of human OMPCs applied intranasally was investigated
quantitatively for the first time in a brain injury model of DAI.

Materials & methods
Cell preparation
Human olfactory mucosa tissue samples were obtained from surgical remnants (Wayne State University Institutional
Review Board #052711) during skull base surgeries. Tissue was cut in small pieces using two #11 surgical blades
in a small drop of Hank’s Balanced Salt Solution (HBSS, Hyclone, UT, USA) then incubated in 2 ml of dispase
I (Stem Cell Technology) and 2.4 μl of DNase II (Roche) for 30 min at 37◦C, pipetting up and down halfway
through. Between steps, the solution was centrifuged and supernatant discarded. Cells were then incubated in
1.5 ml of Accutase (Innovative Cell Technology, CA, USA) under the same conditions. OMPCs were incubated
overnight in DMEM/F12 (Gibco) with 10% serum obtained from the patient. Serum was prepared by spinning
blood for 15 min at 1000 RCF then using the supernatant. To select for stem cells, the following media was used:
DMEM/F12 with 2% xeno-free B-27 (Gibco), (EGF, 50 ng/ml, Peprotech, NJ, USA), basic (FGF-2, 25 ng/ml,
R&D systems, MN, USA), 1% antibiotic/antimycotic (HyClone). Cells are plated in sterile non tissue culture
treated flasks.

Injury model
All animal procedures were approved by the Wayne State University Institutional Animal Care and Use Committee.
Nude RNU adult rats (Charles River, MA, USA) are athymic (immune deficient) to prevent rejection of the human
OMPCs [44]. Animals (n = 6) were housed in sterile cages, received sterile food and cages changed in a laminar flow
hood. The timeline of experiments is given in Figure 1.

Rats were anesthetized with 1.5–2% isoflurane with oxygen at 1 l/min using a calibrated vaporizer and a nose
cone. Brain injury was done using the Marmarou Acceleration Impact model of DAI [45,46] that consists of dropping
a 450 g brass weight from a height of 2 m that impacts a metal disc cemented to the rat’s skull in the midline between
bregma and lambda. The weight is dropped in a 3 m long hollow plexiglass cylinder with an outer diameter 25 mm
attached by supports bolted to the wall for stability. Some prefer to call this injury ‘traumatic axonal injury’ [47].
Briefly, after the scalp is shaved and cleaned 3x with betadine then 70% alcohol, a midsagittal scalp incision (2 cm)
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Figure 1. Timeline of experiments. Rats
received a diffuse axonal brain injury using
the Marmarou model then received
intranasally applied olfactory mucosa
progenitor cells 2 weeks later. At 3 weeks
after olfactory mucosa progenitor cell
delivery, rats were sacrificed and tissue
analyzed.

was made and the underlying muscles and connective tissue retracted laterally. Cranioplastic cement was used to
attach a round stainless-steel disc helmet (10 × 3 mm) directly to the skull. Anesthesia is briefly discontinued and
the animal placed in a prone position on a 12 × 12 × 43 cm polyurethane foam (Foam to Size Inc., VA, USA) in
a plexiglass box. Details on obtaining consistent results with the foam are reported [48]. The device tube was then
positioned directly above the disc. The injury was delivered by dropping the weight suspended by a fishing line. The
box was moved immediately after impact to avoid a secondary injury. The rats were placed back on anesthesia and
the helmet and cement were removed and the skin closed with 4–0 nylon suture. OMPCs were applied intranasally
2 weeks after injury.

Stem cell administration
One day prior to stem cell administration, cells were incubated overnight in a combination of stem cell media
and DAPI (20 mg/ml, Abcam). DAPI was effective as a secondary method to identify stem cells as was done in a
previous study [49]. The next morning, cells were counted using a hemocytometer then centrifuged for 3 min at
200 rpm. Supernatant was removed and cells were diluted to a concentration of 1.2 million cells per 24 μl of HBSS.
For intranasal administration, a syringe with BD Intramedic™ PE 10 tubing (25 mm length marked as determined
to reach the olfactory mucosa) was used. Rats were anesthetized with isoflurane and received 6 μl hyaluronidase
(100 U, Sigma) in each nostril two-times, for a total administration of 24 μl [35]. An hour later, the cells diluted in
HBSS or HBSS alone were administered intranasally just as the hyaluronidase was delivered. Rats were randomly
assigned to receive OMPC or HBSS. There was a total administration of 1.2 million OMPCs in 24 μl for each rat
that received stem cells.

Immunofluorescence
About 3 weeks after the cell administration, rats were terminally anesthetized with an intraperitoneal injection of
pentobarbital 125 mg/kg and perfused through the left ventricle with saline followed by 10% formalin, post fixation
for 24 h then equilibrated with 30% sucrose. Rat brains were cut using a horizontal sledge type microtome at a
thickness of 30 microns and sections placed in cryoprotectant for long-term storage in the freezer [50]. The brains
were cut at a coronal orientation until the cerebellum was reached. For the cerebellum and brain stem, the brain
was sectioned in parasagittal plane. Twenty random tissue sections were mounted on gelatin coated slides. Slides
were rinsed in PBS for 2 minutes, three-times. Slides were placed in 100◦C citrate buffer in a preheated 100◦C oven
for 1 hour for antigen retrieval. Slides were rinsed in 1X phosphate-buffered saline (PBS) for 2 min, three-times.
Sections were blocked using in 5% normal goat serum (NGS), 1% bovine serum albumin (BSA), 0.3% triton-X in
PBS for 90 min. Primary antibodies were diluted in 2% NGS, 1% BSA in PBS and incubated overnight at 4◦C.
As a control, primary antibody was omitted to detect any non specific immunostaining. The following antibodies
were used: mouse anti human nuclei (Millipore) 1:100, mouse anti-β-APP (Invitrogen, axonal swellings [51]), rabbit
anti-phospho-c-jun 1:250 (Cell Signaling, p-c-jun, cell soma atrophy [52]) and rabbit anti-β-tubulin III (Millipore,
neuronal marker [53]). Slides were rinsed in PBS for 2 min, three-times. Secondary antibodies used were Alexa fluor
488 goat anti mouse (1:250) and Alexa fluor 546 anti rabbit (1:200) that were diluted in 2% NGS, 1% BSA in
PBS and incubated for 2 h in the dark. Slides were rinsed in 1x PBS for 2 min, three-times then coverslipped using
50:50 glycerol: PBS.

Data analysis
The distribution of fluorescent cells was photographed using a Nikon Eclipse 90i fluorescent microscope that
automatically photographed the entire section using multiple wavelengths. The mean distances from the OMPCs
to the following sites were compared using Neurolucida (BMF Bioscience, Williston, VT, USA) : axonal injury
(β-APP); cell soma atrophy (p-c-jun); random site (randomly generated X, Y coordinate for each tissue section).
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Figure 2. Distribution of intranasally delivered olfactory mucosa progenitor cells to axonal damage and cell
atrophy. Mapping of OMPC cells and p-c-jun+ and β-APP+ profiles in a coronal (A) and parasagittal section (B) OMPCs
were found in injury sites. Injured regions include the cerebral cortex, cerebellum, cerebral peduncles and brain stem
tracts. Some of the dots do not appear perfectly circular because of the overlap of dots. In most brains, the number of
human OMPCs on each side differed by less than 11%. In this illustrated section, there is more than 11% difference in
the number of OMPCs between the two sides and higher indicators of damage (β-APP and p-c-jun) on the side with
more OMPCs. A limitation of this study is that labeled cells were not photographed using a confocal microscope to
visualize processes of the OMPCs.
OMPC: Olfactory mucosa progenitor cell.

These measurements were used to determine if the OMPCs were more likely to migrate to injury sites than other
random sites in the rat brain. The distances were compared using one-way analysis of variance (ANOVA) followed
by the Tukey–Kramer post hoc test. Significance was set at p < 0.05.

Results
All rats survived the brain injury and OMPCs were applied 2 weeks after injury using tubing inserted into the
nasal cavity of the rats. Rats were sacrificed at 3 weeks after intranasal application. No DAPI or anti human
immunolabeling was present in the sections from rats that received HBSS alone. In the rats that received human
OMPC, cells with anti human nuclei immunostaining were visible. Double immunofluorescent revealed that the
DAPI-labeled cells were also immunoreactive for anti human nuclei and β-tubulin III.

After intranasal application, OMPCs migrated to regions of cell soma atrophy and axonal swellings or end bulbs
(Figure 2). Long axonal tracts such as the pyramidal tract, medial lemniscus and superior cerebellar peduncle had
numerous labeled OMPCs. Cell soma atrophy as detected by p-c-jun was most prominent in the hippocampus
particularly CA1. Axonal swellings and end bulbs as revealed by β-APP+ were present in the corpus callosum, deep
layers of the cerebral cortex, CA2 of the hippocampus, fasciculus cuneatus and grey matter of the cerebellum. In
the cerebellum, the OMPCs were in the white matter while the was little overlap with the β-APP+ profiles. In most
brains, the number of human OMPCs on each side differed by less than 11%. In one brain, there were more profiles
positive for β-APP and p-c-jun that are indicators of damage. On that side, there were more OMPCs as indicated by
anti human antibody and DAPI (Figure 2).

By photographing the entire sections at multiple wavelengths, it was possible to map the position of the human
nuclei, DAPI, p-c-jun+ and β-APP+ cells. The mean distance (+SD) from OMPC to regions of axonal damage
(β-APP+) was 71.8+60.3 μm; OMPC to degenerating cell bodies (p-c-jun+) was 188.7 + 320 μm; OMPC to a
random site 3929.3 + 2636.3 μm. There was a significant difference at the p < 0.05 level for the three distances
using a one-way ANOVA (F[2429] = 224.99; p = 1.51E-67). Post hoc comparisons using the Tukey–Kramer indicated
that the distance from OMPC cells to β-APP+ or p-c-jun+ was different than OMPC cells to a random site.

Discussion
In our study, the homing capacity of human OMPC applied intranasally was determined quantitatively for the
first time in a brain injury model of DAI.

10.2144/fsoa-2022-0012 Future Sci. OA (2022) FSO806 future science group



Intranasally applied human OMPCs migrate to damaged brain regions Research Article

Human OMPC migrated into the brain after delivering the cells into the nasal cavity using a fine tube to apply
the cells to the olfactory mucosa. Using tubing inserted in the rat’s nose may have allowed more cells to reach the
olfactory mucosa as opposed to placing a droplet with stem cells at the end of rat’s nose. Using a droplet at the end
of the nose, the greatest number of cells outside of the brain is the stomach [35]. The administered OMPCs migrated
to sites of damage in brain injured rats. The human stem cells were found in close proximity to axon swellings
revealed with β-APP antibody and degenerating cell bodies detected using p-c-jun antibody. The only region where
the OMPCs did not appear overlap the β-APP+ was the cerebellum. It may be that OMPCs are still migrating at
3 weeks after delivery. Cells are also known to migrate at different rates in different areas during development [54].
Another possibility is that these OMPCs are migrating from the ventricle as opposed to the subarachnoid space
that may delay migration.

In this study, we used two different methods to identify the human OMPC: anti human nuclei antibody and
DAPI. Although DAPI has been used to label dead cells, the permeability to DAPI depends on the type of cells,
incubation period and concentration of DAPI [55]. DAPI has also been used to label living neurons [56]. Cai and
colleagues [49] found that stem cells are permeable to DAPI and used DAPI labeled mesenchymal cells to follow
their cell migration for several weeks. In their study, DAPI labeled cells directly correlated to the Feridex-labeled
cells.

Mechanism of migration
There are four major pathways proposed as possible routes on how stem cells enter the brain within hours after
intranasal delivery. These include the perivascular route, CSF, lymphatics and cranial nerves [35,57–59]. Several or all
of these routes may be used by the stem cells: the perivascular space between blood vessels and the astrocytic end feet
is believed to allow transport of fluid and other substances between the intracellular space, CSF and blood vessels.
This space was named glymphatic system [60] in the belief at that time that there were no lymphatics in brain.
Recently lymphatics were found in the dura of experimental animals and humans [61–63]. In addition, a recent study
found lymphatic endothelial cells in the human perivascular space that also contained T cells [64]. Stem cells may
travel to the brain using this route as it is known that glioma cells and immune cells migrate in this space [64,65]; the
cells may directly enter the CSF as the subarachnoid space extends for a short distance around the olfactory nerve;
cells may directly enter the lymphatics as there are a large number of lymphatic vessels in the olfactory mucosa. Cells
may then enter the CSF from the lymphatics. There are anatomical connections between the CSF and lymphatic
vessels in nasal cavity of rats and humans [66]; stem cells might follow the olfactory or trigeminal cranial nerves to
enter the brain as both nerves are present in the nasal cavity [64,66]. The interplay of these pathways complicates
interpretation. For example, the spaces surrounding cranial nerves contain lymphatic vessels [64].

After cells enter the brain, there are several possibilities on how the cells migrate to areas of injury. The perivascular
space may form the pathway to reach these areas. It is interesting to note that OMPCs are found not only in the
subarachnoid space but also in the ventricle as also noted by others [34]. One possibility is that the cells enter the
olfactory bulb and follow the rostral migratory stream to reach the ventricle [67] as it is thought to be a bidirectional
pathway [67]. Our results demonstrate that the OMPCs migrate to close proximity to the axonal swellings and
degenerating cell bodies.

Mechanism of homing
The attraction of stem cells to sites of damage has been explored in several studies [68–70]. Important roles for two
chemokines are apparent: stromal derived factor-1 (SDF1, also called CXCL12) and monocytic chemoattraction
protein (MCP, also called CCL2). When CXCL chemokine receptor 4 (CXCR, receptor for SDF) is blocked using
monoclonal antibody in vitro [68], migration of human neural stem cells to areas of damage in organotypic cortical
explants is severely reduced. When SDF-1 is blocked with antibody in a rat hypoxic-ischemic model, the migration
of human umbilical cord blood cells is curtailed [69]. Similar results are obtained with MCP or its receptor CCR2.
Mice lacking MCP or CCR2 exhibit significant decreases in the number of migrating neuroblasts to the ischemic
striatum [70].

Previous studies have already shown that administration of hyaluronidase to rats before intranasal delivery of cells,
allows for the cells to migrate to the brain more effectively due to the breakdown of hyaluronic acid which loosens
the barrier of the nasopharyngeal mucosa [35]. We utilized this method for all of our intranasal administration of
OMPCs to promote cell migration. After intranasal delivery of OMPCs we found that they were able to migrate
to sites of injury. These injury sites include: cerebral cortex, cerebellum, cerebral peduncles and brain stem tracts
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as evident in previous studies using this injury model [71]. The cells were also found in the subarachnoid space and
ventricles suggesting migration of the cells through the CSF. The labeling of OMPCs using anti human nuclei
antibody was confirmed by the DAPI staining. Due to the rats being sacrificed three weeks after cell administration,
some of the cells had faded DAPI staining.

If the weight drop impacts on one side of the brain more than the other, there is evidence of more injury sites on
that side of the brain. Due to this inconsistency we were actually able to learn more about the intranasal delivery of
the OMPCs compared with those rats with equal axonal injury on both sides of the brain. We were able to observe
that the rats with greater injury on one side of the brain had a greater concentration of OMPCs on that side of the
brain than on the other side suggesting injury specific attraction (Figure 2).

Delivery method effectiveness
Administering the cells through the rat’s nose was a simple and effective method in delivering OMPCs to head
injured rats. Using tubing inserted into the rat’s nose at a specified depth, we were able to administer cells closer to
the olfactory mucosa, which allowed for a greater retention of cells than having the rats snort the cell suspension
into the nose. This method is less invasive than administering the cells directly into the CSF.

Not only do the OMPCs migrate to sites of injury, but there was also evidence of the cells differentiating into
neurons. Through the utilization of antibodies against β-Tubulin III, we were able to determine that the OMPCs
could potentially be used to fill the void of neurons that had been damaged due to DAI as a study has demonstrated
that transplanted OMPCs receive synapses from and synapse upon endogenous cells after spinal cord injury [72].

Clinical translation
A future clinical protocol would entail removing half of the olfactory tissue from one side of the nose [11] or
obtaining OMPCs using a brush inside the nasal cavity [8]. Either method could be done without any permanent
damage to olfaction [9]. The OMPCs can be expanded in culture, defined and tested before administering to the
opposite side of the nose intranasally. The OMPCs can be obtained and delivered in the same person that avoids the
problem of rejection and ethical concerns. Safety profile is further increased because the cells are taken and applied
to the same area of the body. This procedure would not only be applicable for patients with mild to moderate brain
injuries, but also patients in the intensive care unit due to the low risk and minimal invasiveness. OMPCs have the
fastest rate of neurogenesis in the adult brain and their normal fate is neurons. OMPCs may be safer than other
stem cells that normally develop into cartilage and bone.

Conclusion
OMPCs were found in the subarachnoid space and ventricles of the brain confirming one method of cell migration
through the CSF after intranasal delivery. In this study, quantitative analyses revealed that OMPCs delivered
intranasally specifically target sites of axonal injury and cell soma atrophy in rats with a brain injury.

Summary points

• The olfactory stem cells divide continuously and their normal fate is neurons so are an ideal source of neural stem
cells.

• Human olfactory stem cells delivered intranasally migrate to specific areas of brain damage in rats.
• Olfactory stem cells can be obtained and delivered non-invasively so may represent a promising treatment for

neural injuries.
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64. Mezey É, Szalayova I, Hogden CT et al. An immunohistochemical study of lymphatic elements in the human brain. Proc. Natl Acad. Sci.
USA 118(3), 1–12 (2021).

65. Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte-vascular coupling and the
blood–brain barrier by invading glioma cells. Nat. Commun. 5, 4196 (2014).

66. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D. Evidence of connections between cerebrospinal fluid and nasal
lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 1(1), 2 (2004).

67. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone.
Neuron 11(1), 173–189 (1993).

68. Imitola J, Raddassi K, Park KI et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor
1alpha/CXC chemokine receptor 4 pathway. Proc. Natl Acad. Sci. USA 101(52), 18117–18122 (2004).

69. Rosenkranz K, Kumbruch S, Lebermann K et al. The chemokine SDF-1/CXCL12 contributes to the ‘homing’ of umbilical cord blood
cells to a hypoxic-ischemic lesion in the rat brain. J. Neurosci. Res. 88(6), 1223–1233 (2010).

70. Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ. Monocyte chemoattractant protein-1 plays a critical role in
neuroblast migration after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 27(6), 1213–1224 (2007).

71. Marmarou CR, Walker SA, Davis CL, Povlishock JT. Quantitative analysis of the relationship between intra-axonal neurofilament
compaction and impaired axonal transport following diffuse traumatic brain injury. J. Neurotrauma 22(10), 1066–1080 (2005).

72. Moriwaki T, Iwatsuki K, Mochizuki-Oda N et al. Presence of trans-synaptic neurons derived from olfactory mucosa transplanted after
spinal cord injury. Spine (Phila Pa 1976) 39(16), 1267–1273 (2014).

future science group 10.2144/fsoa-2022-0012



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 400
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'PPG Indesign CS4_5_5.5'] [Based on 'PPG Indesign CS3 PDF Export'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks true
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions false
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 600
        /LineArtTextResolution 2400
        /PresetName (Pureprint flattener)
        /PresetSelector /UseName
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.835590
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


