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ABSTRACT: Chiral N-alkoxy amines are increasingly vital sub-
strates in bioscience. However, asymmetric synthetic strategies for
these compounds remain scarce. Catalytic kinetic resolution
represents an attractive approach to prepare structurally diverse
enantiopure N-alkoxy amines, which has remained elusive due to the
notably reduced nucleophilicity of the nitrogen atom together with
the low bond dissociation energies of labile NO−C and N−O bonds.
We here report a general kinetic resolution of N-alkoxy amines
through chemo- and enantioselective oxygenation. The mild and
green titanium-catalyzed approach features broad substrate scope (55
examples), noteworthy functional group compatibility, high catalyst turnover number (up to 5200), excellent selectivity factor (s >
150), and scalability.
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■ INTRODUCTION
N-Alkoxy amines have become increasingly common structural
motifs in pharmaceuticals and agrochemicals because the O-
alkylhydroxylamine unit provides favorable biological and
physical properties (Scheme 1A).1−6 Despite these elegant
examples, current studies in drug discovery typically focus on
simple N-methoxy compounds that either lack chirality or are
marketed as racemates. A reliable enantioselective access to
structurally diverse N-alkoxy amines would facilitate incorpo-
ration of chiral three-dimensional scaffolds as design elements in
drug discovery.7,8 In this context, existing methods typically
focus on direct enantioselective manipulation of N-alkoxy
moieties involving hydrogenation of oxime ethers and aza-
Michael reaction with methoxylamine, which still suffer from
limited generality with respect to O- and N-linkages (Scheme
1B).9−14

Catalytic kinetic resolution of racemates is a powerful and
practical approach to the synthesis of enantiomerically pure
compounds, especially in cases where other methods are not
possible or provide insufficient enantiocontrol.15−18 In this
context, kinetic resolution of amines is a well-established
method and is frequently employed industrially.19−24 In sharp
contrast, a related study on N-alkoxy amines has proven elusive
presumably due to the notably reduced nucleophilicity of the
nitrogen atom and the low bond dissociation energies of labile
NO−C and N−O bonds.1,25,26 To the best of our knowledge,
only one isolated example of enzymatic kinetic resolution via a
polar nucleophilic addition/proton abstraction pathway has
been reported (Scheme 1C).27 Furthermore, this method is
merely suitable for a specific α,α-cyclohexyl-methyl N-methoxy

amine substrate in which the cyclohexyl group is crucial to basic
reactivity. Development of a general nonenzymatic kinetic
resolution approach would be highly demanded. As part of our
ongoing interest in the development of sustainable asymmetric
oxidation methods,28−32 we decided to explore oxidative kinetic
resolution of N-alkoxy amines. To our knowledge, even a
chemocatalytic non-asymmetric oxidation of N-alkoxy amines
has never been established.33 Herein, we report the first
nonenzymatic kinetic resolution of N-alkoxy amines as well as
the first example of nonenzymatic catalytic oxidation of these
substrates (Scheme 1D). The titanium-catalyzed chemo- and
enantioselective oxygenation employs green and economic
aqueous H2O2 as oxidant and is applicable for a wide variety of
N-alkoxy amines bearing diverse substituent patters on both O-
and N-linkages with high turnover numbers (TONs) and
excellent selectivity factors.

■ RESULTS AND DISCUSSION
Initially, kinetic resolution of N-benzyloxy α-methylbenzyl-
amine rac-1a was selected as a reference reaction with H2O2 as
the oxidant for a search for a suitable chiral earth-abundant metal
catalyst (Table 1). Chiral manganese(salen) C1 and iron(salen)
C2 exhibited no oxidation catalysis reactivity (entries 1 and 2).
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Di-μ-oxo titanium(salen) C3 proved to be an effective complex
to catalyze the oxidation of rac-1a to oxime 2a, though only an
extremely low level of chiral recognition was observed (entry
3).34 Titanium(salalen) C4 that was prepared by reducing one
of the two imines of C3 provided no obvious improvement with
respect to the enantiocontrol (entry 4).35,36 This chiral
recognition ability was completely lost for C5 with 1,2-
diphenylethylenediamine (entry 5). The fully reduced titanium-
(salan) C6 containing two NH moieties exhibited promising
ability in differentiating the two enantiomers (entry 6).37−39

Further fine-tuning salan substituent patterns identified complex
C11 bearing a para-methoxyphenyl group at C3(C3′) to be
superior, and (S)-1awas recovered in 49% yield with 92% ee (s =
53, entries 6−11).40
This single-operation kinetic resolution is easy to handle and

highly efficient. For example, a catalyst loading at 0.01 mol %
(TON up to 5200) proved sufficient for oxidation of rac-1a
without obvious loss of enantiocontrol, despite a prolonged time
period (Scheme 2A).Moreover, the scalability of the approach is
demonstrated by conducting rac-1a oxidation on a 5mmol scale.
The method is fairly general for N-alkoxy amines with an α,α-
aryl-alkyl pattern (Scheme 2A). For example, a variety of
substrates bearing electronically varied α-aryl groups, including
ortho- (1b−1e), meta-(1f−1j), and para-substituents (1k−1n),
serve as effective components, and the remaining N-alkoxy
amines are recovered in good yield and enantioselectivity. 1-
Naphthyl 1o and α-heteroaryl 1p and 1q are also suitable
partners. Furthermore, substrates 1r−1y, bearing diverse α-alkyl
substituents with varied aliphatic chain lengths, are tolerated.
The method is compatible with an array of functional groups,
such as alkyl chloride and bromide, primary alcohol, methyl
ether, and alkene (1u−1y).
The method is also applicable for N-alkoxy amines with an

α,α-alkynyl-alkyl pattern (Scheme 2B). Kinetic resolution of
racemic 1z−1ad containing electronically varied α-arylacety-
lenes, heteroarylacetylenes, and aliphatic acetylenes proceeds

smoothly. Moreover, α,α-dialkyl-substituted 1ae with two
electronically similar 1° and 2° alkyl groups is well tolerated.
Notably, the more challenging dialkyl substrates 1af−1ai
bearing two sterically and electronically similar 1° alkyl groups
are also compatible.
The scope with respect to the substituent patterns on the O-

linkage is also broad (Scheme 3). For example, high levels of
chiral recognition are observed for N-alkoxyamines with diverse
O-alkyl groups that vary in chain length and steric demand (3a−
3f) and can bear functional groups including an alkyl chloride,
fluoride, primary alcohol, acetal, cyano motif, carboxylic ester,
alkyne, and alkene (3g−3n, Scheme 3A). Furthermore, a series
of functionalizedN-alkoxy amines containingmarketed drugs on
the O-linkage like indomethacin 3o, probenecid 3p, gemfibrozil
3q, and oxaprozin 3r are well tolerated (Scheme 3B).
Chiral N-alkoxy amines can be transformed to a range of

valuable N−O-containing compounds with high stereochemical
fidelity (Scheme 4). For example, the recovered enantiopure 1a
or 3a undergoes acylation, sulfonylation, and alkylation,
furnishing respective N-acyl 5a and 5b, N-sulfonyl 5c, and N-

Scheme 1. Overview of Asymmetric Synthesis of Chiral N-
Alkoxy Amines

Table 1. Reaction Condition Optimization.a

aReaction conditions: rac-1a (0.1 mmol), catalyst (2 mol %), and
H2O2 (0.07 mmol) in CH3CN (1 mL) at −20 °C for 24 h.
bConversion was calculated from the yield of recovered 1a.
cDetermined by HPLC analysis on a chiral stationary phase.
dSelectivity (s) values were calculated through the equation s =
ln[(1 − C)(1 − ee)]/ln[(1 − C)(1 + ee)], where C is the conversion.
n.a. = not available.
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propargyl 5d in high efficiency. Notably, chiral N-benzyloxy
analogue 5g of Adepidyn that is a broad-spectrum foliar
fungicide can be facilely prepared by acylation of α,α-dialkyl
1af.5 Moreover, O-carboxylic ester-containing 3l undergoes
intramolecular amidation, delivering cyclic N,N-acyl-alkoxy
amine 5e. α-Alkyl 1w, bearing a primary alcohol, participates
in double phosphorylation on respective N- and O-moieties,
giving cyclophosphamide analogue 5f.
A series of control experiments were performed to obtain a

preliminary understanding of the oxidation process of N-alkoxy
amines (Figure 1A−C). During the oxidation of rac-1a, a small

amount of azodioxy intermediate 6a was detected (Figure 1A-
1). Under standard conditions, 6a was efficiently converted to
oxime 2a, while no back reaction for 2awas detected (Figure 1A-
2 and -3). Given the fact that 6a can be facilely generated
through dimerization of a monomeric nitroso precursor, the
observations suggest that the latter might be generated as an
oxidized intermediate.42−44 Isotope labeling experiments were
then conducted (Figure 1B). Generation of Bn18OH together

Scheme 2. Substituent Patterns on α-Stereocenter of the N-
Linkageb

aReaction with C11 (0.01 mol %) and H2O2 (0.2 mmol) for 60 h.
bReaction conditions: rac-1a (0.1 mmol), C11 (2 mol %), and H2O2
(0.07 mmol) in CH3CN (1 mL) at −20 °C for 24 h. Isolated yields
are given. s values were calculated through the equation s = ln[(1 −
C)(1 − ee)]/ln[(1 − C)(1 + ee)]. For reactions with 50 < s < 150, s
was determined by linear regression analysis through plotting ln[(1 −
C)(1 − ee)] against ln[(1 − C)(1 + ee)] for different conversion
points.41

Scheme 3. Substituent Patterns on the O-Linkagea

aReaction conditions: rac-1a (0.1 mmol), C11 (2 mol %), and H2O2
(0.07 mmol) in CH3CN (1 mL) at −20 °C for 24 h. Isolated yields
are given. For reactions with 50 < s < 150, s was determined by linear
regression analysis through plotting ln[(1 − C)(1 − ee)] against ln[(1
− C)(1 + ee)] for different conversion points.

Scheme 4. Synthetic Applications
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with no incorporation of 18O in the oxime product was detected
for oxidation of 18O-labeled rac-1a in the absence or presence of
H2

18O, suggesting that the oxygen in 2a might originate from
H2O2. Next, ESI-mass spectrometry (MS) analysis of oxidation
of respective rac-1a and rac-18O-1a revealed the generation of
adducts 7 and 18O-7 (Figure 1C). The results indicate that a
direct oxygenation of the nitrogen atom of N-alkoxy amine by a
monomeric peroxo titanium species might be involved. To shed
light on the working details of the enantio-differentiating
oxidation, the kinetic profiles of enantiopure N-alkoxy amines
(R)-1a and (S)-1a were respectively explored (Figure S16 in the
Supporting Information). The reaction of (R)-1a is much faster
with a measured initial rate of 4.26 × 10−3 mol L−1 h−1 than that
of (S)-1a with a rate of 0.084 × 10−3 mol L−1 h−1.
According to the experiments described above, a plausible

reaction mechanism is suggested (Figure 1D). Ti(salan) C11
reacts slowly with H2O2, affording μ-oxo-μ-peroxoC12, which is

supported by ESI-MS and kinetic profile studies (Figures S8 and
S11 in the Supporting Information).35,36 The combination of
C12 and H2O2 promoted the reaction, whereas no reactivity was
observed without H2O2, suggesting that C12 might be a
thermodynamic reservoir for active species. C12 further reacts
with H2O2, giving monomeric peroxo 8 that selectively
oxygenates N-alkoxy amine (R)-1a, producing aminooxy
titanium 7. This process is supported by the observation in
Figure 1C and a series of nonlinear effect studies (Figure S10 in
the Supporting Information).45−48 Adduct 7 reacts with H2O2,
giving N-alkoxy-N-hydroxy amine 10 and peroxo 8 for a new
catalytic oxidation cycle. 10 collapses, furnishing nitroso 11,
which tautomerizes to oxime 2a. Kinetic analysis revealed a first-
order dependence of reaction rate on concentrations of
respective C11 and H2O2, whereas a zero-order dependence
on substrate concentration (Figures S13−S15 in the Supporting
Information). The observations implied that the oxidative
generation of oxygen-transferring species 8 by H2O2 might be
the rate-limiting step.

■ CONCLUSIONS
In conclusion, the first nonenzymatic kinetic resolution of N-
alkoxy amines as well as the first example of nonenzymatic
catalytic oxidation of these substrates have been described. The
mild and green titanium-catalyzed chemo- and enantioselective
oxygenation can be scaled-up and is applicable for a wide variety
of N-alkoxy amines bearing diverse substituent patters on both
O- and N-linkages with a TON up to 5200. It also features
excellent selectivity factors, noteworthy functional group
compatibility, great synthetic utilities, and scalability. This
approach would furnish a reliable platform to rapidly access
structurally diverse chiral N-alkoxy amines for drug discovery.

■ METHODS

General Procedure for Oxidative Kinetic Resolution of
N-Alkoxy Amines
To a solution of racemic substrate (0.1 mmol, 1.0 equiv) in CH3CN
(1.0 mL) was added 30% aqueous hydrogen peroxide (0.07 mmol, 0.7
equiv) and C11 (2 mmol %, 0.02 equiv) at −20 °C. The reaction was
stirred for 24 h and monitored by TLC analysis. Then the mixture was
diluted with EtOAc (10 mL), washed with water (10 mL), dried over
MgSO4, filtered, and concentrated. The residue was purified by silica gel
chromatography (EtOAc/petroleum ether) to give the desired product.
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