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Abstract
We present Virtual Pharmacist, a web-based platform that takes common types of high-

throughput data, namely microarray SNP genotyping data, FASTQ and Variant Call Format

(VCF) files as inputs, and reports potential drug responses in terms of efficacy, dosage and

toxicity at one glance. Batch submission facilitates multivariate analysis or data mining of

targeted groups. Individual analysis consists of a report that is readily comprehensible to

patients and practioners who have basic knowledge in pharmacology, a table that summa-

rizes variants and potential affected drug response according to the US Food and Drug

Administration pharmacogenomic biomarker labeled drug list and PharmGKB, and visuali-

zation of a gene-drug-target network. Group analysis provides the distribution of the vari-

ants and potential affected drug response of a target group, a sample-gene variant count

table, and a sample-drug count table. Our analysis of genomes from the 1000 Genome Proj-

ect underlines the potentially differential drug responses among different human popula-

tions. Even within the same population, the findings fromWatson’s genome highlight the

importance of personalized medicine. Virtual Pharmacist can be accessed freely at http://

www.sustc-genome.org.cn/vp or installed as a local web server. The codes and documen-

tation are available at the GitHub repository (https://github.com/VirtualPharmacist/vp).

Administrators can download the source codes to customize access settings for further

development.

Introduction
Since the first release of the human genome in 2000, there has been continuing interest to
understand genetic variants among individuals. The Single Nucleotide Polymorphism Data-
base (dbSNP) is a collection of such variations [1]. Genetic variations can affect drug responses
involving efficacy and safety to different extents, and the outcomes also affect drug develop-
ment, prescription, and patient care [2]. For examples, the effective dosage of the drug warfarin
is strongly affected by genetic variants of the P450 cytochrome CYP2C9 and the vitamin K
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epoxide reductase complex VKORC1 [3]. The labels for warfarin and other drugs, such as aba-
cavir, clopidogrel, prasugrel, and irinotecan have already incorporated pharmacogenetic infor-
mation [4]. To meet the need for high-quality genotypic and phenotypic information, the
National Institute of Health initiated the Pharmacogenetics Research Network [5], which led
to the development of the Pharmacogenetics and Pharmacogenomics Knowledge Base
(PharmGKB), a curated resource that contains the relationships between drugs, diseases/
phenotypes, and genes involved in pharmacokinetics and pharmacodynamics [6]. In 2010, the
US Food and Drug Administration (FDA) issued a black-box warning of diminished clopido-
grel effectiveness in poor metabolizers and suggested testing for the CYP2C19 genotype.

Low-throughput methods including Polymerase Chain Reaction (PCR) are common
options for detecting drug-related gene variants, because of the low technology requirements
and operation cost. In recent years, however, the cost of high-throughput sequencing has dra-
matically reduced and the “$1000 genome” [7–9] may be realized in the near future, when sin-
gle nucleotide polymorphism (SNP) genotyping chips will be replaced by whole-genome
sequencing [10]. With the generation of more and more data, their interpretation can become
the bottleneck [11]. wANNOVAR [12] was developed to annotate genetic variants with disease
associations. Similarly, Karczewski et al. [13] developed a platform called Interpretome that
can be used to estimate risk for diseases. 23andMe is a service company that provides genetic
testing for inherited disorders and ancestry-related analysis [14]. Other related work includes
integration of multiple databases for annotation [15], visualization or manipulation [16], and
analysis and knowledge discovery [15, 17].

Tools need to be developed for interpreting high-throughput data of personal genomes and
for identifying the variations that affect drug response [8, 12, 18–21]. Here, we present Virtual
Pharmacist (VP), a secure online platform that can be used to interpret the potential impact of
individual genetic variations on drug response, based on the high-quality resources from
PharmGKB [6], dbSNP [1], and The DrugBank database [22], which is a comprehensive
resource that curates knowledge about drugs and their targets.

Methods
VP has a modular design to accommodate enhancement features such as implementation of
prediction algorithms and/or incorporation of additional analysis functionalities. VP uses tech-
nologies based on open standards, such as Hypertext Preprocessor (PHP) and Python for back-
end processing. JavaScript and Cascading Style Sheets (CSS) were used to construct a user-
friendly Graphical User Interface. MySQL was chosen as the core database management system
for fast and flexible data retrieval.

Data security
We developed a three-fold security strategy to protect user data privacy and security. First, VP
generates a folder named with a random string to store user data; second, the folder and files
are deleted automatically 7 days after uploading; and third, we adopted open source software
development and deposited the whole package with detailed documentation at GitHub.
Administrators can download the source codes and customize access settings for their organi-
zations and users at any level.

Workflow
The VP workflow has three main components: (i) data input; (ii) annotation and analysis; and
(iii) result presentation, consisting of the generation of individual and group annotations and
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analysis (Fig 1). The steps included in the individual curration and analysis modules are
described in detail in the accompanying VP developer guide.

Data input
VP accepts Variant Call Format (VCF) files, high-throughput sequencing data, and microarray
SNP genotyping data (Fig 2A). The VCF specification was developed to store large-scale data
from projects such as the 1000 Genomes Project (http://www.1000genomes.org/data). At pres-
ent VCF-v4.2 is supported in VP. Genotyping data are generated by parsing VCF data with the
Python package PyVCF (https://pyvcf.readthedocs.org/en/latest/). SNP id, and chromosome
position are also extracted and stored in a simple text format for annotation. Whole-genome/
exome sequencing data are usually a few Gigabytes in size, which is too large for webpage
uploading. Therefore, we built an FTP server for uploading large genome data files. Users are
asked to provide an email address to receive a randomly generated FTP user name and pass-
word. Four microarray genotyping data formats (23andMe, Affymetrix, deCODEme, and Fam-
ily tree DNA) are supported. All data must be uploaded in a compressed zipped archive.

Read processing and SNP calling
For high-throughput sequencing data in FASTQ format, read alignment and SNP calling are
performed.

The sequences are first aligned to the human reference genome (hg19) by BWA(Burrows-
Wheeler Alignment tool), which is an ultrafast and memory-efficient sequence aligner [23].
Then, a file in Sequence Alignment/Map (SAM) format is generated with a header section and
an alignment section. The alignment results are reordered by the program ReorderSam.jar in
Picard Tools package (http://broadinstitute.github.io/picard/). Sequence duplications are
marked and removed by the programMarkDuplicates.jar in Picard Tools package to avoid the

Fig 1. Schematic of the Virtual Pharmacist (VP) workflow. The three components of VP are shown.

doi:10.1371/journal.pone.0141105.g001
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PCR bias. Then, the alignment results are indexed by SAMTools[24] for SNP calling. Base
recalibration based on quality score is performed to reduce false positives in SNP calling. Vari-
ants in the recalibrated alignment are called by UnifiedGenotyper in GATK software. The var-
aints called are further filtered by VariantFiltration program in GATK[25]. All variants are
output to a VCF file. The detailed description of command lines and parameters is available in
S2 File.

Fig 2. User interface and representative result output of Virtual Pharmacist (VP). (A) VP accepts various data format as input; for example, VCF format
files, high-throughput sequencing data, and microarray SNP data. (B) Cisplatin output as a representative result output. VP reports the SNP ID, evidence
level, gene, genotype, efficacy, dosage, toxicity, and detailed description. (C) Network view of drug-gene interaction. Green, blue, and yellow circles in the
graph represent a specific gene, drug name, and drug category, respectively, based on the DrugBank database. A drug functional classification and a gene
are connected if a variant of the gene affects the response of the drug. (D) User interface for a representative multiple sample result. VP can analyze multiple
VCF data files (each data file should contain just one sample) and calculate the statistics of drug response in a population. Furthermore, VP can provide
sample-drug and sample-gene count tables to users for data mining and association studies.

doi:10.1371/journal.pone.0141105.g002
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Clinical annotation
Each SNP is mapped to our database containing genotype and phenotype information. Suc-
cessfully mapped SNPs will be stored in a separate table and output to a report. In the final
report, we reported the toxicity, dosages and efficacy of drug response. The influence of SNP
on drug response is qualitatively descripted as “increase” or “decrease”. The quantitative
information is usually unavailable for most drugs, because the toxicity, dosage and efficacy
are affected by multiple factors, such as genotype, disease condition, environment, age, weight,
etc.

Because the interactions between drug and target molecular genes are complicated, the
efficacy, dosage and toxicity of drugs are studied in different groups using different methodolo-
gies. We adopted the evidence level classification method proposed in PharmGKB and
assigned every SNP and drug response information to certain evidence level. The detailed
description of evidence level can be seen in PharmGKB (https://www.pharmgkb.org/page/
clinAnnLevels).

Database construction
We constructed a database by integrating annotation information from PharmGKB, Drug-
Bank, and dbSNP (Fig 3). A total of 1135 drug-related SNP records corresponding to 193
drugs were collected from PharmGKB [6]. The potential impacts of genetic variations on drug
responses such as dosage, toxicity, and efficacy were collected. Genotype and chromosome
position information was obtained from dbSNP [1]. Detailed descriptions of the 193 drugs
were extracted from DrugBank [22] (S1 Table). The integrated data were stored as a database
in a MySQL database management system.

Fig 3. Structure of the reference database of Virtual Pharmacist (VP). Different data sources were integrated to construct the gene-drug interaction
reference database.

doi:10.1371/journal.pone.0141105.g003
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Results

Result presentation
Individual and group analysis results are available in VP. The individual analysis result consists
of 1) a report that is readily comprehensible to patients and practioners who have basic knowl-
edge in pharmacology, 2) a table that summarizes variants and potential affected drug
responses, and 3) visualization of a gene-drug-target network. The group analysis result com-
prises group statistics by 1) charting distribution of variants and potentially affected drug
responses of a target group, 2) a sample-gene variant count table, and 3) a sample-drug count
table.

Individual reports contain detailed information about drug response-related SNPs, gene
location, the effects on drug efficacy, dosage, and toxicity together with the evidence level of
the records at one glance (Fig 2B). A sample report file is provided as S1 File. Briefly, a drug
classification list is provided as the index of the user report. Users can find specific drug-related
SNPs simply by clicking the drug name in the index. On each page of the user report, the drug
information from Drugbank is presented, followed by user-specific drug-response related
SNPs. In particular, the FDA pharmacogenomic biomarker-labeled drug list is highlighted to
provide documented information about “drug exposure and clinical response variability,
risk for adverse events, genotype-specific dosing, mechanisms of drug action, and polymorphic
drug target and disposition genes” (http://www.fda.gov/Drugs/ScienceResearch/Research
Areas/Pharmacogenetics/ucm083378.htm). A table summary is also provided for quick and
easy reference.

Running time
We tested the running time of VP using various data formats and sizes (Table 1). VP took less
than 1 minute to process VCF data files.

Network visualization
To visualize potential pleiotropic and convergent phenotypes, we visualized the relations
between genetic variations, drugs, and their targets (Fig 2C). VKORC1, CYP2C9, and CYP4F2
are linked with blood-thinning warfarin action, and CYP4F2 also affects another anticoagulant
phenprocoumon. CYP2C9 not only modulates anticoagulation, it can also predispose other
drug actions that target the nervous system and cancer. For patients with co-morbid condi-
tions, a holistic therapeutic plan may have to be devised. The large number of arrows pointing
towards cisplatin in the drug-gene interaction network suggests that its action may be affected
by multiple genetic variations. Thus, the network visualization provides users a better overview
of the complex network of drug response and genes to help understand the interaction of geno-
mics and drugs.

Table 1. VP running time with various input files.

Data type File size Uploading timea Running time CPU

VCF 20 Mb <1 min <1 min 1

SNP array 15 Mb <1 min <1 min 1

Whole-genome sequencing 111 Gb 379 mins 24 hours 20

Exome sequencing 6.8 Gb 30 mins 3 hours 20

aThe network uploading speed used for comparison was 5 Mbps.

doi:10.1371/journal.pone.0141105.t001
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Group analysis
The average numbers (mean) and standard deviations of drug-related SNPs for FDA-approved
drugs and all drug-related SNPs among five populations are listed. AFR, African; AMR, Ameri-
can; SAS, South Asian; EAS, East Asian; EUR, European.

In the group analysis, VP outputs count tables (Fig 2D) that can be used in data mining and
trait association studies. To demonstrate the functionalities of the VP group analysis, we
retrieved all of the 2504 VCF data files from the 2013 release of 1000 Genomes Project [26] ()
as an example and detected 291 SNPs associated with differential drug responses. The differ-
ence in allele frequency of drug-related SNPs was significant among the five populations
(Table 2 and S2 Table), which indirectly indicates that genetic alterations impacting on drug
response is different among populations.

We analyzed four SNPs associated with cisplatin toxicity. The distribution of four cisplatin-
toxicity associated SNPs for different genotypes among five major human populations is
shown in Fig 4. Generally, the distribution patterns of SNPs among the populations were sig-
nificantly different. For instance, the heterozygous genotype of SNP rs1042522 was dominant
among the South Asian and East Asian populations, while the homozygous genotype (GG) was
dominant in the African population. The homozygous genotype of rs1042522 (CC), which
leads to a decreased toxicity for cisplatin, was dominant among the American and European
populations. The heterozygous genotype of rs316019 was dominant among European, Ameri-
can, and South Asian populations, and the homozygous genotype (CC///), which might lead to
increased toxicity for cisplatin, was dominant among the East Asian and African populations.
The heterozygous genotype of rs11615, which leads to increased toxicity of cisplatin, was domi-
nant in the European population, while the homozygous genotype (GG), which might lead to
decreased toxicity of cisplatin, was dominant among the other studied populations. In contrast,
all the five populations had a similar genotype distribution pattern for rs3957357. We found
that the average number of SNPs associated with drug response per individual per population
was more than 120; about 60 SNPs were among FDA-labeled pharmacogenomics biomarkers
(Table 2). These SNPs might indeed modulate therapeutic outcomes.

We also evaluated Watson’s genome [27] and identified 65 drug-related SNPs. Because
Watson is Caucasian, we compared his SNPs with the 99 Caucasian SNPs from the 1000
Genomes Project. Moreover, because the existing recommended dosage may have been estab-
lished before genome sequencing technology was available it is likely that the recommended
dosage refers to the most common genotypes. We found that over half (n = 33, S3 Table) of
Watson’s SNPs were different from the other Caucasian SNPs, including rs2292566, a SNP
that is recommended for lower warfarin dosage; and rs1042522 and rs11615, two SNPs associ-
ated with increased toxicity of cisplatin. This result highlights the importance of personalized
medicine.

Table 2. Summary of drug-related SNPs among populations.

FDA-labeled drug-related SNPs Drug-related SNPs

Race Mean Standard deviation Mean Standard deviation

AFR 56.53 4.10 136.60 8.94

AMR 61.00 4.67 148.96 9.86

SAS 59.95 4.73 142.85 8.98

EAS 59.19 4.00 138.65 8.62

EUR 60.60 5.07 151.20 9.96

doi:10.1371/journal.pone.0141105.t002
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Discussion
We have implemented an integrated pharmacogenomics web service system and made it avail-
able in the public repository GitHub. Genome-wide studies have produced large amounts of
data and detected a large number of genetic variants. Collecting and integrating annotation
information from heterogeneous sources can become the bottleneck that hinders the best use
of the abundant information. VP can help fill this gap. Moreover, VP provides group analysis
of samples, which extends individual evaluations to possibilities of healthcare policy at higher
levels of considerations.

The core data source of VP is PharmGKB, which is a manually curated knowledge base that
captures information on genetic variants that can affect drug response. The results from high-
throughput studies have created a need to increase the quantity of entries in VP. Therefore, we
plan to incorporate information from the PharmacoGenomic Mutation Database [28], which
is a more comprehensive collection that was published recently, into the next update in VP.

VP provides individual and group analysis results. In the near future, we will add to VP
data mining capabilities such as clustering, pathway or network analysis, as well as integrate

Fig 4. Allele variants of cisplatin-related SNPs and their impacts on cisplatin toxicity. Statistical frequencies of SNPs rs1042522, rs316019, rs11615,
and rs3957357 among five major populations from the 1000 Genomes Project are shown together with their impacts on cisplatin toxicity.

doi:10.1371/journal.pone.0141105.g004
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information or analysis from related work [29] to allow prediction and more in-depth investi-
gations into the impact of pharmacogenomics at an individual or population level. Our analysis
of genomes from the 1000 Genomes Project [26] underlines the heterogeneity of genotype dis-
tribution among five different major human populations. Even within the same population,
the findings fromWatson’s genome [27] highlight the importance of personalized medicine,
because membership of a population does not guarantee the same efficacy and safety of a ther-
apy regimen.

VP is packaged with detailed user and developer guides and we can be contacted for assis-
tance related to installation issues usng the email addresses listed on the VP website. Regarding
concerns that have been raised over personal data leakage and selling in recent years, our open-
source VP is a timely platform that will be conducive to individual evaluations and academic
and commercial research.

Supporting Information
S1 File. Sample result report. The comprehensive user report in PDF format is generated
automatically by Virtual Pharmacist. It shows the pharmacology of the drug response of
genetic variants.
(PDF)

S2 File. Supporting information. It includes the detailed description of method for high-
throughput data analysis and the strategy for handling SNPs in overlapping genes.
(DOCX)

S1 Table. Information for 193 drugs from DrugBank.
(XLS)

S2 Table. Allele frequency of drug-related SNPs predicted by Virtual Pharmacist among
five major populations from the 1000 Genomes Project.
(XLS)

S3 Table. Summary table of the results for Watson’s genome analyzed by Virtual Pharma-
cist. A total of 65 variants were predicted to have a genetic impact for drug response, and 33 of
them were predicted to have a genetic impact for FDA-approved drug labels.
(XLS)
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