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Abstract

Scientists and astronomers have attached great importance to the task of discovering new

exoplanets, even more so if they are in the habitable zone. To date, more than 4300 exopla-

nets have been confirmed by NASA, using various discovery techniques, including plane-

tary transits, in addition to the use of various databases provided by space and ground-

based telescopes. This article proposes the development of a deep learning system for

detecting planetary transits in Kepler Telescope light curves. The approach is based on

related work from the literature and enhanced to validation with real light curves. A CNN

classification model is trained from a mixture of real and synthetic data. The model is then

validated only with unknown real data. The best ratio of synthetic data is determined by the

performance of an optimisation technique and a sensitivity analysis. The precision, accuracy

and true positive rate of the best model obtained are determined and compared with other

similar works. The results demonstrate that the use of synthetic data on the training stage

can improve the transit detection performance on real light curves.

Introduction

All the planets in our solar system orbit the sun. Planets orbiting other stars are called exopla-

nets under NASA’s Exoplanet Exploration Program [1].

Exoplanets are very difficult to see directly with telescopes. They are hidden by the bright-

ness of the star they orbit. The search for planets outside the solar system has been investigated

for many years. The existence of a possible exoplanet orbiting the white dwarf Van Maanen 2

has been suspected since 1917 [2], but its existence could not be confirmed due to the limited

technology of the time.

It was not until 1995 that Michel Mayor and Didier Queloz first confirmed an exoplanet

called Dimidium or 51 Pegasi, with a 4-day orbit around the nearby star Helvetios [3]. They

described it as a large ball of gas similar to Jupiter. For this finding they received the Nobel

Prize in Physics 2019 [4].
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Nowadays, scientists and astronomers have attached great importance to the task of discov-

ering new exoplanets, even more so if they are in the habitable zone. Most of the exoplanets

discovered so far are found in a relatively small region of our galaxy, the Milky Way. To date,

NASA has confirmed 4301 exoplanets, using a variety of discovery techniques [5], including

planetary transits, radial velocities, gravitational microlensing and direct imaging from data-

bases provided by space and ground-based telescopes, e.g. NASA’s Kepler space telescope [6]

and the NASA’s Transiting Exoplanet Survey Satellite (TESS) [7].

The Kepler space telescope has collected data on a large number of stars (in the order of

200,000) during the 4 years it was operating (2009-2013). Collecting around of 678 Gigabytes

of data [8]. As many other examples in the literature (see for instance [9–12]), the manual anal-

ysis of large databases, such as these light curves, is a very time-consuming work. In this con-

text, the use of artificial intelligence methods have emerged as tools for the analysis of this

information. The main research questions addressed by this work are how can artificial intelli-

gence algorithms contribute to the exoplanet detection field, and if it is possible to add techni-

cal knowledge through synthetic data to improve the performance of the detector.

In the literature, different approaches that use artificial intelligence techniques to detect

exoplanets can be found. For example, in [13], the authors describe a method for detecting

exoplanet transits by applying the k-nearest neighbors (kNN) method to determine whether a

given signal is sufficiently similar to known transit signals. In [14], they present for the first

time the use of the Random Forest Classifiers (RFCs) algorithm for exoplanets classification.

They achieve an overall error rate of 5.85% and an error rate in the classification of exoplanet

candidates of 2.81%. The work described in [15], shows a combination of RFCs and Convolu-

tional Neural Networks (CNNs) to distinguish between the different types of signals. The

authors say that the combination of both methods offers the best approach to identify exopla-

nets correctly in the test data approximately 90% of the time. While in [16], the authors present

another CNN based approach that is capable of detecting Earth-like exoplanets in noisy time

series data with a greater accuracy than a least-squares method. The most important disadvan-

tage of this case is that they use synthetic data to train the model instead of real traffic data.

This does not provide evidence for its performance against real data.

In [17], the method for classifying candidates using a Self-Organizing Maps (SOM) tech-

nique is developed on Kepler and K2 confirmed and candidate planets with a success of 87%.

More recently, in [18] an Ensemble-CNN model for exoplanets detection is presented with an

accuracy of 99.62%.

Other approaches such as [19], shows a 98% cross-validated precision score using RFCs to

classify objects of interest in Kepler’s cumulative information object table. But, in this case, the

authors use only data from the training stage for cross-validation of their models. This does

not allow to properly analyse the performance of the model with new data.

Despite the good results obtained by these previously mentioned works, most of them show

that in order to build and validate the models, in some cases light curves of unconfirmed planet

candidates are used or even some of them are false positives. The main contributions of this

work are the following:

• The development of a system for detection of planetary transits in Kepler Telescope light

curves which includes the generation of synthetic data from estimated parametric models of

the planet candidate. This approach allows finding planetary transits over a wider range of

periods.

• As far as we know our approach is the first exoplanet detection model trained by deep learn-

ing from a mixture of real and synthetic data. A sensitivity analysis and an optimisation tech-

nique is performed to determine the best ratio of synthetic data. The model consists on
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building an image from the folding of light curves. This image is used to determine planetary

transits by means of a CNN.

• Unlike other related works, the validation of the model is only performed with real data and

different from those used in the training stage. This shows that the performance of the

model is better than if only real data are used for training.

This paper is structured as follows. Second section presents some exoplanet detection

approaches that can be found in the literature and describes briefly the approach which is the

start point of this work. Third section details the proposed method. Fourth section shows the

experimental results and a comparison with previous results. Finally, Fifth section summarises

the main conclusions and future work.

Exoplanets detection approaches

As mentioned above, the discovery of new exoplanets has taken a high degree of importance

during the last few years. Since the amount of data provided by telescopes is enormous, the

only way to analyze it is using Machine Learning techniques. A significant amount of research

can be found in the literature that has focused on the use of Machine Learning techniques for

exoplanet detection. This section presents a review of the most significant and relevant works

for our approach.

Table 1 presents a summary of the articles covered in this brief review. The first column

contains the reference to the article in the bibliography. The second column shows the names

of the telescope and catalogs from which the data were obtained. The third column shows the

details about the feature extraction used. The fourth column shows the machine learning

method used for detection. Finally the fifth shows the results obtained by each approach.

In [20], published in 2015, the authors present the Autovetter, a machine learning based

classifier. It is used to produce a catalog of Planet Candidates from the Q1-Q17 DR24 Thresh-

old Crossing Events (TCEs) that are identified in the Kepler Science Operations Center pipe-

line. The Autovetter classify 20367 TCEs into three classes: 1.- Planet Candidate (PC), which

contains 3600 signals that are consistent with transiting planets; 2.- Astrophysical False Posi-

tive (AFP), which contains 9596 signals of astrophysical origin that could mimic planetary

transits; and 3.- Non-Transiting Phenomenon (NTP), which contains 2541 signals that are evi-

dently of instrumental origin, or are noise artifacts. A set of 114 atributes calculated from

Table 1. Machine learning approaches for exoplanet detection.

Ref Catalog Feature Extraction ML Method Performance

[20] REAL Kepler Q1-Q17 DR24 114 Attributes calculated RF (3 classes) Accuracy: 0,973

[21] REAL Kepler Q1-Q17 DR24 1D folding curve: global & local view LLR Fully

connected NN

CNN

Accuracy: 0.917, 0.94, 0.958 AUC: 0.963, 0.977 0.988

[22] REAL Kepler Q1-Q17 DR24 1D folding curve: global & local view

Centroid curves Stellar parameters

DCNN Accuracy: 0.975. Precision: 0.955

[23] REAL TESS 1-5 sector 1D folding curve: global & local view

Secondary eclipse view

CNN for Triage Accuracy: 0.974. AUC: 0.992 Precision: 0.97

[19] REAL Kepler Cumulative Features from interactive table SVM, KNN, RF Training metrics Accuracy: 0.9896. Precision: 0.9955 Recall:

0.9721 F1: 0.9837

[24] SIMULATED with tansit REAL

without transit

50000 lightcurves: 25000 with transit

25000 without transit

MLP, CNN Accuracy: 0.99. Recall: 0.99

[25] SIMULATED REAL Kepler

Q1-Q17 DR24 TESS 1-5 sector

TSFresh 789 features Gradient Boosted

trees

Simulated AUC: 0.92 Recall: 0.92 Precision:0.94 Kepler AUC:

0.948. Recall: 0.96 Precision:0.82 TESS AUC: 0.80. Recall: 0.82

Precision:0.81

https://doi.org/10.1371/journal.pone.0268199.t001

PLOS ONE Deep learning exoplanets detection by combining real and synthetic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268199 May 25, 2022 3 / 18

https://doi.org/10.1371/journal.pone.0268199.t001
https://doi.org/10.1371/journal.pone.0268199


Kepler pipeline are ultimately used to build a random forest classifier that maps the attributes

of any TCE to a predicted class label of either PC, AFP, or NTP. The results evaluated on 4630

TCEs show the following accuracy/error rate for each class: PC (0.971/2.9%), AFP (0.976/

2.4%) and NTP (0.968/3.2%). As can be seen, these results are very accurate, in fact, the Auto-
vetter predictions are taken as ground truth for posterior studies.

In [21], published in 2018, the authors present a method for classifying potential signals

from planets using deep learning, specifically convolutional neural networks (CNNs). Feature

extraction is generated by folding each flattended light curve in the TCE period (with the event

centered) and clustering to produce a 1D vector. The training and test sets (PC, AFP and

NTP) were selected from the Autovetter Planet Candidate Catalog for Q1-Q17 DR24. The

result is a CNN model named Astronet that is able to distinguish with good accuracy the subtle

differences between genuine transiting exoplanets and false positives such as eclipsing binaries,

instrumental artifacts, and stellar variability. They also compared models based on linear logis-

tic regression (LLR) and a fully connected neural network. The results show a performance of

classified real planets with 95% recall, 90% of accuracy and 96% of precision.

In [22], also published in 2018, the authors also present an approach based on CNN named

Exonet. They use a dataset from the same catalog as the previous one (Kepler Q1-Q17 DR24).

For the classification process, they use phase-folded light curves and associated centroid curves

(measured by the Kepler pipeline from the same TPF), for both global and local views. They

also add stellar normalized parameters like: effective temperature, surface gravity, metallicity,

radius, mass, and density to the training set. The results overperformed the Astronet with an

accuracy of 97.5% and 95.5% of precision.

In [23], published in 2019, the first deep neural network trained and tested on real TESS

data is presented. The model is modified based on Astronet and designed to automatically per-

forming triage and vetting on TESS candidates. In triage mode, it can distinguish transit-like

signals (planet candidates and eclipsing binaries) from stellar variability and instrumental

noise with an average precision of 97.0% and an accuracy of 97.4%. In vetting mode, the

model is trained to identify only planet candidates with the help of newly added scientific

domain knowledge, and achieves an average precision of 69.3% and an accuracy of 97.8%.

In [19], also published in 2019, the authors present a study of several classification models

(SVM, KNN and RF) used to assign a probability of an observation being an exoplanet. A Ran-

dom Forest Classifier was selected as the optimum machine learning model to classify the data

on the Cumulative Kepler Object of Interest (KOI) catalog, which contains information for all

Kepler Objects of Interest (KOI) in one place. The Random Forest Classifier, trained using the

table attributes as features, obtained a cross-validated accuracy score of 98.96%, precision

99.55% and recall of 97.21% on the training set.

In [24], published in 2019, the authors present an approach based on CNN for detecting

exoplanet transits. A 2D phase folding technique is proposed, generating a set of images for

training. They test the method with five different types of deep learning models with or with-

out folding. Synthetic lightcurves were generated as the input of these models. The results indi-

cate that a combination of two-dimension convolutional neural network with folding is the

best choice for the future transit analysis. All models with folding have accuracy above 98%.

The accuracy of models without folding can become about 85%. The precision and recall have

a similar trend. This article is based on this approach, the main difference is that it uses real

data with transit for both training and testing.

In [25], published in 2020, the author present an approach based on a tree-based classifier

using a popular machine learning tool lightgbm, to detect exoplanets using the transit method.

They use time-series analysis library TSFresh to extract 789 features from lightcurves. These

features capture information about the characteristics of each lightcurve. This method was
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trained and tested on synthetic data and real Kepler and TESS data. The evaluation on syn-

thetic data proved it to be more effective than conventional box least squares fitting (BLS). On

Kepler data, the method is able to detect a planet transit with an AUC of 94.8% of accuracy

and Recall of 96%. With the TESS data, the method is able to classify lightcurves with an accu-

racy of 98% and is able to identify planets with a Recall of 82%.

Proposed method

This section describes the entire process of building the model, from the data collection, the

application of the feature extraction process, and the methodology for the training and valida-

tion stages of the proposed approach.

Real data description

The dataset consists of Kepler observations of near 200,000 stars started from 2nd May 2009 to

11th May 2013. The data is divided in 18 quarters from Q0 to Q17. The length of each quarter

is about 90 days, but some quarters are shorter. The data includes long and short cadence

which took data every 30 and 2 minutes respectively. Long cadence data will be only consid-

ered from Q1-Q17 quarters because there are not enough stars observed in short cadence.

The Transit Planet Search (TPS) module carefully observes the light curves and identifies

possible signals called Threshold Crossing Events (TCE). The Data Validation module creates

reports based on the probability of veracity of the signals; then the Robovetter [26] examines

the signals and creates a Kepler Objects of Interest (KOI) catalog. Those confirmed to have

nothing to do with planetary transits are labeled as false positives (FP). The remain are called

planet candidates (PC). NASA provides the list of all confirmed planet transits (CP) as well the

planet and star properties.

The Cumulative Kepler Objects of Interest (KOI) table provides the most accurate disposi-

tions and stellar and planetary information for all KOIs in one place. The KOI catalog table

contains unique object of interest identifiers, exoplanet archive information, transit properties,

among others threshold-crossing events properties. The labels were sourced from the catalog’s

koi_disposition column as the ground truth. The catalog contains 9564 KOIs, out of which

2358 are confirmed exoplanets, 2366 remain candidates and the rest (4840 objects) are false

positives. The last group of objects was removed from the dataset. Since since it is searching

for signals with planet transits, the candidates and confirmed exoplanets have both been com-

bined into the transit labelled data presented in the next sections.

The non-transit labelled data were obtained from the Kepler Data Release 25-Q1 (DR25)

table and consists of 43273 KOIs with no transit.

Two observed fluxes columns are used from each observation data: one is the simple aper-

ture photometry (SAP) which is the flux obtained by direct photometry analysis and can

include some other device; the other one is the Pre-search Data Conditioning (PDC) which

represents a processed version of SAP where the devices are removed almost completely [27].

PDC light curves will be used. Since the unusual values produced by astrophysics events such

as solar flares and micro lenses are not eliminated of the PDC light curve, all the points over 6

times standard deviation will be removed.

Since many of confirmed planets share the host star with other planets, systems with only

one confirmed planet or PC was chosen. Following the approach from [24], the main idea is to

use a light curve with enough samples to represent 10 periods, considering that the bigger tran-

sit period, the higher amount of samples. At Kepler observations case, a curve has about 4320

samples taken each 30 minutes then the maximum allowed period to cover the 10 segments is

9 days. Therefore all transits with a period between 0.85 and 8.5 days were considered. On this
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point there are 583 light curves of the Q1 quarter, in order to maintain balance, the same

amount of non-transit light curves was selected.

Synthetic data generation

The method proposes to include a set of transit synthetic light curves in order to improve the

performance of the classifier by taking advantage of the technical knowledge acquired from

experts of the periodicity and modelling of the planet’s transit. Following the approach pro-

posed on [24], those are generated using the quadratic model for the limb darkening laws

introduced analytically by Mandel & Agol on [28]. The flux f, for a transit over a stellar disk

with quadratic limb darkening is:

f ðk; zÞ ¼ 1 �
ð1 � cÞleðk; zÞ þ cldðk; zÞ þ u2Zdðk; zÞ

1 � u1=3 � u2=6
; ð1Þ

where k is the radius ratio, z is the projected distance, c = u1 + 2u2, u1 and u2 are the quadratic

limb darkening coefficients, and λe, λd and ηe are functions of k and z defined in [28]. This

model is implemented on the PyTransit Python library [29] with related parameters like the

transit period τ, the ratio of planet radius to stellar radius (rp/rs), the ratio of orbital semimajor

axis to stellar radius (a/rs) and the orbit inclination (i). The values of those parameters were set

the same as [24], Table 2 gives a summary of them.

Feature extraction

Lightcurves pre-processing. The main purpose of this method is to find transits, so the

light curves are pre-processed to first remove the empty intervals [24]. The missing values are

replaced with the average of the neighborhood of the empty interval. Noise with less than 10%

of magnitude is added on this new values for a better consistency with reality. The light curves

were interpolated to 4000 points i.e. 10 periods of 400 points each. Finally the data is normal-

ized to have values between 0 and 1.

2D phase folding. Related work on light curve feature extraction includes the phase fold-

ing technique introduced by [16] to take advantage of transit periodicity. It consists on folding

each light curve on the transit period from the catalog and binning it to generate a 1D vector

of a enhanced signal. This method increase the transit detection but the transit period has to

be known in advance, otherwise the folding period can differ from it and the transit will be

undetectable for the model. The above condition represents a difficulty when it is wanted to

search for transits on new released observational data. To solve this problem [24] presents a

phase folding method that generates a 2D representation by folding each light curve on a

period that can be different from the transit period, improving the transit detection regardless

of the transit and folding period. Following this method, the detection model inputs were

Table 2. Transit parameters.

Parameter Value

τ 0.85 to 8.5 [days]

a/rs 2 to 35

rp/rs 0.005 to 0.4

i 85 to 90 [deg]

u1 0.210 to 0.731

u2 0.035 to 0.442

https://doi.org/10.1371/journal.pone.0268199.t002
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generated by folding the light curve in 10 segments using the transit period from the catalog’s

koi_period column, then the values for each period were incorporated as rows of an image.

Fig 1 shows the 2D phase folding process on three examples of lightcurves: first column

(left) shows a synthetic lightcurve with transit folded on the transit period, second column

(center) shows a real lightcurve with unsuitable folding for the actual transit period, and third

column (right) presents a real lightcurve without transit. First row of the figure presents the

pre-processed light curve, a 1D signal of 4000 samples normalized to have values between 0

and 1. Ten folds of 400 samples each are enumerated. Second row of the figure shows a zoom

view of each fold, the transit is visible on (left) at the same phase on each fold, since (center)

has a folding period different from the transit period, the drops on each fold appears to be

shifted to a lightly different phase than in the previous one, on (right) no transit drop is visible

on any fold. Third row of the figure presents the mean of the 10 folds on each case, this would

be the inputs of the [16] proposed model, i.e. a 1D vector of 400 samples. The transit is visible

on (left) closer to the 350 sample, on (center) the mean transit signal becomes unclear and the

Fig 1. 2D Phase folding for three cases: Synthetic lightcurve (left). Real lightcurve with transit from the host star KIC7051180 (center). Real lightcurve

without transit from the host star KIC757076 (right).

https://doi.org/10.1371/journal.pone.0268199.g001
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model may not give a correct answer on transit detection, confusing it with the one presented

in (right). Finally, fourth row shows the 2D representation of the folded lightcurve, a 10x400

pixels image which is the input of the detection model. The dark bands indicating the transit

are visible on (left) and (center). Therefore, a model may be able to detect transits successfully

and distinguish it from the one in (right).

Detection model

The classification task consists on sort out every light curve into two categories: Planet candi-

date and False positive. Different kind of deep learning approaches have been used for this

application. In our approach, a convolutional neural network was chosen since they outper-

form artificial neural networks in classification tasks where the data is spatially aligned such as

image or audio [30]. It is because CNN leverages the spatial structure of the output detecting

local features which only need to be learned once, therefore the number of trainable parame-

ters, the memory usage, and the number of computations of the desired output will decrease.

Transfer learning takes a large network that has already been trained for a specific problem

and then fits it to a new problem. This adjust is performed at the end of the network, modify-

ing the number of output neurons to match the number of classes of the new problem (2 clas-

ses). This is a very useful technique since the first stages of the network usually recognize

general features that can be applied to almost every classification problem [31]. Clearly it is

necessary to perform train in order to adapt the last layer to the new classes, but thanks to

transfer learning it is not necessary to train the whole network again. In fact, one can choose

which layers to train and which not to train. This is very efficient when considering the

computational cost of training a network of this magnitude.

The proposed convolutional neural network architecture is based on Xception developed

by Francois Chollet. This CNN has learned rich feature representations from the ImageNet

dataset [32], outperforming Inception V3 on it (which Inception V3 was designed for) and

significantly outperforms Inception V3 on a larger image classification dataset comprising

350 million images and 17,000 classes [33]. Xception is a linear stack of depth-wise separable

convolution layers with residual connections that contains 71 deep layers. It can classify

1000 categories of objects and has an image input size of 299x299. It is necessary to modify

the input dimension of the network and the number of output neurons. In this binary classi-

fication problem a monochromatic image input size of 400x10 and one neuron on the out-

put layer with a sigmoid function of activation were implemented. The output y of the

model depends on the neural network decision threshold T (where 0 < T< 1). This thresh-

old determines the minimum classification probability on which the light curve will be clas-

sified as a planet candidate (the probability predicted is greater than T) or as an false positive

(the probability predicted is smaller than T) as shown Eq 2 where z is the weighted sum on

the inputs.

y ¼
1 if

1

1þ e� z
� T

0 otherwise

8
><

>:
ð2Þ

Training the model

In order to see the effect of increasing synthetic data on training, DCNN models were built

with R = 483 real curves and a ratio of synthetic curves S with transit defined by the λ
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parameter (see Eq 3).

S ¼
lR

100 � l
ð3Þ

Additionally, the same number S + R of non transit curves are added to the training set to

maintain balance. Fig 2(a) summarizes the workflow from the training stage.

Evaluation metrics

For evaluation purposes, we select as test set: R = 100 real transit light curves and R = 100 non-

transit light curves. This work uses the following metrics to asses the performance of the CNN

model based on the workflow shown in Fig 2(b):

• Accuracy: The portion of correct classifications.

accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
ð4Þ

• Precision: The ratio of lightcurves classified as planet candidates that are true planet candi-

dates, also known as reliability.

precision ¼
TP

TP þ FP
ð5Þ

Fig 2. Training and validation stages of the proposed method.

https://doi.org/10.1371/journal.pone.0268199.g002
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• True Positive Rate (TPR): The ratio of true planet candidates that are classified as planet can-

didates, also known as recall.

TPR ¼
TP

TP þ FN
ð6Þ

• False Positive Rate (FPR): The ratio of non transit lightcurves misclassified as planet candi-

dates.

FPR ¼
FP

FPþ TN
ð7Þ

• Finally, F1-Score is calculated as shown in Eq 8 and is used to evaluate in a single value the

combination of both precision and recall.

F1 ¼ 2�
precision� recall
precisionþ recall

ð8Þ

Experimental results

The values of the accuracy, precision and TPR depend on the the neural network threshold T
chosen for the model see Eq 2. The main hypothesis of this work is that the performance of the

model can be also improved using a ratio λ of synthetic lightcurves on the training stage. This

section presents the ratio selection of synthetic lightcurves using a coarse and a fine tunning,

also a comparison between the proposed method and the ones reported in the literature is

presented.

Best λ ratio selection

The detection performance was tested on a test set of R = 100 real curves with transit and the

same amount of real curves without transit, on two extreme scenarios:

1. Training with only real lightcurves with transit (S = 0, R = 483) and S + R real lightcurves

without transit.

2. Training with only synthetic lightcurves with transit (S = 483, R = 0) and S + R real light-

curves without transit.

On both scenarios the neural network threshold is fixed on T = 0.5 due to the fact that this

is a binary classification problem where 0 is a predicted lightcurve without transit and 1 is a

predicted planet candidate.

Table 3 shows the performance of the models built for each scenario. It is observed that the

model trained with only real curves can detect the 74% of the transit light curves from the test

Table 3. Detection performance under proposed scenarios.

With transit Without transit Metrics

Scenario S R S R T F1 TPR Precision

1 0 483 0 483 0.5 0.743 0.740 0.747

2 483 0 0 483 0.5 0.206 0.120 0.750

https://doi.org/10.1371/journal.pone.0268199.t003
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set with a precision of 74.7%; this is a good rate however underperform the reported metrics

from the literature. On the other hand when the model is trained with synthetic curves it can

detect the transit lightcurves with a similar level of precision than the model trained with real

curves, but clearly it does not have all the variability of curves with transit.

Therefore, it can be concluded that training with real curves provides variability to the

model on transit lightcurves detection but incorporate synthetic light curves can improve the

precision of the prediction. In order to find the best ratio of λ and T, a coarse tunning with an

heuristic optimization method and a sensibility analysis are proposed.

Heuristic search of optimal parameters

The optimization problem is described by Eq 9, the amount of synthetic lightcurves S and the

neural network threshold T are the decision variables.

maximize
S;T

F1ðl;TÞ

subject to 0 � l � 80%

0 < T < 1

ð9Þ

The fitness function is the balanced F1-score, which is the harmonic mean between preci-

sion and TPR calculated on Eqs 5 and 6 respectively where:

• True Positive (TP): lightcurve with transit detected as planet candidate.

• False Positive (FP): lightcurve without transit detected as planet candidate.

• True Negative (TN): lightcurve without transit detected as false positive.

• False Negative (FN): lightcurve with transit detected as false positive.

Genetic algorithms have been widely used in the last decades, because they are considered a

tool to solve complex optimization problems managing the influence of the uncertainties of

typical design engineering scenarios. The main idea behind GA is to evolve a population of

chromosomes (possible candidate solutions of the problem), in several iterations (also called

generations), using operators such as crossover and mutation and evaluated under a fitness

function. In this context, this article uses GA as an optimization tool to find a small range to

narrow down the search for the values of S and T in order to obtain the highest possible F1

value. Algorithm 1 shows the pseudo-code of the implemented GA, and Table 4 summarizes

the parameters settings used for the GA implementation.

Table 4. GA implementation details.

Parameter Description Value

Encode S Integer 11 bits

Encode U Two decimals 7 bits

Chromosome size Encoded S and U concatenated 18 bits

Population size Number of chromosomes in one generation 10

Number of generations nG Iterations 50

Selection Tournament between parents 3

Crossover type and rate χ Single point at the middle 0.9

Mutation type and rate μ Random bit flip 0.1

Fitness function Determines members that survives F1

https://doi.org/10.1371/journal.pone.0268199.t004
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Algorithm 1 GA(nG,χ,μ)
1: Initialization of Pk = (S, U) ⊳ Population of n randomly-gen-
erated individuals
2: Evaluate Pk ⊳ Compute F1 for each i 2 Pk
3: while k < nG do
4: Selection: Select the fittest individual from sets of 3.
5: Crossover: Select χ×n members of Pk; pair them up; produce off-
spring; insert the offspring into Pk+1
6: Mutate: Select μ×n members of Pk + 1; invert a randomly-selected
bit in each;
7: Evaluate Pk+1 ⊳ Compute F1 for each i 2 Pk
8: return the fittest individual from Pk

Table 5 shows the results of GA applied on different settings. Each row represents a single

experiment of a specific population size/number of generations combination. The first column

contains the population size. The second column shows the number of generations/iterations

of the algorithm. The third contains the amount of synthetic curves with transit used on train-

ing stage. The fourth column shows the neural network decision threshold. The fifth column

contains the values of F1 on each experiment and finally the sixth column shows the number

of F1 calculations i.e the amount of models trained in order to get that F1 score value. The best

value of F1 (0.9801) is obtained for three different configurations: 1) 10 chromosomes and 50

generations, 2) 20 chromosomes and 20 generations and 3) 50 chromosomes and 10 genera-

tions. The three of them have the same value of S (1403), this value corresponds to λ = 74.3%

of synthetic lightcurves and 27.7% real curves with transit on training stage. The value of T var-

ies between 0.21 and 0.23 so there is no big difference between the three of them. The configu-

ration 1) was chosen because it is the one that trains the fewest models to obtain the same

result and it also has the highest threshold T.

Sensitivity analysis

A fine tunning is performed by analyzing the dependence of the F1 score value on the values of

λ and T. The λ value is ranged between 0 and 80%, increasing S from 0 to 1932 in steps of 23.

This provides more resolution between 60� λ� 80% since the best ratio according to the

Table 5. GA results for different parameter settings.

Population #Generations S T F1 #F1 calc.

10 5 1633 0.09 0.9607 80

10 1173 0.07 0.9371 160

15 1334 0.41 0.9591 240

20 759 0.28 0.9607 320

50 1403 0.23 0.9801 800

20 5 1794 0.10 0.9560 180

10 1403 0.28 0.9751 380

15 1403 0.19 0.9753 540

20 1403 0.22 0.9801 820

50 1794 0.1 0.9560 1800

50 5 1334 0.23 0.9651 440

10 1403 0.21 0.9801 880

15 1403 0.19 0.9753 1320

20 1403 0.18 0.9705 1760

50 1403 0.2 0.9753 4400

https://doi.org/10.1371/journal.pone.0268199.t005
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previous section is between this range. The threshold value T is ranged from 0 to 1 using two

decimals. Each model is trained using R = 483 real lightcurves with transit, S synthetic light-

curves and S + R real lightcurves without transit to mantain balance. The value of F1 is calcu-

lated for each model with 200 real lightcurves, half of them with transit and the other half

without transit. Fig 3 presents a 3D plot of the F1 score for each pair of λ and T values. It can

be observed that for λ greater than 50% the value of F1 is higher, which proves the hypothesis

that increasing the number of synthetic lightcurves improves detection performance. It can

also be observed that for λ between 72% and 77% and for T between 0.1 and 0.4 the highest F1

values are obtained, with the maximum visible value in λ� 74% and T� 0.2, which is consis-

tent with the optimum value found in the previous section.

To get a broader view of the effect of the decision threshold T, models were trained in the

same way as the above by ranging the value of λ between 0 and 80% in steps of 5%. For each

ratio, the threshold T was varied and TPR and FPR were calculated to construct the Receiver

Operating Characteristic Curve (ROC), see Fig 4.

Fig 3. 3D plot of F1 against ratio λ and threshold T.

https://doi.org/10.1371/journal.pone.0268199.g003
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It shows that increasing the threshold T increases the rate of true positives, but tends to mis-

classify negative instances, so the threshold value for which the ROC curve is closest to the

ideal case (FPR = 0, TPR = 1) must be found, this value will be denoted as the best threshold. It

can be seen that the curve of ratio λ = 70% has the point (0.050, 0.970) that is the closest to the

ideal one, which is consistent with the value presented in the coarse adjustment with GA.

Table 6 shows the results obtained for each ratio. First column presents the ratio λ in per-

centage. The second column shows the respective number of synthetic light curves S. Third

column presents the value of the threshold T closer to the ideal ROC curve point. Columns 4

to 9 show the evaluation metrics described on section Evaluation Metrics.

It can be observed that from first limit scenario where λ = 0 (see Table 3), increasing only

the threshold T from 0.5 to 0.608, the precision is improved from 0.747 to 0.923 and thus the

F1 value from 0.743 to 0.808.

Fig 4. ROC curve of every ratio.

https://doi.org/10.1371/journal.pone.0268199.g004
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The TPR value, i.e. those light curves with transit that are correctly detected, starts to

increase from λ = 25%. This means that adding synthetic curves add knowledge to the model

and helps it to more easily identify real curves with transit. On the other hand, the precision

starts to increase from λ = 60%. This implies that adding synthetic curves can improve the

detection precision, however this generates a bias in the model since it is difficult for it to

detect the real light curves with transit, so it is necessary to decrease the decision threshold T
that separates the two classes.

Comparison with related work

The best model was obtained with λ = 74.3% and T = 0.23 (see section Heuristic search of opti-

mal parameters). To evaluate the model with R = 200 real lightcurves (100 with transit, 100

without transit) were used, achieving a precision of 0.9705, a TPR of 0.99, a F1 of 0.9801, a FPR

of 0.03 and an accuracy of 0.98. Given the wide range of databases, the comparison between

the presented approach and the related work will be centered on two works from Table 1: The

one presented in [19] in order to compare two different approaches on the same dataset (Kep-

ler Cumulative Catalog) and the one presented in [24], in order to compare the effect of the

same approach on both real and synthetic data.

Table 7 presents the metrics comparison between the proposed approach (ours by short)

and the related work described. Column 2 to 5 show the metrics obtained during training ans

the rest of them show the metrics obtained during test stage. In the case of [19] which uses real

Table 6. Sensivity analysis results.

λ(%) S T Accuracy Precision TPR FPR F1 FNR

0 0 0.608 0.860 0.923 0.720 0.060 0.808 0.280

5 25 0.639 0.825 0.825 0.850 0.210 0.837 0.150

10 60 0.953 0.835 0.818 0.900 0.130 0.857 0.100

15 85 0.394 0.840 0.876 0.920 0.210 0.897 0.080

20 121 0.631 0.870 0.922 0.830 0.080 0.873 0.170

25 161 0.999 0.885 0.824 0.940 0.030 0.878 0.060

30 207 0.608 0.710 0.810 0.940 0.370 0.870 0.060

35 260 0.456 0.850 0.873 0.970 0.070 0.919 0.030

40 322 0.963 0.945 0.873 0.970 0.080 0.919 0.030

45 395 0.685 0.895 0.882 0.900 0.130 0.891 0.100

50 483 0.578 0.840 0.897 0.880 0.040 0.888 0.120

55 590 0.727 0.910 0.782 0.720 0.130 0.750 0.280

60 730 0.765 0.855 0.932 0.970 0.090 0.950 0.030

65 897 0.444 0.905 0.938 0.910 0.140 0.923 0.090

70 1127 0.234 0.960 0.950 0.970 0.050 0.960 0.030

75 1450 0.561 0.940 0.940 0.950 0.060 0.945 0.050

80 1932 0.141 0.945 0.872 0.960 0.090 0.914 0.040

https://doi.org/10.1371/journal.pone.0268199.t006

Table 7. Comparison of the proposed approach with related work.

Training Test

Ref Accuracy Precision TPR F1 Accuracy Precision Recall F1

[19] 0.989 0.995 0.972 0.983

[24] 1.000 1.000 1.000 1.000 0.500 0.500 0.010 0.019

Ours 0.986 0.986 0.985 0.985 0.980 0.970 0.990 0.980

https://doi.org/10.1371/journal.pone.0268199.t007
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data to train the model, the metrics available correspond only to the training stage; this

approach does not allow to properly analyse the performance of the model with new data. The

expected performance of this model evaluated on unknown real lightcurves should be the one

from first scenario presented on Table 3.

On the other hand, the article [24] presented validation metrics but the model is trained

and evaluated on synthetic light curves only. In order to perform a fair comparison between

our approach and this work and since it contains open source code and a full description of

the method available, the model in [24] has been reproduced and evaluated with real light-

curves. A precision of 0.5, a TPR of 0.01, a F1 of 0.0196, a FPR of 0.01, and an accuracy of 0.5

was obtained. This performance is very similar than the second scenario presented on Table 3

where the model is unable to detect a real lightcurve with transit since the real transits may not

have such a relevant drop in the flux. However the higher value of the precision shows that the

proposed approach (i.e., adding synthetic lightcurves to the training stage) brings knowledge

to the model. In this case the method demonstrate that combining real and synthetic light-

curves on the training stage can improve the detection metrics.

Conclusion

In this paper, the development of a deep learning system for detecting planetary transits in

Kepler Telescope light-curves is presented. The approach is based on related work from the lit-

erature and enhanced to validation with real lightcurves. 2D phase folding is used as a feature

extraction method that allows real and synthetic light-curves with transit to be described by an

image distinguishable from those without transit. The model parameters are adjusted to

improve the performance of the classification. The method is evaluated on real light-curves

from the Kepler’s catalog and demonstrates superior performance against other approaches

presented on the state of art.

The main contribution of this work is the enhance of a detection model including the gen-

eration of synthetic light-curves with transit from estimated parameters. The best ratio of syn-

thetic data is founded using a coarse tunning with Genetic algorithms and evidenced with a

sensibility analysis. The evaluated metrics demonstrate that the combination of real and syn-

thetic light-curves with transit on the training stage add knowledge to the model and improve

the performance on real light curves.

Future work will consider extend the study to systems with more than one confirmed planet

or planetary candidate dealing with multi-transit detection on the same light-curve. Also the

implementation of the method on a different database like the NASA’s Transiting Exoplanet

Survey Satellite (TESS), mission that has discover already 166 exoplanets and has 4604 planet

candidates, or even the data acquired from the James Webb Space Telescope launched on

December 2021.
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mido-Canto, Gonzalo Farias.

References
1. NASA. Exoplanet Exploration Program; 2021. Available from: https://exoplanets.nasa.gov/faq/3/what-

is-an-exoplanet/.

2. Weidemann V. The Atmosphere of the White Dwarf Van Maanen 2. The Astrophysical Journal. 1960;

131:638. https://doi.org/10.1086/146877

3. Mayor M, Queloz D. A Jupiter-mass companion to a solar-type star. Nature. 1995; 378(6555):355–359.

https://doi.org/10.1038/378355a0

4. Médjahdi K. Radial velocity of a sound source in circular motion for illustrating the detection of an exo-

planet. American Journal of Physics. 2020; 88(10):814–818. https://doi.org/10.1119/10.0001558

5. Wright JT, Gaudi BS. Exoplanet detection methods. arXiv preprint arXiv:12102471. 2012;.

6. Borucki WJ. KEPLER Mission: development and overview. Reports on Progress in Physics. 2016;

79(3):036901. https://doi.org/10.1088/0034-4885/79/3/036901 PMID: 26863223

7. Ricker GR, Latham D, Vanderspek R, Ennico K, Bakos G, Brown T, et al. Transiting exoplanet survey

satellite (TESS). In: American Astronomical Society Meeting Abstracts # 215. vol. 215; 2010. p. 450–

06.

8. Kepler’s legacy: discoveries and more; 2021.

9. Farias G, Fabregas E, Peralta E, Vargas H, Hermosilla G, Garcia G, et al. A Neural Network Approach

for Building An Obstacle Detection Model by Fusion of Proximity Sensors Data. Sensors. 2018; 18(3).

https://doi.org/10.3390/s18030683 PMID: 29495338

10. Farias G, Fabregas E, Martı́nez I, Vega J, Dormido-Canto S, Vargas H. Nuclear Fusion Pattern Recog-

nition by Ensemble Learning. Complexity. 2021; 2021. https://doi.org/10.1155/2021/1207167

11. Farias G, Fabregas E, Dormido-Canto S, Vega J, Vergara S. Automatic recognition of anomalous pat-

terns in discharges by recurrent neural networks. Fusion Engineering and Design. 2020; 154:111495.

https://doi.org/10.1016/j.fusengdes.2020.111495

12. Farias G, Fabregas E, Dormido-Canto S, Vega J, Vergara S, Bencomo SD, et al. Applying Deep Learn-

ing for Improving Image Classification in Nuclear Fusion Devices. IEEE Access. 2018; 6:72345–72356.

https://doi.org/10.1109/ACCESS.2018.2881832

13. Thompson SE, Mullally F, Coughlin J, Christiansen JL, Henze CE, Haas MR, et al. A machine learning

technique to identify transit shaped signals. The Astrophysical Journal. 2015; 812(1):46. https://doi.org/

10.1088/0004-637X/812/1/46

14. McCauliff SD, Jenkins JM, Catanzarite J, Burke CJ, Coughlin JL, Twicken JD, et al. Automatic Classifi-

cation of Kepler Planetary Transit Candidates. The Astrophysical Journal. 2015; 806(1):6. https://doi.

org/10.1088/0004-637X/806/1/6
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