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Abstract: Breast cancer is the most prominent type of cancer among women. Understanding the
microenvironment of breast cancer and the interactions between cells and cytokines will lead to
better treatment approaches for patients. In this study, we developed a data-driven mathematical
model to investigate the dynamics of key cells and cytokines involved in breast cancer development.
We used gene expression profiles of tumors to estimate the relative abundance of each immune cell
and group patients based on their immune patterns. Dynamical results show the complex interplay
between cells and molecules, and sensitivity analysis emphasizes the direct effects of macrophages
and adipocytes on cancer cell growth. In addition, we observed the dual effect of IFN-γ on cancer
proliferation, either through direct inhibition of cancer cells or by increasing the cytotoxicity of
CD8+ T-cells.

Keywords: breast cancer; immune infiltration; ordinary differential equations; data driven mathemat-
ical model; sensitivity analysis; adipocytes; estrogen; HMGB1; cytokines; T-cells; macrophages; IFN-γ

1. Introduction

Breast cancer is one of the most common cancers in women, and it is estimated that
about 43,600 women in the United States will die because of breast cancer in 2021 [1]. There
are different subtypes of breast cancer based on molecular-level analysis of gene expression
patterns, such as luminal A (LumA), luminal B (LumB), and triple-negative/basal-like [2].
LumA is the most frequently seen subtype of breast cancer with the lowest mortality
rate among other subtypes [3], and triple-negative breast cancer (TNBC) is the most ag-
gressive subtype with a poor overall clinical outcome [4]. Several treatment options are
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available for breast cancer, including surgery (lumpectomy and mastectomy), radiotherapy,
chemotherapy, hormone therapy, and other novel therapies that are determined by clinico-
pathological aspects of each patient [5]. Although targeted therapies have proven effective
for some types of breast cancer [6], chemotherapy remains the standard form of treatment
for subtypes of TNBC [7], and the development of resistance to chemotherapy is the main
challenge for TNBCs [8,9].

It has been shown in many studies that the tumor’s microenvironment has a significant
role in breast cancer development, progression, and also response to therapies [10–13].
Immune cells interact with tumor cells directly or indirectly via chemokine and cytokine
signaling in the tumor microenvironment, and they are the major players in the behavior
of the tumor and the efficiency of the treatments [14]. When cancer cells die, they release a
protein called high mobility group box-1 (HMGB-1) that causes dendritic cells to become
activated [15]. Antigens presented by dendritic cells cause T-cells to become activated and
kill cancer directly [16–18]. IFN-γ is produced by helper T-cells, cytotoxic T-cells [19–21],
and dendritic cells [19] to inhibit tumor growth [21]. On the other hand, certain immune
cells can help cancer progress by either promoting it or having a dual impact. For example,
regulatory T-cells control the development and activity of helper and cytotoxic T-cells,
hence reducing the immune response and indirectly encouraging malignancy [22,23].

The relationship between clinical outcome and immune cells in breast tumor has been
found in many studies. Breast cancer is distinguished by a significant population of tumor
associated macrophages [24], and it has been shown that higher macrophage density is
related to a poor outcome [25]. Moreover, the presence of CD8+ T-cells has been linked
to considerable reductions in the relative risks of death from different subtypes of breast
cancer [26]; and in ER-negative cancers, CD4+ and CD8+ T lymphocytes are more closely
related to better outcomes than in ER-positive tumors [27]. In addition, it has been found
that advanced stage breast tumors have more T-reg cells and a lower ratio of T-helper/T-reg
cells [28]. All this evidence suggests that the relative numbers of distinct immune cells,
and their interaction network, play key roles in the initiation and progression of breast
cancer. Thus, to effectively simulate cancer progression, it is important to divide patients
into similar cohorts based on their tumor-infiltrating immune cells and investigate the
tumor progression of each group independently. However, adding all immune cells to
the model increases the complexity and uncertainty of it. We therefore only considered
the above-mentioned key immune cells (macrophages, CD4+ T-cells, T-reg cells, cytotoxic
cells, and dendritic cells, which have a huge role in activating T-cells) in the progression of
breast cancer.

Many mathematical models have been developed to study the relationships among
tumors’ initiation, dynamics, and therapeutic responses to discover the best therapeutic
combinations and overcome drug resistance in diverse cancer types [29–37], including
breast cancer [38–42]. Some of the mathematical models for breast cancer investigate the re-
lationships among immune cells, tumor cells, and some treatments [36,43,44]. For example,
the effects of trastuzumab on HER2 overexpressing breast cancer in a mouse model system
have been studied by integrating mathematical and experimental models [43]. In addition,
a mathematical model has been developed to investigate the interactions between the
MCF-7 breast cancer cell line and some immune cells. These models [43,45] include only a
few immune components, such as NK cells and CD8+ T-cells, similarly to the mathematical
model developed for the treatment of the murine 4T1 TNBC cell line with a high-dose
chemotherapy drug [36].

Some of the outstanding challenges in the mathematical modeling of cancers are the
existence of many unknown parameters and the limited number of datasets. For this
reason, it is a routine practice to assume some values for parameters (see, e.g., [46–48]),
or use estimated parameters from other diseases or models in the mathematical modeling
of cancer. For example, the parameter values obtained for sarcoidosis were used to estimate
the parameters of a mathematical model for pancreatic cancer, and the values estimated for
pancreatic cancer in the mathematical modeling of breast cancer [23,49,50]. In addition, in a
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mathematical model of breast cancer [51], the values of some of parameters were chosen
in line with a mathematical model of tumor invasion not validated for breast cancer [52].
Hence, the available mathematical models for breast cancer only consider a small subset of
immune cells, and they assume all breast tumors behave similarly as they use the same
parameter values for all tumors. However, since the evolution of a breast tumor depends
on its specific immune profile, it is better to first find such tumors’ immune variations
and understand the mechanism of growth in the absence of treatment for each of these
immune variations. For this reason, we present a mathematical model for the interaction
network given in Figure 1. We used a system of ordinary differential equations (ODEs) to
investigate the differences in tumor progression of patients with different immune profiles.
We clustered breast tumors based on their estimated immune cell frequencies using their
gene expression data. We then estimated the parameters of the mathematical model for
each tumor group separately. We found parameter values by reviewing the available
literature and estimating the rest using what data were available. Importantly, we then
performed global sensitivity analysis on the non-dimensionalized system to find the most
sensitive parameters and investigate their impacts. Lastly, we analyzed the dynamics of the
tumors in each group and compared them with patients’ clinical information to explore the
connections between the tumor microenvironment and the progression of breast cancer.
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Figure 1. Interaction network. The main interaction network of cells and molecules in breast tumors,
modeled in this paper. Variables of the model with their descriptions are given in Table 1.

2. Materials and Methods

There are many players in the progression of breast tumors. However, to avoid too
much complexity and to reduce the uncertainty of the model, we only considered very
important players. The main cell types that we modeled were cancer cells, necrotic cells,
T-cells, macrophages, dendritic cell, and adipocytes (Figure 1).
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Table 1. Patient data correspondence with variables. Correspondence among the model variables
and the gene expression data of the primary tumors and deconvolution results.

Variable Name Data Used

TN Naive T-cells Combination of CD4 naive and memory resting T-cells and resting NK cells

Th Helper T-cells Combination of memory activated CD4 T-cells and follicular helper T-cells

TC Cytotoxic cells Combination of CD8 T-cells and activated NK cells

Tr Regulatory T-cells Regulatory T-cells

DN Naive dendritic cells Naive dendritic cells

D Activated dendritic cells Activated dendritic cells

MN Naive Macrophages Combination of Macrophages M0 and Monocytes

M Macrophages Combination of M1 and M2 Macrophages

C Cancer cells Estimated

N Necrotic cells Estimated

A Cancer Associated Adipocytes Assumed to be twice the total number of immune cells

H HMGB1 HMGB1 gene expression

IL12 IL-12 IL12A and IL12B gene expressions

IL10 IL-10 IL10 gene expression

E Estrogen ESR1 and ESR2 gene expressions

Iγ IFN-γ IFNG gene expressions

IL6 IL-6 IL6 gene expression

2.1. Interaction Network of Cells and Molecules—ODE Model
2.1.1. T-Cells

In this model, T-cells are divided into four subgroups of naive, helper, cytotoxic,
and regulatory T-cells. Naive T-cells, denoted by TN , are not necessarily part of the
tumor microenvironment, as they are usually activated within lymph nodes. We excluded
them from the total number of cells in the microenvironment. Even though there are
other methods, such as introducing non-linear terms in the ODEs to avoid unlimited
exponential growth, making activation rates for other types of T-cells proportional to
the number of naive T-cells was the most convenient way to create a controlled system
given the complexity of our model. Thus, we summarize the equation for the dynamics
of naive T-cells after deriving the equations of other types of T-cells. The variables Th,
TC, and Tr, respectively, denote the numbers of activated T-helper cells, cytotoxic T-cells,
and T-reg cells.

CD4+ Helper T-Cells (Th)

CD4+ T-cells are activated by dendritic cells [16], HMGB1 [53], and IL-12 [23,54].
CD4+ T-cells’ phenotype expression is also promoted by estrogen [19]. On the other hand,
regulatory T-cells [22] and IL-10 [55] inhibit CD4+ T-cells. Therefore, we modeled the
dynamics of T-cells using the following equation:

d[Th]

dt
=
(
λTh H [H] + λThD[D] + λTh IL12 [IL12] + λThE[E]

)
[TN ]

−
(
δThTr [Tr] + δTh IL10 [IL10] + δTh

)
[Th].

(1)

Cytotoxic T-Cells (Tc)

Estrogen promotes the CD8+ T-cell phenotype’s expression [19,56]. Dendritic cells [18,57]
and IL-12 activate naive CD8+ T-cells [23,54]. On the other hand, CD8+ T-cells’ function
is suppressed by regulatory T-cells [23] and IL-10 [55]. Since natural killer (NK) cells also
directly kill cancer cells, we assume this group includes both CD8+ T-cells and NK cells.
Therefore, we modeled the dynamics of cytotoxic T-cells in the following way.

d[Tc]

dt
= (λTc E[E] + λTc D[D] + λTc IL12 [IL12])[TN ]− (δTcTr [Tr] + δTc IL10 [IL10] + δTc )[Tc]. (2)
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Regulatory T-Cells (Tr)

Dendritic cells stimulate the formation [17] and activation of regulatory T-cells [57].
Furthermore, estrogen enhances the actions of regulatory T-cells [19,58]. Hence, we used
the following equation for the dynamics of T-reg cells.

d[Tr]

dt
= (λTr D[D] + λTrE[E])[TN ]− δTr [Tr]. (3)

Naive T-Cells (TN)

By combining the above-mentioned equations for the activation of naive T-cells and
introducing independent naive T-cell production rate ATN , one can get the following
equation for dynamics of naive T-cells:

d[TN ]

dt
= ATN −

(
λTh H [H] + λThD[D] + λTh IL12 [IL12] + λThE[E]

)
[TN ]

−
(
λTcE[E] + λTcD[D] + λTc IL12 [IL12]

)
[TN ] (4)

−
(
λTr D[D] + λTrE[E] + δTN

)
[TN ].

2.1.2. Dendritic Cells (D)

Dendritic cells are activated by cancer cells [23] and HMGB1 [59–61]. Moreover, estro-
gen enhances the metabolism, proliferation, differentiation, and functionality of dendritic
cells [19], and multiple factors induced by cancer cells may promote natural dendritic cell
death [57]. Denoting ADN as the production rate of naive dendritic cells, we made the
following system of equations for dynamics of naive dendritic cells (DN) and activated
dendritic cells (D):

d[DN ]

dt
= ADN − (λDC[C] + λDH [H] + λDE[E])[DN ]− δDN [DN ], (5)

d[D]

dt
= (λDC[C] + λDH [H] + λDE[E])[DN ]− (δDC[C] + δD)[D]. (6)

2.1.3. Macrophages (M)

Since macrophages have many phenotypes and frequently change their phenotype,
the breakdown of them into M1, M2, and other subsets would have tremendously com-
plicated the model. Therefore, we modeled all activated macrophages as a single variable
denoted by M. Tumor associated macrophages (TAMs) are activated by IL-10 [62,63]. IL-12
and IFN-γ activate M1 macrophages [24,62,64,65], and M2 macrophages are activated by
IL-4 and IL-13, which are secreted by helper T-cells [62]. Moreover, estrogen exposure leads
to alternative macrophage activation [19,58]. Denoting naive macrophages by MN , acti-
vated macrophages by M, and the production rate of naive macrophages by AM, we made
the following system of equations for the dynamics of naive and activated macrophages.

d[MN ]

dt
= AM −

(
λMIL10 [IL10] + λMIγ

[Iγ] + λMIL12 [IL12] + λMTh [Th] + λME[E]
)
[MN ]

− δMN [MN ], (7)
d[M]

dt
=
(

λMIL10 [IL10] + λMIγ
[Iγ] + λMIL12 [IL12] + λMTh [Th] + λME[E]

)
[MN ]

− δM[M]. (8)

2.1.4. Cancer Cells (C)

Since cancer cells proliferate at an abnormal rate, the proliferation of cancer cells is
traditionally modeled by [C](1− [C]/C0), where C0 is the maximum capacity. In addition,
IL-6 promotes the proliferation of cancer cells [66,67]. Additionally, adipocytes, releasing
metabolic substrates, promote the proliferation of breast cancer cells [68]. On the other
hand, activated CD8+ T-cells kill cancer cells [23,69], and IFN-γ initiates the elimination of



J. Pers. Med. 2021, 11, 1031 6 of 42

cancer cells by inducing cell cycle arrest, apoptosis, and necroptosis [21]. The dynamics of
cancer cells was modeled by the following equation.

d[C]
dt

=
(
λC + λCIL6 [IL6] + λCA[A]

)
(1− [C]

C0
)[C]− (δCTc [Tc] + δCIγ

[Iγ] + δC)[C]. (9)

2.1.5. Cancer Associated Adipocytes (A)

The direct crosstalk of cancer cells with tumor-surrounding stromal components, such
as tumor-surrounding adipocytes, promotes tumor progression [70]. We modeled the
proliferation of adipocytes similarly to the cancer cells’ proliferation.

d[A]

dt
= λA[A]

(
1− [A]

A0

)
− δA[A]. (10)

2.1.6. Necrotic Cells (N)

Necrosis occurs when cells are under metabolic stress as their resources are being
consumed by cancer cells [60]. Cells that go through the process of necrosis are denoted
as necrotic cells. Since resources are limited in the cancer microenvironment, some cells
will undergo necrotic cell death instead of other types of cell death [60,71]. Activated
CD8+ T-cells kill cancer cells [23], and CD8+ cytotoxic T-cells produce IFN-γ, which then
eliminates cancer cells [21]. Since a fraction of cancer cells can go through first becoming
necrotic cells, the production rate of necrotic cells was modeled by the fraction (αNC) of
dying cancer cells.

d[N]

dt
= αNC

(
δCIγ

[Iγ] + δCTc [Tc] + δC

)
[C]− δN [N]. (11)

2.1.7. Molecules

The dynamics of above mentioned molecules were modeled in the following way.

HMGB1 (H)

Damage-associated molecular pattern (DAMP) molecules are danger signals that pro-
mote inflammation and immune responses once released from dead or stressed cells [72].
The DAMP molecule, high-mobility group box 1 (HMGB1), exerts immune promoting activ-
ity by inducing angiogenesis, proliferation, and invasiveness of cancer cells via recruiting
immune inflammatory cells [59]. HMGB1 is secreted by mature dendritic cells [59,60,73],
necrotic cells [23,73,74], macrophages, [73,75,76], natural killer (NK) cells (which behave
like cytotoxic T-cells) [73,77,78], and cancer cells [23,59,60].

For this reason, the dynamics of HMGB1 was modeled by the following equation.

d[H]

dt
= λHD[D] + λHN [N] + λHM[M] + λHTc [Tc] + λHC[C]− δH [H]. (12)

IL-12 (IL12)

IL-12, which stimulates the growth and functions of T-cells, is involved in the differen-
tiation of naive T-cells into helper T-cells. IL-12 is secreted by macrophages and dendritic
cells [23,57,64]. Helper and cytotoxic T-cells also produce IL-12 [19]. We modeled the
dynamics of IL-12 using the following equation.

d[IL12]

dt
= λIL12 M[M] + λIL12D[D] + λIL12Th [Th] + λIL12Tc [Tc]− δIL12 [IL12]. (13)

IL-10 (IL10)

IL-10, which inhibits protective immune response (helper and cytotoxic T-cells), is
produced by macrophages [62,79], dendritic cells [57,80,81], T-reg cells [55,82], CD4+ helper
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T-Cells [19,83], CD8+ cytotoxic T-cells [19,82], and cancer cells [17]. Therefore, the dynamics
of IL-10 was modeled in the following way.

d[IL10]

dt
= λIL10 M[M] + λIL10D[D] + λIL10Tr [Tr] + λIL10Th [Th] + λIL10Tc [Tc]

+ λIL10C[C]− δIL10 [IL10].
(14)

Estrogen (E)

Adipocytes are the primary producers of estrogen [84,85]. In breast tumors of post-
menopausal women, estrogen can reach levels orders of magnitude greater than the low
levels circulated in the body [85]. In general, adipose tissues in the breasts, brain tissues,
osteoblasts, and other tissues locally produce estrogen, which circulates throughout the
body. This amount of reproduced estrogen in the body depends on the pre-exiting existing
amount. For this reason, we modeled the production rate of estrogen throughout the body
using λE[E](1− [E]

E0
). This gave us the following equation for the dynamics of estrogen.

d[E]
dt

= λEA[A] + λE[E](1−
[E]
E0

)− δE[E]. (15)

IFN-γ (Iγ)

CD8+ T-cells and CD4+ T-cells release IFN-γ [19–21]. Dendritic cells also secrete
IFN-γ, but when exposed to estrogen, this production is increased [86]. Therefore, we
modeled the dynamics of IFN-γ in the following way.

d[Iγ]

dt
= λIγTc [Tc] + λIγTh [Th] + λIγD[E][D]− δIγ [Iγ]. (16)

IL-6 (IL6)

The important cytokine that leads to proliferation of cancer cells is IL-6 and is secreted
by cancer associated adipocytes [64,66,67], macrophages [23,62,64,65,87], and dendritic
cells [19,23,57].

d[IL6]

dt
= λIL6 A[A] + λIL6 M[M] + λIL6D[D]− δIL6 [IL6]. (17)

2.2. Data of the Model
2.2.1. Breast Cancer Patients’ Data

There are some popular tumor deconvolution methods used to estimate the percentages
of different immune cell types from the gene expression profiles of tumors. Among these
methods, CIBERSORTx [88] has shown great performance in several studies [71,89–91]. In this
study, we applied CIBERSORTx B-mode to gene expression profiles of primary tumors of
breast cancer patients obtained from the Cancer Genome Atlas (TCGA) project of breast
cancer (BRCA) [92] and the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) cohort [93]. There are 1904 primary breast tumor samples in the METABRIC
microarray data downloaded from cBioPortal [94] and 1218 primary breast tumors with
RSEM normalized RNA-seq data in log2 scale in the TCGA data downloaded from the
University of California Santa Cruz (UCSC) Xena web portal [95]. Before performing
CIBERSORTx B-mode on both datasets separately, we transformed TCGA data to the linear
space and dropped samples of normal breast tissues. After estimation of cell proportions,
we only considered cases with CIBERSORTx B-mode p-values < 0.05 and continued our
study with 2993 patients. We used expression values of genes encoding the molecules in
the dynamical model and combined some immune cells frequencies to estimate the values
of model’s variables as described in Table 1. Note that the genes’ expression levels in TCGA
data were scaled depending on METABRIC data to eliminate the effect of different ranges
in the two datasets on the results.
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2.2.2. Patient Data Analysis

We grouped patients based on their estimated immune cell fractions using K-means
clustering and determined the value of K using the elbow method. As a result, there were
five distinct immune patterns of breast tumors. Figure 2 shows the average cell fractions in
tumors of each cluster for the most variant immune cells among clusters, plus the standard
deviation of each cluster as a bar.
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Figure 2. Immune cell frequencies in each cluster. Clusters were obtained by applying K-means
clustering to the percentages of 22 immune cell types in breast tumors. The most variant cells among
clusters are shown in this figure.

Since the deconvolution method only provides us the percentage of each immune
cell type in primary tumors, we used tumor weight for METABRIC data and tumor size
for TCGA data, as described below, to estimate the numbers of immune cells, cancer cells,
and necrotic cells in each tumor. For numerical stability, if the percentage of an immune
cell that was used in the model was zero, it was substituted with 10% of the smallest
positive cell fraction in the deconvolution data. We also excluded patients if their necrosis
percentage or their tumor size in TCGA data, or the weight of their tumor in METABRIC
data, were not available.

First, for simplicity, we assumed that the average number of cancer cells was twice
the average number of total immune cells [37]. Therefore, using the necrosis percentage
given in the TCGA data, the average ratio of immune cells to cancer cells to necrotic cells
is approximately 0.3:0.6:0.1 in breast tumors. Additionally, the epithelial cell density has
been reported as 4.5× 104 cells/cm3 in breast cancer [96]. We therefore choose the scaling
factor α = 4.5× 104 so that the average density of cancer cells across all patients was close
to that value.

For each patient Ptcga in TCGA data, the total cell number (TCNtcga) was assumed to
be proportional to the weight of the tumor:

TCNtcga = α
tumor weight(Ptcga)

1
K ∑all Ptcga tumor weight(Ptcga)

where K is the number of patients in TCGA data. For TCGA data, numbers of necrotic
cells (Ntcga), cancer cells (Ctcga), and total immune cells (TICtcga) were calculated using the
given necrotic percentage (Np) for each patient:

Ntcga = TCNtcgaNp , Ctcga =
2
3

TCNtcga(1−Np) and TICtcga = 0.5Ctcga.

For METABRIC data, tumor size was used to calculate total cell number (TCNmeta)
similarly to the TCGA data:
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TCNmeta = α
tumor size(Pmeta)

1
K ∑all Pmeta tumor size(Pmeta)

.

where K is the number of patients in the METABRIC data. Since the necrotic percentage was
not available for METABRIC data, we used immune cells proportion from deconvolution
data to calculate the total number of immune cells (TICmeta) for each patient (Pmeta):

TICmeta = 0.3α
∑ Immune Cells Ratio(Pmeta)

1
K ∑all Pmeta Immune Cells Ratio(Pmeta)

so that

Cmeta =
6
7
(TCNmeta − TICmeta) and Nmeta =

Cmeta

6
.

Once we have the amount of all the cells and molecules we can extract useful informa-
tion such as initial conditions (Table 2) and steady state values (Table 3) for each cluster.

Table 2. Initial conditions of the model variables. Values of the initial conditions were obtained from the averages of the
smallest tumors in METABRIC and TCGA data.

Cluster TN Th TC Tr DN D MN M C

1 2.62× 102 1.93× 103 2.94× 103 5.55× 102 9.90× 10−3 9.90× 10−3 1.34× 104 5.37× 103 1.56× 103

2 3.78× 103 2.16× 103 2.95× 103 5.04× 102 1.07× 103 9.83× 103 2.63× 103 1.12× 104 2.31× 103

3 2.93× 103 1.15× 103 1.39× 103 3.68× 101 3.22 3.62× 10−2 6.75× 103 9.67× 103 3.53× 103

4 4.78× 103 4.60× 103 2.76× 103 1.66× 103 3.51× 102 1.34× 103 2.29× 103 4.69× 103 7.96× 103

5 3.78× 103 1.33× 103 3.11× 103 1.05× 103 5.16× 102 1.03× 10−2 2.85× 103 6.07× 103 5.57× 103

N A H IL12 IL10 E IγIγIγ IL6

1 1.21× 102 4.89× 104 5.06 5.82 2.90 7.62 3.05 3.67

2 3.16× 102 4.86× 104 5.01 6.40 2.93 8.76 2.93 3.02

3 3.11× 102 4.39× 104 5.29 5.25 2.79 9.16 2.81 4.27

4 2.71× 103 4.49× 104 5.29 6.88 3.27 6.38 4.10 3.40

5 3.73× 102 3.74× 104 6.16 5.67 2.66 8.63 2.70 3.03

2.2.3. Parameter Estimation

We used 17 equations and 75 parameters in our model, which needed to be determined.
We found the values of δTN , δTc , δTh , δTr , δD, δM, δA, δH , δE, δIL6 , δIL10 , δIL12 , and δIγ by finding
their corresponding cell and molecule half-lives in the biological literature. For the rest of
the parameters, we derived them so that the dynamics of all cells and molecules reached
their steady state within our simulation time. In other words, for an ODE of the type
dX
dt = F(X, θ, t), we solved:

F(X∞, θ, T) = 0 (18)

for the parameter vector θ = 〈θ1, · · · , θN〉, where T is the maximum simulation time and
X∞ is the vector of steady-state values for the state variables given in Table 3. However,
even with all of the known death rate parameters, we still had 62 more to determine
and only 17 steady state equations of type (18). To circumvent this issue, we added
some assumptions which were basically relationships between the parameters. These
relationships were based on assuming some production rates or death rates within the
same ODE would be more effective than the rest.The relationship formulations were created
by the authors to make sure we got a positive set of parameters. For more technical details
of the parameter estimation process, please refer to Appendix A.1.
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Table 3. Steady state values of the model variables. Large tumors in each cluster were grouped, and their average values
were found for each variable, to be used in the parameter estimation.

Cluster T∞
N T∞

h T∞
C T∞

r D∞
N D∞ M∞

N M∞ C∞

1 4.55× 103 3.87× 103 2.44× 103 1.92× 103 1.26× 102 3.28× 102 1.80× 104 1.39× 104 9.03× 104

2 1.13× 104 4.77× 103 4.02× 103 1.55× 103 3.27× 102 6.10× 102 6.96× 103 1.62× 104 1.12× 105

3 5.73× 103 3.70× 103 2.79× 103 1.51× 103 4.00× 102 3.52× 102 8.77× 103 2.07× 104 9.68× 104

4 4.14× 103 5.95× 103 7.71× 103 1.66× 103 4.99× 102 4.37× 102 9.81× 103 1.59× 104 9.54× 104

5 5.69× 103 3.91× 103 5.56× 103 6.16× 102 7.04× 102 2.22× 102 6.45× 103 1.52× 104 9.90× 104

N∞ A∞ H∞ IL∞
12 IL∞

10 E∞ I∞
γI
∞
γI
∞
γ IL∞

6

1 1.15× 104 9.01× 104 5.61 6.42 3.17 8.86 3.21 3.42

2 1.02× 104 9.14× 104 3.84 2.84 1.36 4.03 1.19 1.28

3 8.11× 103 8.80× 104 4.49 4.02 2.13 7.68 1.97 2.14

4 1.54× 104 9.22× 104 7.54 1.04 5.08 1.37 5.72 5.80

5 1.53× 104 7.67× 104 7.70 1.02 5.05 1.50 5.17 6.01

2.2.4. Sensitivity Analysis

As we mentioned, because of the lack of biological information about many of param-
eters’ values, we made several assumptions about these parameters given in Appendix A.1.
To remedy this important limitation of the model, we perform a global gradient-based
sensitivity analysis by changing each of these assumptions 5000 times, and obtaining a new
set of parameter values with each new assumption. Since the number of parameter values
(number of assumptions × number of variations = 38× 5000 = 190, 000) still is a finite
number, this limitation of the model must be considered when the results of the model
are used. For better numerical stability, we performed the sensitivity analysis using the
non-dimensionalized system (see Appendix A.2 for more details).

Generally, the level of sensitivity of a variable X, to its vector of parameters θ =

〈θ1, · · · , θN〉 for an ODE of the type dX
dt = F(X, θ, t), is calculated by:

si =
dX
dθi

, for i = 1, · · · , N. (19)

We calculated the sensitivity of cancer cells and the total number of cells for each
parameter θi at the steady state. In other words, for the steady state values X∗ the sensitivity
vector s = 〈s1, · · · , sN〉 was obtained by differentiating F(X∗, θ) = 0 with respect to θ. We
got this analytical formula:

s =
dX∗

dθ
= −

(
∇F(X∗, θ)

)−1
(

∂F(X∗, θ)

∂θ

)
, (20)

where
(
∇F(X∗, θ)

)−1
is the numerical inverse of Jacobian of F with respect to X.

To calculate the global sensitivity, we followed the following steps:

• First, we define a local sensitivity measure for each parameter θi in the neighborhood
Ωk(θi) as

Sk
i =

∫
Ωk(θi)

si(θ)dθ. (21)
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These neighborhoods were acquired by varying assumptions (A1)–(A22) by scaling
factors 0.01 to 100. The integration was carried out numerically using sparse grid
points [97,98].

• Second, we found weights for the aforementioned neighborhoods. Scaling each
assumption provides us with a new set of parameters. The weights were then de-
termined by calculating the distance of each resulting parameter set to a fixed base
parameter set. We assigned higher weights to the parameters that were closer to
the base values. We denote each weight by wk

i for i = 1, · · · , N and k = 1, · · · , K
corresponding to the parameter and its neighborhood, respectively.

• Finally, we obtained the global sensitivity level Si to each parameter θi by

Si =
K

∑
k=1

wk
i Sk

i . (22)

3. Results
3.1. Data Analysis of the Clusters

We also use TCGA and METABRIC clinical data to analyze the clinical features of
each cluster and their associations with tumor immune microenvironment and dynamics.
We see that cluster 2 and cluster 3, respectively, include a significant high number of the
youngest and oldest patients compared to the other clusters (Figure 3A). We also observe
that cluster 5 has the highest percentage of tumors with estrogen receptor (ER+) and human
epidermal growth factor receptor 2 negative (HER2-) tumors, and ultimately a high number
of LumA, LumB and normal-like tumors. On the other hand, clusters 1 and 4 have a higher
percentage of aggressive subtypes such as HER2-enriched and Basal than other clusters,
which explains having the highest percentage of tumors without estrogen receptor (ER-) in
these clusters (Figure 4A,C,D). In addition, survival probabilities of cluster 1 and cluster 4
are lower than other clusters while cluster 5, which has more non-aggressive tumor, has
the best survival results (Figure 3C). Note that survival status of the patients is given as
alive or dead in TCGA data while in METABRIC data dead patients are separated into
two categories ‘died of other causes’ and ‘died of disease’ so we translate ‘died of other
causes’ into alive status. For this reason, we see survival probability of cluster 3 is lower in
Figure 3C while the percentage of alive patients in cluster 3 is higher (Figure 4B).

3.2. Dynamics of the Breast Cancer Microenvironment

We find the dynamics of each variable involved in tumor microenvironment by solving
the ODEs (1)–(17) with parameters acquired from the steady state assumptions for each
cluster (Appendix A.1). We derive the dynamics of all of the cells and molecules based on
the non-dimensional parameters in Table A4, half-lives and estimated death rates from
Table A3, and initial conditions acquired from the tumors with the smallest size in each
cluster (Table 2) and their steady state values in Table 3. We also plot the changes in total
cells. We define total cells as:

Total Cells = Th + Tc + Tr + DN + D + 0.2MN + M + C + N + A (23)

We exclude TN since they are mainly found in the circulation and lymphatic sys-
tem [99]. The rest of the T-cells are known as tumor infiltrating T-cells and can be found
abundantly in tumors’ microenvironment. Dendritic cells primarily get activated inside of
the tumor and cancer cells, necrotic cells and adipocytes are the other main components
of the breast tumor, [12]. Finally, since most of naive macrophages polarize into M1 (anti-
tumor) and M2 (pro-tumor) phenotypes inside of the tumor we consider a 20% factor for
MN , [100].
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A

B

C

Figure 3. More Clinical features of each cluster. Subfigures (A,B), respectively, show box plots of
patients’ age at diagnosis and survival months in each cluster. Subfigure (C) demonstrates Kaplan–
Meier curves of overall survival probability across five clusters. Asterisks in the figures show the
significance levels with Mann–Whitney-Wilcoxon (MWW) statistical test where, ns: no significance,
***: 0.0001 < p ≤ 0.001, ****: p ≤ 0.0001
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A B

C D

Figure 4. Clinical features of each cluster. Subfigures (A–D) show the percentage of patients with
different subtypes of breast cancer, survival status, HER2 status, and ER status, respectively.

The dynamics of cells given in Figure 5 shows that for all clusters except cluster 2,
the naive T-cells increase from their initial values and reach the steady state quickly, while
the naive T-cells in cluster 2 increase and then decrease in a slow manner to reach the
steady state. Helper T-cells increase from their initial condition and then decrease to reach
the steady state quickly. Cytotoxic T-cells also follow the same pattern. T-reg cells reach the
steady state quickly and remain constant at the steady state. While the naive dendritic cells
start with a higher population initially and decrease eventually to reach the steady state,
mature dendritic cells start with a low initial population and increase eventually to reach
their steady states. This is because mature dendritic cells are derived from naive dendritic
cells. On the other hand, both naive macrophages and macrophages increases within a
short amount of time before reaching their steady states.

Cancer cells dynamics show an exponential growth until they reach the steady
state. Since cancer cells go through necrosis, the necrotic cells’ growth behaves simi-
larly. Adipocytes activation increases over time until they reach the steady state for all
clusters. The amount of estrogen also increases from their initial conditions in each cluster
as it is produced by adipocytes.

The initial concentration of HMGB1 in clusters 4 and 5 is higher than other clusters
and stay higher in their steady state. The general trend for HMGB1 is increasing for all
clusters before it reaches the steady state.

Although the concentration of IL-12 increases at the beginning, it lowers from the
maximum concentration to reach the steady state. IL-10 and IL-6 increase from their initial
value to reach the steady state. IFN-γ increases first then decreases over time as the cancer
cells increase.

Due to the shear abundance of cancer cells and adipocytes compared to other cells,
the total number of cells is more significantly affected by these cells. We can see that cluster
5 has one of the lowest cancer cells and the lowest adipocytes population, so the total cells
population is the lowest in cluster 5. Additionally, cluster 2 has the highest cancer cells
and one of the highest adipocytes in its steady state. As a result, total cells dynamics is the
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highest for cluster 2. Since total cells population is proportional to tumor sizes, it can be
inferred that cluster 2 has larger tumors than the other clusters.
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Figure 5. Dynamics of all variables. Dynamics of variables of the model over 3000 days. The differ-
ent color lines describe the dynamics of different clusters.

While cluster 3 has the fastest cancer growth, cluster 2 has the highest cancer popula-
tion at the steady state among the other clusters. Additionally, cluster 2 has the highest
population of dendritic cells that inhibit cancer cells and being activated by cancer cells.
As dendritic cells are also activated by estrogen and HMGB1, their concentrations are
the lowest in cluster 2. Thus, the higher population of dendritic cells may be mostly due
to cancer cells’ activation. Note, cluster 2 includes the primary tumors of the youngest
patients (Figure 3B) and aggressive tumors (Figure 4A), and it is known that aggressive
breast tumor in younger patients grow faster [101].

On the other hand, cluster 4 and 5 have the slowest cancer growth, while cluster 1 has
the lowest cancer population at the steady state compared to other clusters. Interestingly,
the amount of immune cells that are known to be correlated with good prognoses such
as cytotoxic T-cells and helper T-cells are the lowest in the cluster 1 which might cause
making a wrong prediction at first glance. Thus, it is more important to consider inter-
actions between the immune cells and cancer cells than just looking at their quantities to
understand cancer prognosis.

Cluster 5 has the best survival probability according to Figure 3C. The population
of adipocytes is the lowest in cluster 5 compared to the other clusters. Dendritic cells
population, and the concentration of HMGB1 and estrogen are very low. Furthermore,
cluster 5 has one of the lowest cancer cells population at the steady state. Furthermore,
Figure 4C,D illustrate that cluster 5 has the lowest HER2-positive and ER-positive patients
that are indicators of a better prognoses.

Although dynamical results show a lower cancer growth for cluster 1 and 4, clinical
data analysis shows that cluster 1 and 4 have the lowest survival probability among the
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other clusters as illustrated in Figure 3C. This can be due to the fact that cluster 1 and 4
have one of the highest population of adipocytes at the steady state and thus providing
more resources for cancer cells. Furthermore, based on Figure 4A these clusters have the
highest percentage of aggressive tumors.

3.3. Sensitivity Analysis

After finding the base parameters from the steady state assumptions in Appendix A.1
and the steady state values given in Table 3, we carry out the global sensitivity analysis
mentioned in Section 2.2.4.

We investigate the global sensitivity of cancer cells and the total number of cells
(Equation (23)) to each parameter. The results are given in Figures 6 and 7. As expected,
we see the cancer population is the most sensitive to cancer related parameters (Figure 6),
and since total cells includes high number of cancer cells (Figure 5), they are also sensitive
to these parameters (Figures 6 and 7). In addition, total cells and cancer populations in all
clusters are significantly sensitive to δA and λA. This is reasonable, since all clusters have
high numbers of adipocytes that directly contribute to cancer proliferation Equation (9).
All of the sensitivity plots imply that less decay and more production of adipocytes lead to
larger number of cancer and total cells.
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Figure 6. Sensitivity analysis. Sensitivity level of the most sensitive parameters for cancer and total
cell population, respectively.

Finally, cancer population in all clusters are directly sensitive to macrophage promot-
ing parameters and reversely sensitive to the macrophage decay rates. We have modeled
both macrophage phenotypes (M1 and M2) together. However, in all the clusters the
frequency of M2 (pro-tumor) phenotype is more dominant (Figure 2). Therefore, more
macrophages should result in more cancer cells and consequently higher number of total
cells. The presence of δMN as a sensitive parameter in Figure 7 can be justified in the
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same way as a significant number of naive macrophages turn into activated macrophages.
Moreover, in clusters 1, 2, and 4, we see that clearance of necrotic cells has an opposite effect
on the total number of cells which is reasonable, given the presence of the necrotic cells in
the tumor microenvironment. In clusters 3 and 5, δN is replaced by λMIγ , because cluster 3
has a very high number of macrophages and cluster 5 has a high level of Iγ, Figure 5.
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Figure 7. Sensitivity analysis. Other sensitive parameters for cancer and total cell population.

3.4. Dynamics with Varying Assumptions

We investigate the effect of changing parameters’ assumptions on cancer dynamics
in clusters 1–5. To avoid cluttering, we only target assumptions that incorporate sensitive
parameters from the previous section, and we scale them by factors of 0.2 and 5. These
scaled assumptions will produce new sets of parameters for each cluster leading to new
dynamics. Furthermore, we locally perturb all the sensitive parameters from Section 3.3 to
acquire a 10% variation region for cancer dynamics.

Notice that some sensitive parameters are either solely obtained from ODEs’ steady
states or taken from the literature and are not explicitly included in these assumptions.
Therefore, we only scale the following assumptions by 1.0, 0.2 and 5.0:

Scale× δCTc [T
max
c ] = 6δCIγ

[Imax
γ ] (24)

Scale× δC = 6δCIγ
[Imax

γ ] (25)

Scale× 2λCA[Amax] = λCIL6 [ILmax
6 ] (26)

Scale× λMIγ [I
max
γ ] = λMIL10 [ILmax

10 ] (27)

Scale× λME[Emax] = λMIL10 [ILmax
10 ] (28)

Scale× λMTh [T
max
h ] = λMIL10 [ILmax

10 ] (29)



J. Pers. Med. 2021, 11, 1031 17 of 42

The results are shown in Figure 8. We can see that scaling the assumptions (24) and (25) had
the largest effect on the dynamics of cancer cells across the five clusters. On the other hand,
assumptions (26)–(29) negligibly affect the time of reaching steady state in clusters 4 and 5
when they are up-scaled. The assumption (24) delayed the time of reaching steady states
for all clusters while it was scaled down and sped it up when it was scaled up. Clusters 2,
4, and 5 were the most affected in the case shown in Figure 8A; and clusters 1, 2, 4, and 5
were the most affected in the case shown in Figure 8B. Below is a comparison between the
values of three crucial parameters for Figure 8A.

Figure 8. Dynamics of cancer after the assumptions of the sensitive parameters were modified.
Subfigures (A–F) present dynamics after scaling the assumptions (24)–(29), respectively. The trans-
parent region was the result of 10% perturbation of all the sensitive parameters from Section 3.3.

According to Table 4, downscaling the assumption (24) increased the value of δCTc and
decreased the values of δCIγ

and δC. This is because both δC and δCTc are related to each
other via δCIγ

. Since clusters 2, 4, and 5 had the highest levels of cytotoxic cells, increasing
cytotoxic cells’ cancer inhibition effect (δCTc ) remarkably decreased the number of cancer
cells. Similarly, we got Table 5 when scaling the assumption (25). In this case, upscaling
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the assumption (25) decreased the value of δC and increased the values of δCIγ
and δCTc .

For the same reason, cancer saturation in clusters 2, 4, and 5 underwent a delay. Moreover,
cluster 1 which has a low level of cytotoxic cells but a reasonable level of IFN-γ can more
effectively remove cancer cells with this combination of parameter values.

Table 4. Three important parameter values. Values of the parameters δCTc , δCIγ
, and δC without

scaling and after scaling the assumption (24) by factors 0.2 and 5. These are the most effected
parameters and correspond to the dynamics in Figure 8A.

Clusters Without Scaling Scale = 0.2 Scale = 5

Cluster 1
δCTc = 0.00440
δCIγ

= 0.00274
δC = 0.04492

δCTc = 0.00895
δCIγ

= 0.00111
δC = 0.01827

δCTc = 0.00124
δCIγ

= 0.00390
δC = 0.06341

Cluster 2
δCTc = 0.00528
δCIγ

= 0.00074
δC = 0.03273

δCTc = 0.00953
δCIγ

= 0.00027
δC = 0.01182

δCTc = 0.00163
δCIγ

= 0.00115
δC = 0.05063

Cluster 3
δCTc = 0.00494
δCIγ

= 0.00165
δC = 0.04421

δCTc = 0.01027
δCIγ

= 0.00069
δC = 0.01839

δCTc = 0.00137
δCIγ

= 0.00230
δC = 0.06150

Cluster 4
δCTc = 0.00805
δCIγ

= 0.00283
δC = 0.02606

δCTc = 0.01183
δCIγ

= 0.00083
δC = 0.00766

δCTc = 0.00310
δCIγ

= 0.00546
δC = 0.05018

Cluster 5
δCTc = 0.00676
δCIγ

= 0.00298
δC = 0.03037

δCTc = 0.01068
δCIγ

= 0.00094
δC = 0.00960

δCTc = 0.00238
δCIγ

= 0.00526
δC = 0.05355

None of the cases above completely neutralized the tumor. Even in the extreme cases,
such as clusters 4 and 5 in Figure 8A,B, the cancer population growth was just delayed
and would reach its steady state in later times. However, the mentioned parameters can
cause significant delays in cancer growth, especially in clusters 1 and 4, whose patients had
low survival probabilities. Hence, targeting cells and molecules corresponding to these
parameters can be crucial in cancer treatments.

To even further investigate the parameters involved in cancer ODE and have more
flexibility in finding scenarios in which cancer completely vanishes, we carried out a
bifurcation analysis (see Appendix A.6). We assumed that [IL6], [A], [Tc], and [Iγ] were at
their steady state values for each cluster. Next, we chose one parameter as the bifurcation
variable and let the rest of them take their estimated values from Table A4 for each cluster.

Our results show that three parameters from Tables 4 and 5 gave non-zero equilibria
for cancer for very small values, and they caused cancer to vanish for a large range. This
is in-line with how sensitive the dynamics results were to these parameters. On the other
hand, parameters such as λC, λCIL6 , and λCA contribute to larger steady state values as
they get larger. Saliently, cancer in clusters 1–5 vanished for very small values of λC, while
small values of λCA could significantly decrease the steady state population of cancer only
in cluster 5. This result is very interesting, because cluster 5 had the highest survival rate
(Figure 3), the highest number of LumA subtypes (Figure 4), and the lowest adipocyte
population (Figure 5). For more details, see Appendix A.6.
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Table 5. Three important parameter values. Values of the parameters δCTc , δCIγ
, and δC without

scaling and after scaling the assumption (25) by factors 0.2 and 5. These are the most effected
parameters and correspond to the dynamics in Figure 8B.

Cluster Without Scaling Scale = 0.2 Scale = 5

Cluster 1
δCTc = 0.00440
δCIγ

= 0.00274
δC = 0.04492

δCTc = 0.00168
δCIγ

= 0.00104
δC = 0.08556

δCTc = 0.00652
δCIγ

= 0.00406
δC = 0.013308

Cluster 2
δCTc = 0.00528
δCIγ

= 0.00074
δC = 0.03273

δCTc = 0.00161
δCIγ

= 0.00023
δC = 0.05002

δCTc = 0.00967
δCIγ

= 0.00136
δC = 0.01199

Cluster 3
δCTc = 0.00494
δCIγ

= 0.00165
δC = 0.04421

δCTc = 0.00155
δCIγ

= 0.00052
δC = 0.06927

δCTc = 0.00879
δCIγ

= 0.00294
δC = 0.01574

Cluster 4
δCTc = 0.00805
δCIγ

= 0.00283
δC = 0.02606

δCTc = 0.00467
δCIγ

= 0.00164
δC = 0.07563

δCTc = 0.00941
δCIγ

= 0.00331
δC = 0.00609

Cluster 5
δCTc = 0.00676
δCIγ

= 0.00298
δC = 0.03037

δCTc = 0.00358
δCIγ

= 0.00158
δC = 0.08036

δCTc = 0.00823
δCIγ

= 0.00363
δC = 0.00739

3.5. Dynamics with Different Initial Conditions

We investigated the effects of different initial conditions on the dynamics of each
cluster. We varied the initial conditions by extracting individual patient data from each
cluster. Due to the large number of patients, we plotted the dynamics of tumors with the
number of cancer cells below the 40th percentile as the initial conditions. We observe that
the dynamics did not change regardless of different initial conditions. All the patients
from one cluster converged to the same steady state, no matter whether they started from
higher or lower initial quantities (Figure A1). This is reasonable, since the parameters were
derived based on the steady state assumptions for each cluster.

We also looked at the dynamics of small tumors in one cluster converging on a
large tumor at the steady state in another cluster. We observe that even when the initial
conditions were not from the same cluster as the parameters’ values, the dynamics of
tumors quickly converged on the dynamics of tumors in the cluster of the steady state.
This testifies that the impact of parameters on dynamics is more significant than the initial
conditions (Appendix A.5)s.

4. Discussion

Understanding cancer mechanisms and components in in vitro and in vivo studies is
time consuming and does not provide comprehensive results to explain cancer complexity,
since each cancer component is studied one at a time [102]. With the advancements in
tumor deconvolution methods and the availability of more data [103], the data-driven
mathematical models have become popular for exploring the complexity of the system
more effectively. In this study, we developed a mathematical model that explored the
characteristic differences of breast tumors based on their tumor microenvironments. This
model allowed us to understand tumor progression in more detail.

The mathematical results showed that tumor growth in each cluster demonstrates
unique interactions with its tumor microenvironment. For example, as the number of
cancer cells increases, the numbers of cytotoxic cells, helper T-cells, and IFN-γ increase at
the beginning and then decrease to reach a steady state. Furthermore, while regulatory
T-cells in clusters 1, 2, and 3 reached the steady state very early and remained constant
throughout the time, in clusters 4 and 5, they increased very early and then decreased to
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reach the steady state. Importantly, it has been found that interactions among immune
cells can impact the immunological response in various cancer types [104,105]. Our results
also show that it is crucial to investigate the interactions among immune cells rather than
simply looking at the quantity of a certain immune cell type to make appropriate prognostic
predictions for breast cancer patients. The results also show that some of the variables,
such as Tc, Th, D, E, and Iγ, stayed approximately constant over time. Hence, one might
simplify the model by removing the ODEs of these variables and assuming their steady
state values in the remaining equations.

When we compare dynamical results with clinical information of the clusters, we
can see that cluster 5, which has the best survival probability and one of the most non-
aggressive tumor types (Figure 3C), had some of the lowest tumor growth and had a
smaller cancer population at the steady state (Figure 5). Furthermore, we want to clarify
that while cluster 3 contained mostly LumA and LumB breast tumors that tend to have
better prognosis and better survival times compared to other subtypes of breast tumor, the
survival probability of this cluster is low. This is because cluster 3 significantly consisted of
the oldest patients compared to the other clusters (Figure 3A). In addition, while cluster 1
included more aggressive tumors than cluster 2, tumor growth in cluster 2 was the highest
at the steady state. This might be due to the fact that cluster 2 had the youngest patients
(Figure 3A), and aggressive breast tumors in young patients tend to grow more rapidly
than ones in older women [101].

Having a large number of unknown parameters and difficulties in deriving their values
are the main challenges in mathematical modeling of cancer. In this study, we derived some
parameter values from experimental studies published in the literature, and we calculated
others using the steady state assumptions and maximum values of the variables, using a
similar method given in recent studies [71,106]. We estimated parameters uniquely for each
group of patients with different immune profiles, because many studies have demonstrated
that patients with different immune compositions show different prognoses and respond
differently to therapy [107–109]. Thus, having separate parameters for each cluster allowed
us to see the effects of immune cells on tumor growth more accurately.

In addition, we performed a global gradient-based sensitivity analysis to investigate
the effects of each parameter on the dynamical system. The results of sensitivity and
bifurcation analyses provided interesting insights about the biological mechanism, espe-
cially the importance of IFN-γ in controlling cancer growth (Figures 8 and A3). We saw
that the cancer population is primarily sensitive to parameters that directly promote or
inhibit cancer cells, and secondarily, to parameters which promote or inhibit macrophages.
In other words, cancer dynamics positively react to an increase in macrophages. It is re-
ported that high levels of tumor associated macrophages are correlated with worse patient
prognosis [100]. Moreover, to acquire patient specific parameters, we had to devise some
mathematical assumptions about the parameters of our system. These assumptions were
mostly mathematical artifacts ensuring nonzero parameter values. We chose the assump-
tions which involved the sensitive parameters in our sensitivity analysis and investigated
the effect of scaling these assumptions to see how the cancer dynamics would change.
We found out that we could delay cancer recovery time through certain assumptions.
More specifically, we saw that the parameter δCIγ

was involved in the most interesting
cases. In these cases, we saw a significant delay in cancer saturation time. Furthermore,
according to our bifurcation analysis (see Appendix A.6), these parameters have a large
range, which led to a vanishing cancer population that could translate into promising
treatment options. The therapeutic potential of IFN-γ in later stages of cancer has been
observed by researchers [110,111]. It is known that IFN-γ can directly inhibit breast cancer
by restoring ICI-induced apoptosis in breast cancer cells that have acquired resistance
to this antiestrogen [112] , and the combination of anti-growth factor receptor MAb and
cytokines such as IFN-γ may be useful in the treatment of breast cancer [113]. On the other
hand, IFN-γ can increase the cytotoxicity of T-cells, leading to more effective inhibition of
cancer cells [114,115]. Our bifurcation results also showed that controlling the production
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of cancer via adipocytes can significantly decrease the cancer population at the steady
state for LumA subtypes. It has been observed that an excessive amount of adipocytes
is associated with advanced T stages of the triple-negative and LumA subtypes, and the
modulation of adipocytes can provide novel therapy targets for breast cancer [116]. Besides
these, we also investigated how a dynamical system would be affected if we used different
initial conditions for each cluster, and we saw that the parameter values that were used in
each cluster were more important than the initial conditions for determining the dynamics.

The results of this study should be used by considering the limitations of this study.
While the use of time course data would be ideal to obtain parameters for each cluster,
the availability of such data is limited. To combat this challenge, we used large amounts
of tumor data in each cluster as the steady state values, to estimate parameters. Despite
this limitation due to the lack of time course data, our model still presented essential
information about the progression of breast tumors, and our study can be used to develop
new models using only gene expression data of the patients. Moreover, one might utilize
different approaches, such as applying partial differential equations, to investigate tumor
growth in space and time, or utilize other parameter fitting algorithms [117–120] to obtain
more accurate dynamical systems. Lastly, it has been shown that treatment options in
breast cancer have significant effects on the immune system. This model can be used for
inferring treatment strategies in breast cancer by adding the interactions between the effects
of the treatments on the tumor microenvironment.
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Abbreviations
The following abbreviations are used in this manuscript:

TCGA The Cancer Genome Atlas
METABRIC Molecular Taxonomy of Breast Cancer International Consortium
HMGB1 High mobility group box-1
LumA Luminal A
LumB Luminal B
TNBC Triple negative breast cancer
IFN-γ Interferon gamma
HER2 Human epidermal growth factor 2
ER Estrogen receptor
DAMP Damage-associated molecular pattern
UCSC University of Santa Cruz

Appendix A. Derivation of Sample Parameters

Appendix A.1. Steady State and Additional Assumptions

Since we were modeling the evolutions of tumors without any interventions, we
assumed small tumors grow to large ones at a steady state. As there were both small and
large tumors in each cluster, the averages of the smallest tumors and the largest tumors in
each cluster, respectively, gave us the initial conditions and the steady state values for the
cluster; see Tables 2 and 3. However, we carried out our parameter estimation based on
just the steady state values and independent of the initial conditions. This enabled us to
validate the importance of our parameter values based on the data of every single patient
in the same cluster and across clusters; see Appendices A.4 and A.5.

If we assume specific values of steady state for each variable, we obtain the following
sample parameter set:

T∞
N , T∞

c , T∞
h , T∞

r , D∞
N , D∞, M∞, M∞

N , A∞, C∞, N∞, H∞, E∞, IL∞
6 , IL∞

10, IL∞
12, and I∞

γ .

Under these assumptions, the system of Equations (1)–(17) provided us with 17 con-
straints on parameters. In order to solve this system, we needed to make additional
assumptions about a selection of parameters. This ensured that the number of independent
equations equaled the number of unknown parameters and that we could uniquely deter-
mine the values. We assumed that the carrying capacities A0, C0, and M0 were proportional
to the maximum values of their corresponding variables in each cluster. We also took the
necrosis coefficient to be αNC = 0.5. We also utilized the available research [71,121–124] to
adopt the natural death/decay/degradation rates. Considering a cell or cytokine X, we
estimated the death rate δX = ln 2/tX

1/2 using half-life measurements tX
1/2.

More specifically, we found that naive T-cells’ half-life ranges between 1 and 8
years [71]. Taking it to be two years, we derived a death rate of 9.49× 10−4. Next, we found
that the half-lives of cytotoxic T-cells and helper T-cells are 41 h and 3 days, respectively,
resulting in δTh = δTr = 2.31 and δTc = 0.406 [71]. The half-life of mature DCs is about 2 to
3 days, giving us an average of 2.5 days. Using this value for tX

1/2, we obtained δD = 0.277.
Intestinal macrophages have a half life ranging from 4 to 6 weeks. Considering the half
life of five weeks, we calculated δM = 0.0198. According to [125], we found that the half
life of adipocytes is 10 years, resulting in δA = 2.8× 10−3. For HMGB1, there are varying
results in [121]. We considered a half-life of 17 min and used this to find δH = 18. For the
degradation rate of estrogen, we considered a 3 to 5 h half-life [122]. Using the average
of 4 h, we calculated δE = 4.16. For IL-6, we assumed the half-life to be 15.5 h. Thus, we
obtained δIL6 = 1.07 [71]. We took the half-lives of IL-10 and IL-12 to be 3.6 h [71] and
7.8 min [123], respectively. This resulted in δIL10 = 4.62 and δIL12 = 128. Lastly, for IFN-γ,
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the estimated half-life was about 30 min, resulting in the rate δγ = 33.3. More concisely, we
used the following the degradation rates in our computation:

δTN = 9.49× 10−4 δTc = 0.406 δTh = 0.231 δTr = 0.231

δD = 0.277 δM = 0.0198 δA = 2.8× 10−3 δH = 18

δE = 4.16 δIL6 = 1.07 δIL10 = 4.62 δIL12 = 128

δIγ = 33.3

Though this decreased the number of unknowns, there still existed a substantial
number of parameters without values. Therefore, we next imposed heuristic assumptions
based on activation, production, and inhibition rates. Let us look at those in detail.

We began by considering that the mean rate of doubling time of a breast cancer tumor
is 193± 141 [126]. This gives an interval of 52 days to 334 days. Using this fact, we assumed
that a faster doubling rate results from both innate cancer proliferation and proliferation
caused by cytokine IL-6 and adipocytes. In the case of the faster double rate, we assumed
that death is only innate. This results in

ln 2
52
≈ 1.3330× 10−2 =

(
λC + λCIL6 [ILmean

6 ] + λCA[Amean]
)
− δC. (A1)

This contrasts with our slower doubling rate assumptions. We assumed only innate
cancer proliferation. In this case, death rates included the effects of anti-cancer agents
cytotoxic T-cells and IFN-γ, giving us

ln 2
334
≈ 2.0753× 103 = λC −

(
δCTc [T

mean
c ] + δCIγ

[Imean
γ ] + δC

)
. (A2)

We used the following mean values:

Table A1. Mean values of the variables used. The mean values were calculated from the combina-
tion of TCGA and METABRIC datasets for all of the clusters.

ILmean
6 Amean Tmean

c Imean
γ

3.906 7.112× 104 4.129× 103 3.675

In these assumptions, we took ILmean
6 , Amean, Tmean

c , and Imean
γ to be the average

values of the corresponding variable across all patients. In our further assumptions, we
used the maximum observable quantities for all the variables across all patients denoted by:

Tmax
N , Tmax

c , Tmax
h , Tmax

r , Dmax
N , Dmax, Mmax

N , Mmax, Amax, Cmax, Nmax, Hmax, Emax,

ILmax
6 , ILmax

10 , ILmax
12 , and Imax

γ .

The following maximum variables were calculated from the datasets:
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Table A2. Maximum values of the variables. The maximum values were calculated from the
combination of TCGA and METABRIC datasets for all of the clusters.

Tmax
N Tmax

c Tmax
h Tmax

r Dmax
N Dmax

4.270× 104 1.599× 104 2.495× 104 1.174× 104 6.507× 103 8.274× 103

Mmax
N Mmax Nmax Nmax Amax Hmax

4.577× 104 5.247× 104 4.258× 105 1.019× 105 2.612× 105 1.160× 101

ILmax
12 ILmax

10 Emax Imax
γ ILmax

6

2.516× 101 5.962 1.868× 101 8.768 1.073× 101

Assuming helper T-cells are primarily activated by dendritic cells, we can write

λThD[Dmax] = 200λTh H [Hmax] = 200λTh IL12 [ILmax
12 ] = 200λThE[Emax]. (A3)

We took the inhibition of helper T-cells to be mostly accomplished by cytokine IL-10
and regulatory T-cells. In particular, we claim that these inhibitors are 20 times more
effective than natural degradation.

δThTr [T
max
r ] = δTh IL10 [ILmax

10 ] = 20δTh . (A4)

Next, we made the following assumptions about cytotoxic T-cells. The activation of
cytotoxic T-cells by estrogen is much stronger than activation by IL-12 and dendritic cells.
We declare estrogen to be 200 times as effective as IL-12, and we declare dendrites to be 100
times as effective as estrogen.

λTcE[Emax] = 100λTcD[Dmax] = 200λTc IL12 [ILmax
12 ]. (A5)

We also state that IL-10 and regulatory T-cells are 20 times more effective than natural
degradation of cytotoxic T-cells.

δTcTr [T
max
r ] = δTc IL10 [ILmax

10 ] = 20δTc . (A6)

For regulatory T-cells, we assumed that their activation by dendritic cells is four times
stronger than their activation by estrogen. This is written as

λTr D[Dmax] = 4λTrE[Emax]. (A7)

We also claim that the activation of dendritic cells by HMGB1 and estrogen is twice as
effective as by cancer cells. This gives us the following equality:

2λDC[Cmax] = λDH [Hmax] = λDE[Emax]. (A8)

Next, we declare the inhibition of dendritic cells by cancer cells to be equivalent to the
natural degradation rate. In other words,

δDC[Cmax] = δD. (A9)

Further, we assume that helper T-cells are the primary activator for macrophages. We
express this assumption as

10λMIL10 [ILmax
10 ] = 10λMIγ [I

max
γ ] = 10λMIL12 [ILmax

12 ] = λMTh [T
max
h ] = 10λME[Emax]. (A10)

For HMGB1, we declare the following equality to be true.

λHD[Dmax] = λHN [Nmax] = 10λHM[Mmax] = λHTc [T
max
c ] = λHC[Cmax]. (A11)



J. Pers. Med. 2021, 11, 1031 25 of 42

Our next assumption sets the production of IL-12 to be equal among macrophages,
dendritic cells, helper T-cells, and cytotoxic T-cells:

λIL12 M[Mmax] = λIL12D[Dmax] = λIL12Th [T
max
h ] = λIL12Tc [T

max
c ]. (A12)

For the production of IL-10, we let macrophages, dendritic cells, regulatory T-cells,
helper T-cells, cytotoxic T-cells, and cancer cells work at equal rates:

λIL10 M[Mmax] = λIL10D[Dmax] = λIL10Tr [T
max
r ] = λIL10Th [T

max
h ]

= λIL10Tc [T
max
c ] = λIL10C[Cmax]. (A13)

Next, we assumed that IFN-γ is mostly produced by cytotoxic T-cells. This gave us
the following equality:

λIγTc [T
max
c ] = 5λIγTh [T

max
h ] = 5λIγD[Dmax]. (A14)

We also declare IL-6 to be equally produced by adipocytes, macrophages, and dendritic
cells. Thus, we obtained the following:

λIL6 A[Amax] = λIL6 M[Mmax] = λIL6D[Dmax]. (A15)

Furthermore, we scaled the carrying capacities for cancer cells, adipocytes, and estro-
gen by 2, 2, and 1.5, respectively.

C0 = 2× [Cmax], A0 = 2× [Amax], and E0 = 1.5× [Emax]. (A16)

We took the necrosis factor αNC to be 0.5 for all clusters.

αNC = 0.5. (A17)

The proliferation rate of cancer cells by IL6 was assumed to be twice that by adipocytes:

2λCA[Amax] = λCIL6 [ILmax
6 ]. (A18)

We declare the general secretion of estrogen to be twenty times the production of
estrogen by adipocytes:

20λEA[Amax] = λE. (A19)

We took the depreciation of naive dendritic cells to be equivalent to that of dendritic
cells. Likewise, we took the depreciation of naive macrphage cells to be equivalent to that
of macrophages.

δDN = δD (A20)

δMN = δM. (A21)

Finally, we assumed that the inhibition of cancer cells by IFN-γ is less effective than
inhibition by cytotoxic cells and other causes:

δC = δCTc [T
max
c ] = 6δCIγ

[Imax
γ ] (A22)

Altogether, these assumptions adequately allowed us to derive a sample parameter set.

Appendix A.2. Non-Dimensionalization

For a more stable numerical simulation, parameter estimation, and sensitivity analysis,
we non-dimensionalized our parameters and variables with respect to each variable’s
steady state value. Therefore, a non-dimensional variable [X], non-dimensionalized as
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[X]/[X∞], will take the value 1 at its steady state. Since the dimensional time scale does
not introduce any inconveniences, we chose not to non-dimensionalize with respect to the
time. As a result we got the following system:

d[Th]

dt
=
(
λTh H [H] + λTh D[D] + λTh IL12 [IL12] + λTh E[E]

)
[TN ]

−
(
δThTr [Tr] + δTh IL10 [IL10] + δTh

)
[Th], (A23)

d[Tc]

dt
=
(
λTc E[E] + λTc D[D] + λTc IL12 [IL12]

)
[TN ]

−
(
δTcTr [Tr] + δTc IL10 [IL10] + δTc

)
[Tc], (A24)

d[Tr]

dt
=
(
λTr D[D] + λTr E[E]

)
[TN ]− δTr [Tr], (A25)

d[TN ]

dt
= ATN −

(
λTh H [H] + λTh D[D] + λTh IL12 [IL12] + λTh E[E]

)
[TN ]

−
(
λTc E[E] + λTc D[D] + λTc IL12 [IL12]

)
[TN ] (A26)

−
(
λTr D[D] + λTr E[E] + δTN

)
[TN ],

d[DN ]

dt
= ADN −

(
λDC[C] + λDH [H] + λDE[E]

)
[DN ]− δDN [DN ], (A27)

d[D]

dt
=
(
λDC[C] + λDH [H] + λDE[E]

)
[DN ]−

(
δDC[C] + δD

)
[D], (A28)

d[MN ]

dt
= AM −

(
λMIL10 [IL10] + λMIγ

[Iγ] + λMIL12 [IL12] + λMTh [Th]

+ λME[E] + δMN

)
[MN ], (A29)

d[M]

dt
=
(

λMIL10 [IL10] + λMIγ
[Iγ] + λMIL12 [IL12] + λMTh [Th] + λME[E]

)
[MN ]

− δM[M], (A30)

d[C]
dt

=
(
λC + λCIL6 [IL6] + λCA[A]

)(
1− [C]

C0

)
[C]

−
(

δCTc [Tc] + δCIγ
[Iγ] + δC

)
[C], (A31)

d[A]

dt
= λA[A]

(
1− [A]

A0

)
− δA[A], (A32)

d[N]

dt
= αNC

(
δCIγ

[Iγ] + δCTc [Tc] + δC

)
[C]− δN [N], (A33)

d[H]

dt
= λHD[D] + λHN [N] + λHM[M] + λHTc [Tc] + λHC[C]− δH [H], (A34)

d[IL12]

dt
= λIL12 M[M] + λIL12D[D] + λIL12Th [Th] + λIL12Tc [Tc]− δIL12 [IL12], (A35)
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d[IL10]

dt
= λIL10 M[M] + λIL10D[D] + λIL10Tr [Tr] + λIL10Th [Th] + λIL10Tc [Tc] + λIL10C[C]

− δIL10 [IL10], (A36)

d[E]
dt

= λEA[A] + λE[E]
(

1− [E]
E0

)
− δE[E], (A37)

d[Iγ]

dt
= λIγTc [Tc] + λIγTh [Th] + λIγ D[E][D]− δIγ

[Iγ], (A38)

d[IL6]

dt
= λIL6 A[A] + λIL6 M[M] + λIL6D[D]− δIL6 [IL6]. (A39)

Since we did not nondimensionalize with respect to time, the production rates λC, λA
and λE and the decay rates δTh , δTc , δTr , δTN , δDN , δD, δMN , δM, δC, δA, δN , δH , δIL12 , δIL10 , δE,
δIγ , δTh , and δIL6 were left unchanged. To non-dimensionalize the rest of the parameters,
we used the following rules:

ATN =
ATN

[T∞
N ]

, ADN =
ADN

[D∞
N ]

, AM =
AM
[M∞]

,

αNC = αNC
[C∞]

[N∞]
, C0 =

C0
[C∞]

, A0 =
A0
[A∞]

,

E0 =
E0
[E∞]

. (A40)

Furthermore, for the reaction parameters of the form λXY used in terms of the form
λXY[Y][Z], we used the general non-dimensinalization formula:

λXY =
λXY[Y∞][Z∞]

[X∞]
. (A41)

and finally, for inhibition rates of the form δXY used in terms of the form δXY[Y][Z], we
used the general non-dimensinalization formula:

δXY = δXY[Y∞]. (A42)

Consequently, we got non-dimensionalized assumptions as follows:

ln 2
52
≈ 1.3330× 10−2 =

(
λC + λCIL6

[ILmean
6 ]

[IL∞
6 ]

+ λCA
[Amean]

[A∞]

)
− δC, (A43)

ln 2
334
≈ 2.0753× 103 = λC −

(
δCTc

[Tmean
c ]

[T∞
c ]

+ δCIγ

[Imean
γ ]

[I∞
γ ]

+ δC

)
, (A44)

λTh D
[Dmax]

[D∞]
= 200λTh H

[Hmax]

[H∞]
= 200λTh IL12

[ILmax
12 ]

[IL∞
12]

= 200λTh E
[Emax]

[E∞]
, (A45)

δThTr

[Tmax
r ]

[T∞
r ]

= δTh IL10

[ILmax
10 ]

[IL∞
10]

= 20δTh , λTr D
[Dmax]

[D∞]
= 4λTr E

[Emax]

E∞ , (A46)

2λDC
[Cmax]

[C∞]
= λDH

[Hmax]

[H∞]
= λDE

[Emax]

[E∞]
, δDC

[Cmax]

[C∞]
= δD, (A47)

10λMIL10

[ILmax
10 ]

[IL∞
10]

= 10λMIγ

[Imax
γ ]

[I∞
γ ]

= 10λMIL12

[ILmax
12 ]

[IL∞
12]

= λMTh

[Tmax
h ]

[T∞
h ]

= 10λME
[Emax]

[E∞]
, (A48)
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50δCTc

[Tmax
c ]

[T∞
c ]

= δCIγ

[Imax
γ ]

[I∞
γ ]

, (A49)

λHD
[Dmax]

[D∞]
= λHN

[Nmax]

[N∞]
= 10λHM

[Mmax]

[M∞]
= λHTc

[Tmax
c ]

[T∞
c ]

= λHC
[Cmax]

[C∞]
, (A50)

λIL12 M
[Mmax]
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= λIL12D

[Dmax]

[D∞]
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[Tmax
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[T∞
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= λIL12Tc

[Tmax
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[T∞
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, (A51)

λIL10 M
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[Tmax
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[T∞
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[T∞
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[Tmax
c ]

[T∞
c ]
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[Cmax]

[C∞]
, (A52)

λIγTc

[Tmax
c ]

[T∞
c ]

= 5λIγTh

[Tmax
h ]

[T∞
h ]

= 5λIγ D
[Dmax]

[D∞]
, (A53)

λIL6 A
[Amax]

[A∞]
= λIL6 M

[Mmax]

[M∞]
= λIL6D

[Dmax]

[D∞]
, (A54)

2λCA
[Amax]

[A∞]
= λCIL6

[ILmax
6 ]

[IL∞
6 ]

, 20λEA
[Amax]

[A∞]
= λE, (A55)

δC = δCTc

[Tmax
c ]

[T∞
c ]

= 6δCIγ

[Imax
γ ]

[I∞
γ ]

. (A56)

Appendix A.3. Parameter Values

This section includes all the parameter values used in this project. Values are sep-
arated into two groups. First, we have degradation rates included from prior research
(see Table A3). Second, we have scaling-dependent parameters (see Table 1) based on the
assumptions made in Appendix A.1. In order to sufficiently analyze the dynamics of the
tumor based on the estimated parameters, we emphasize that possible variations in as-
sumptions and patient to patient values should be considered. These variations have been
taken into account and addressed by performing sensitivity analysis and clustering patients
based on their immune profiles. In their dimensional forms, the scaling-dependent param-
eters would also depend on the scaling constant α, in addition to derivation assumptions
and patient data. Therefore, we list the objective non-dimensional values. The dimension
of these parameters is per day.

Table A3. Half-lives and estimated death rate. Degredation and death rate taken or calculated from
the given references.

Parameter Value Reference Parameter Value Reference

δTN 9.49× 10−4 [71] δH 18 [71,121]

δTc 0.231 [71] δE 4.16 [122]

δTh 0.406 [71] δIL6 1.07 [71]

δTr 0.406 [71] δIL10 4.62 [71]
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Table A3. Cont.

Parameter Value Reference Parameter Value Reference

δD 0.277 [71] δIL12 128 [123]

δM 0.0198 [71] δIγ 33.3 [71]

δA 2.8× 10−3 [125]

Table A4. Non-dimensional parameter values for each cluster.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

λTh H 1.791× 10−1 4.048× 10−2 1.002× 10−1 2.478× 10−1 3.871× 10−1

λThD 2.933 1.801 2.200 4.027 3.135

λTh IL12 1.569× 10−1 2.286× 10−2 6.850× 10−2 2.623× 10−1 3.919× 10−1

λThE 1.756× 10−1 2.633× 10−2 1.063× 10−1 2.795× 10−1 4.696× 10−1

λTcE 6.022 3.297 4.332 8.420 7.669

λTcD 5.028× 10−3 1.128× 10−2 4.482× 10−3 6.064× 10−3 2.560× 10−3

λTc IL12 2.690× 10−2 1.431× 10−2 1.396× 10−2 3.950× 10−2 3.200× 10−2

λTr D 5.783× 10−2 1.334× 10−1 6.763× 10−2 5.167× 10−2 2.721× 10−2

λTrE 1.732× 10−1 9.755× 10−2 1.634× 10−1 1.793× 10−1 2.038× 10−1

λDC 3.346× 10−2 6.768× 10−2 4.237× 10−2 2.540× 10−2 2.505× 10−2

λDH 1.526× 10−1 1.709× 10−1 1.444× 10−1 1.474× 10−1 1.430× 10−1

λDE 1.497× 10−1 1.112× 10−1 1.532× 10−1 1.663× 10−1 1.734× 10−1

λMIL10 2.499× 10−3 1.201× 10−3 1.978× 10−3 2.535× 10−3 3.128× 10−3

λMIγ 1.720× 10−3 7.178× 10−4 1.244× 10−3 1.941× 10−3 2.177× 10−3

λMIL12 1.991× 10−3 9.880× 10−4 1.469× 10−3 2.050× 10−3 2.484× 10−3

λMTh 1.136× 10−2 1.575× 10−2 1.283× 10−2 1.109× 10−2 9.035× 10−3

λME 2.229× 10−3 1.138× 10−3 2.279× 10−3 2.184× 10−3 2.977× 10−3

λC 5.756× 10−2 4.250× 10−2 5.669× 10−2 3.427× 10−2 3.959× 10−2

λCIL6 4.345× 10−4 8.494× 10−4 3.381× 10−4 5.530× 10−3 4.595× 10−3

λCA 2.357× 10−4 1.243× 10−3 2.859× 10−4 1.807× 10−3 1.205× 10−3

λA 3.384× 10−3 3.394× 10−3 3.367× 10−3 3.400× 10−3 3.282× 10−3

λHD 1.458 2.113 1.529 1.239 7.319× 10−1

λHN 4.156 2.858 2.861 3.552 4.083

λHM 9.720× 10−1 8.862× 10−1 1.421 7.101× 10−1 7.883× 10−1

λHTc 3.605 4.620 4.014 7.244 6.063

λHC 7.809 7.523 8.173 5.255 6.334

λIL12 M 5.253× 101 4.698× 101 6.480× 101 3.738× 101 4.730× 101

λIL12D 7.880 1.120× 101 6.972 6.521 4.391

λIL12Th 4.810× 101 4.533× 101 3.793× 101 4.596× 101 3.994× 101

λIL12Tc 1.948× 101 2.449× 101 1.830× 101 3.813× 101 3.638× 101
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Table A4. Cont.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

λIL10 M 1.197 1.155 1.606 9.978× 10−1 1.252

λIL10D 1.795× 10−1 2.754× 10−1 1.728× 10−1 1.741× 10−1 1.162× 10−1

λIL10Tr 7.419× 10−1 4.921× 10−1 5.241× 10−1 4.651× 10−1 2.271× 10−1

λIL10Th 1.096 1.115 9.400× 10−1 1.227 1.057

λIL10Tc 4.440× 10−1 6.022× 10−1 4.536× 10−1 1.018 9.626× 10−1

λIL10C 9.615× 10−1 9.806× 10−1 9.235× 10−1 7.384× 10−1 1.006

λEA 1.024× 10−1 8.334× 10−2 9.433× 10−2 1.389× 10−1 1.278× 10−1

λE 5.935 4.761 5.600 7.870 8.708

λIγTc 2.115× 101 2.278× 101 2.234× 101 2.611× 101 2.677× 101

λIγTh 1.044× 101 8.434 9.259 6.295 5.879

λIγD 1.711 2.084 1.702 8.931× 10−1 6.465× 10−1

λIL6 A 5.692× 10−1 5.110× 10−1 4.652× 10−1 5.329× 10−1 5.150× 10−1

λIL6 M 4.355× 10−1 4.513× 10−1 5.460× 10−1 4.573× 10−1 5.079× 10−1

λIL6D 6.532× 10−2 1.076× 10−1 5.875× 10−2 7.977× 10−2 4.715× 10−2

δThTr 7.562× 10−1 6.086× 10−1 5.961× 10−1 6.522× 10−1 2.427× 10−1

δTh IL10 2.457 1.051 1.648 3.933 3.910

δTc IL10 4.319 1.847 2.896 6.913 6.871

δTcTr 1.329 1.070 1.048 1.146 4.266× 10−1

δDC 5.876× 10−2 7.271× 10−2 6.297× 10−2 6.209× 10−2 6.444× 10−2

δDN 2.770× 10−1 2.770× 10−1 2.770× 10−1 2.770× 10−1 2.770× 10−1

δMN 1.980× 10−2 1.980× 10−2 1.980× 10−2 1.980× 10−2 1.980× 10−2

δCTc 4.399× 10−3 5.276× 10−3 4.936× 10−3 8.052× 10−3 6.762× 10−3

δCIγ
2.741× 10−3 7.415× 10−4 1.654× 10−3 2.832× 10−3 2.982× 10−3

δC 4.492× 10−2 3.273× 10−2 4.421× 10−2 2.606× 10−2 3.037× 10−2

δN 2.043× 10−1 2.130× 10−1 3.031× 10−1 1.141× 10−1 1.300× 10−1

ATN 9.730 5.445 7.057 1.351× 101 1.232× 101

ADN 6.128× 10−1 6.267× 10−1 6.170× 10−1 6.161× 10−1 6.184× 10−1

AM 3.960× 10−2 3.960× 10−2 3.960× 10−2 3.960× 10−2 3.960 · 10−2

αNC 3.924 5.497 5.966 3.089 3.240

C0 9.428 7.619 8.798 8.923 8.597

A0 5.795 5.713 5.937 5.666 6.813

E0 3.161 6.958 3.649 2.045 1.862
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Appendix A.4. Dynamics with Varying Initial Conditions
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Figure A1. The dynamics with varying initial conditions. Subfigures (A–E) show the dynamics
of cells and cytokines with initial conditions from different patients in clusters 1, 2, 3, 4, and 5,
respectively.

Appendix A.5. Dynamics of the Tumor Microenvironment with Cross-Cluster Initial Conditions.
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Figure A2. Cont.
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Figure A2. Cont.
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Figure A2. Dynamics with cross-cluster initial conditions: (A) parameters from cluster 1 and initial
conditions from clusters 2, 3, 4, and 5; (B) parameters from cluster 2 and initial conditions from
clusters 1, 3, 4, and 5; (C) parameters from cluster 3 and initial conditions from clusters 1, 2, 4, and 5;
(D) parameters from cluster 4 and initial conditions from clusters 1, 2, 3, and 5; and (E) parameters
from cluster 5 and initial conditions from clusters 1, 2, 3, and 4.

Appendix A.6. Bifurcation and Lyapunov Exponent for the Cancer ODE

To further investigate the effects of parameters on controlling the cancer development,
we carried out bifurcation analysis on those involved in cancer ODE (9). This choice was
made not only because these parameters were directly involved in cancer ODE, but also
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since they came out as the most sensitive parameters in Section 3.3. Our results show that
regardless of minute differences in quantities, the qualitative behaviors are identical across
all the clusters; see Figure A3.

In all clusters, for λC, λCIL6 , λCA, δCTc , δCIγ
, and δC, we can see the existence of a

single equilibrium for a large range of parameter values (0 to 1). Increasing the values
of λC, λCIL6 , and λCA caused the cancer population to reach higher steady state values.
However, for λC in clusters 1–5 and for λCA in cluster 5, we observed interesting results
at the beginning of their corresponding intervals. More specifically, very small values of
λC caused the cancer population to vanish for all clusters, whereas very small values of
λCA led to very small steady state (but not zero) values for cancer only in cluster 5; see
Figure A3. On the contrary, parameters δCTc , δCIγ

and δC only pertain to a non-vanishing
cancer population in a very small parameter space. For the most part, they caused the
cancer population to disappear at the steady state; see Figure A3. The negative Lyapunov
exponents show that all the steady state values are Lyapunov stable.

Figure A3. Bifurcation and Lyapunov exponent diagrams for cancer parameters: Subfigures show
the bifurcation on top of the corresponding Lyapunov diagrams for clusters 1–5. Bifurcation was
done for parameters λC, λCIL6 , λCA, δCTc , δCIγ

, and δC from the cancer ODE (9).



J. Pers. Med. 2021, 11, 1031 37 of 42

Appendix A.7. Positivity

In order to prove that the system with positive parameters and positive initial condi-
tions has positive solutions, we defined the following integrating factors for each of the
state variables.

ηTh (t) = exp

 t∫
0

(
δThTr [Tr] + δTh IL10 [IL10] + δTh

)
ds

,

ηTc (t) = exp

 t∫
0

(δTcTr [Tr] + δTc IL10 [IL10] + δTc )ds

,

ηTr (t) = exp(δTr t),

ηTN (t) = exp

 t∫
0

(λTh H [H] + λTh D[D] + λTh IL12 [IL12] + λTh E[E]

+ λTc E[E] + λTc D[D] + λTc IL12 [IL12] + λTr D[D] + λTr E[E] + δTN )ds

]
,

ηDN (t) = exp

 t∫
0

(λDC[C] + λDH [H] + λDE[E] + δDN )ds

,

ηD(t) = exp

 t∫
0

(δDC[C] + δD)ds

,

ηMN (t) = exp

 t∫
0

(
λMIL10 [IL10] + λMIγ

[Iγ] + λMIL12 [IL12] + λMTh [Th] + λME[E] + δMN

)
ds

,

ηM(t) = exp(δMt),

ηC(t) = exp

 t∫
0

(
δCTc [Tc] + δCIγ

[Iγ] + δC −
(
λC + λCIL6 [IL6] + λCA[A]

)(
1− [C]

C0

))
ds

,

ηN(t) = exp(δN t),

ηH(t) = exp(δHt),

ηIL12 (t) = exp(δIL12 t),

ηIL10 (t) = exp(δIL10 t),

ηE(t) = exp

 t∫
0

(
δE − λE

(
1− [E]

E0

))
ds

,

ηIγ
(t) = exp

(
δIγ

t
)

,

ηIL6 = exp(δIL6 t).
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Considering these integration factors, we rewrote our system of ODEs as:

d
dt
(
[Th]ηTh

)
=
(
λTh H [H] + λTh D[D] + λTh IL12 [IL12] + λTh E[E]

)
[TN ]ηTh ,

d
dt
([Tc]ηTc ) = (λTc E[E] + λTc D[D] + λTc IL12 [IL12])[TN ]ηTc ,

d
dt
([Tr]ηTr ) = (λTr D[D] + λTr E[E])[TN ]ηTr ,

d
dt
([TN ]ηTN ) = ATN ηTN ,

d
dt
([DN ]ηDN ) = ADN ηDn ,

d
dt
([D]ηD) = (λDC[C] + λDH [H] + λDE[E])[DN ]ηD,

d
dt
([MN ]ηMN ) = AMηM,

d
dt
([M]ηM) =

(
λMIL10 [IL10] + λMIγ

[Iγ] + λMIL12 [IL12] + λMTh [Th] + λME[E]
)
[MN ]ηM,

d
dt
([C]ηC) = 0,

d
dt
([N]ηN) = αNC

(
δCIγ

[Iγ] + δCTc [Tc] + δC

)
[C]ηN ,

d
dt
([H]ηH) = (λHD[D] + λHN [N] + λHM[M] + λHTc [Tc] + λHC[C])ηH ,

d
dt
([IL12]ηIL12 ) =

(
λIL12 M[M] + λIL12D[D] + λIL12Th [Th] + λIL12Tc [Tc]

)
ηIL12 ,

d
dt
([IL10]ηIL10 ) =

(
λIL10 M[M] + λIL10D[D] + λIL10Th [Tr] + λIL10Th [Th] + λIL10Tc [Tc] + λIL10C[C]

)
ηIL10 ,

d
dt
([E]ηE) = λEA[A]ηE

d
dt

(
[Iγ]ηIγ

)
=
(

λIγTc [Tc] + λIγTh [Th] + λIγ D[E][D]
)

ηIγ
,

d
dt
([IL6]ηIL6 ) =

(
λIL6 A[A] + λIL6 M[M] + λIL6D[D]

)
ηIL6 .

The right-hand sides of all of the above equations are non-negative. This means that
the terms [X]ηX are non-decreasing for each state variable [X]. Therefore, for positive initial
values, the dynamics stayed positive.
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