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Abstract
Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and

result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and

even death. To better understand the dynamics of mucosal immunity during C. difficile
infection from initiation through expansion to resolution, we built a computational model of

the mucosal immune response to the bacterium. The model was calibrated using data from

a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17

(Th17) effector responses in the colonic lamina propria and luminal commensal bacteria

populations in the clearance of C. difficile and colonic pathology, whereas regulatory T

(Treg) cells responses are associated with the recovery phase. In addition, the production

of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response

to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species.

Computational simulations suggest that the removal of neutrophil and epithelial cell derived

anti-microbial inhibitions, separately and together, on commensal bacterial regrowth pro-

mote recovery and minimize colonic inflammatory pathology. Simulation results predict a

decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the

colonic lamina propria, and length of infection with accelerated commensal bacteria re-

growth through altered anti-microbial inhibition. Computational modeling provides novel

insights on the therapeutic value of repopulating the colonic microbiome and inducing regu-

latory mucosal immune responses during C. difficile infection. Thus, modeling mucosal

immunity-gut microbiota interactions has the potential to guide the development of targeted

fecal transplantation therapies in the context of precision medicine interventions.
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Introduction
Clostridium difficile, a Gram-positive spore-forming, anaerobic bacterium, often colonizes the
human gastrointestinal tract after disruption of the normal intestinal flora. C. difficile infection
(CDI) is a leading cause of diarrhea and pseudomembranous colitis in hospital acquired infec-
tion due to prolonged doses of antibiotics [1]. Based on a study published in 2015, the occur-
rence rate of C. difficile in the United States is 147 cases per 100,000 people. Additionally, C.
difficile is estimated to be responsible for 29,000 deaths per year, a 50% increase from the 2007
estimate of 14,000 [2, 3]. The rate of C. difficile-associated infections and deaths may be rising
due to the emergence of the hyper virulent strains that exhibit resistance to traditional fluoro-
quinolone antibiotics [4]. Paradoxically, standard treatment of C. difficile associated disease
(CDAD), an illness linked to antimicrobial usage, includes administration of more antibiotics
such as metronidazole or vancomycin. Indeed, this therapeutic approach may contribute to the
considerable rates of recurrence, estimated to be between 5 to 30% [5]. Recently, alternative
strategies have been devised to decrease rates of recurrence through use of toxin neutralizing
antibodies or gut microbiome reconstitution through fecal transplantation [6, 7]. Beyond the
implications in CDI, the gut microbiome has also been implicated as a predictor of autoim-
mune and inflammatory diseases such as inflammatory bowel disease (IBD) as well as obesity
[8]. The ability to functionally evaluate the impact of host-microbiota interactions on health
outcomes could guide the use of reconstitution therapies for the treatment of a wide range of
human diseases. Additionally, the baiCD gene, which encodes a bile acid processing enzyme,
allows commensal microbes to utilize host-produced bile salts to synthesize metabolites, such
as deoxycholate and lithocholate that provide resistance against C. difficile [9].

CDI is most often predicated by an alteration in commensal bacteria, usually as a result of
prolonged administration of broad-spectrum antibiotics [10]. The decrease or removal of com-
petitive species allows the vegetative C. difficile in the intestinal lumen to proliferate. In accor-
dance with the increased population, there is enhanced production and release of the two
toxins, TcdA and TcdB, thought to be the main virulent factors in CDI. TcdA is an enterotoxin
which causes tissue damage and edema as a result of interaction with luminal epithelial cells
[11]. The disruption of the epithelium by TcdA facilitates the migration of TcdB into the lam-
ina propria layer where it triggers multiple immune response mechanisms. For instance, TcdB
can directly interact with monocytes causing a shift in macrophage populations to an M1 phe-
notype and an increase in the concentration of pro-inflammatory cytokines [12]. The pro-
inflammatory environment combines with the effects of TcdA to alter the state of epithelial
cells leading to the activation and migration of neutrophils into the intestinal lumen [13]. Spe-
cifically, the inflamed epithelial cells have exhibited increased secretion of interleukin-8 (IL-8),
an important cytokine in the creation of a gradient inducing neutrophil chemotaxis [14] and a
biomarker of severity of disease. The migration of and subsequent release of cytotoxic granules
from neutrophils reduces the pathogen number while also further damaging the epithelium.
The presence of pathogenic C. difficile also increases accumulation of effector dendritic cells
(DC) as a result of increased contact rates between the pathogen and immature DC sampling
the lumen, and the increased engulfment rate of the bacteria [15]. The prevalence of effector
DC induces Th1 and Th17 effector responses [16]. These subsets of CD4+ T helper cells favor
a pro-inflammatory environment in the colonic lamina propria (LP). To modulate the inflam-
matory microenvironment, immature DC are stimulated to become tolerogenic DC which
induce the differentiation of naïve CD4+ T cells into induced regulatory T helper (Treg) cells.
For instance, activation of PPARγ, also contributes to a production of Treg cells from fully dif-
ferentiated Th17 cells, adding a second source pathway through mechanisms of plasticity [17].
Treg responses suppress mucosal inflammation through deactivation of effector dendritic cells,
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suppression of Th1 responses, and the shift of Th17 into Treg subsets [18]. Failure to mount
this regulatory response may worsen symptoms and expected infection outcome. Our model-
ing approaches have examined how impaired regulatory responses may influence pathology
and disease.

Computational modeling has shown promise in integrating theory, procedural knowledge,
and data for capturing the experimental observations in synthetic information processing sys-
tems and predicting emerging behaviors. Recently, models have been developed in the context
of bacterial or viral infection and inflammatory diseases [19–21]. Additionally, the involvement
of various cell types across varying dynamic patterns in mucosal immune responses requires
improved methodology to understand complex and massively interacting host-microbiota net-
works. Through the creation of a computational host-microbiome network, the merging of
computational and in vivo experimental immunology approaches offers the ability to analyze
the microbiome-driven changes in the gut immune cell composition that have been shown to
extend to a systemic alteration of the immune environment in the context of multiple diseases
[22]. Once calibrated and validated, these models become valuable tools to generate novel
hypotheses and guide the design of innovative non-intuitive experiments in vivo. In addition,
the validated models could contribute to the development of microbiome-based therapeutics
for the prevention and amelioration of disease.

It has been shown that a shift towards a pro-inflammatory phenotype, specifically a
Th17-driven response with a decreased Treg cell population occurs due to a lack of PPARγ in
CD4 T cells, leading to increased disease symptoms and colonic pathology during CDI [23]. To
further understand these cellular dynamics and the overall host response to the bacterium, we
have generated a tissue-level computational model of C. difficile infection using ordinary differ-
ential equations (ODEs) to describe the experimentally observed dynamics from individual
cells to the gut mucosal immune system. In addition to the immune response, the model incor-
porates the interactions between host, pathogen and commensal bacteria and can be custom-
ized to model other bacteria and associated conditions. Modeling results illustrate the relative
impacts of regulatory and effector components of the mucosal immune response in the clear-
ance of C. difficile and damage to the colonic mucosa. Model predictions highlight the role of
the host microbiome re-growth in controlling the immune response and CDI dynamics at the
colonic mucosa.

Results

Modeling mucosal immune responses to Clostridium difficile infection
The model topology is shown in Fig 1. The network represents the immune response to CDI in
the colonic mucosa. The C. difficile immune response model incorporates three reactions for
the C. difficile species (Cdiff), which are activated or inhibited by seven host or gut microbiota
modifiers. The Cdiff species may proliferate. The proliferation reaction is activated by the infec-
tion-exacerbating commensal species, CommH, and inhibited by the protective commensal
species, CommB. The Cdiff species may also die, in which the Cdiff population is reduced. The
latter is triggered by the activated macrophage species,M, as well as the activated neutrophil
species, NLum. Cdiff death is also inhibited by the CommH species. Furthermore, Cdiffmay
interact with a dendritic cell, iDCEp, to produce an activated dendritic cell, with the effector and
tolerogenic balance regulated by the comparative population of CommB to the dead commen-
sal species, CommD. In addition, the Cdiff species acts as a modifier of five reactions: the
inflammation of colonic epithelial cells, the activation and migration of neutrophils, the activa-
tion of macrophages, the death of Treg cells, and the plasticity between Treg and Th17 CD4+ T
cell subsets. The computational model is comprised of four compartments (lumen, epithelium,
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lamina propria and mesenteric lymph nodes) and 23 species whose interactions are described
by 30 reactions. The resulting ordinary differential equations (ODE) utilize 49 parameters to
describe the dynamics of the system. Parameter values were determined using data generated
through a murine model of CDI.

Kinetics of Clostridium difficile-induced CD4 T cell responses in mice
A time course study was performed to evaluate changes in immune cell composition following
CDI. On days 1, 3, 4, 5, 7, 8, and 10 post-infection, colons and MLN were collected, processed
and assayed to determine alterations in immune cell subsets by flow cytometry conducted in
two sets. In addition, colonic contents were collected and plated to measure the C. difficile pop-
ulation size. The response to infection was observed to be Th17 dominant with a large neutro-
philic influx in the colonic mucosa. Chronologically, the pro-inflammatory response, marked
by an increase in the Th17 effector cell subset, was initiated between days 3 and 4 post-infection
(Fig 2B). The Th17 response peaked on day five post-infection and corresponds with the largest

Fig 1. Network topology of model illustratingmucosal immune responses toClostridium difficile. Systems biology markup language (SBML)
compliant network of interactions betweenC. difficile and cellular immune components created in CellDesigner. Reaction modifiers connect cell nodes to
reaction arrows with green as indication of activation and red of inhibition. Species consist of C. difficile (Cdiff), infection-exacerbating commensal bacteria
(CommH), protective commensal bacteria (CommB), dead commensal bacteria (CommD), epithelial cells (E), inflamed epithelial cells (Ei), neutrophils (N),
macrophages (M), dendritic cells (tDC and eDC), T cells (nT, Treg, Th17, Th1) existing in multiple compartments lumen (Lum), epithelium (EP), lamina propria
(LP), and mesenteric lymph node (MLN).

doi:10.1371/journal.pone.0134849.g001
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increase in macrophage accumulation. In contrast a regulatory response, characterized by the
accumulation of CD4+CD25+Foxp3+ Treg cells was detected between days 8 and 10, and pre-
ceded by a slight suppression between days 4 and 7 post-infection (Fig 2A). Bacterial re-isola-
tion from colonic contents displayed that the peak of the C. difficile population occurred on
day 4 post-infection and the bacterium was largely cleared by day 8 (Fig 2C). The data displays
that CD4+ T cells may crucially contribute to the response to CDI. For this reason, these popu-
lations were foundational elements of the computational model. Combined, this data displays
that while the peak of the C. difficile population occurs on day 4 post-infection, important
events continue to occur through day 10 post-infection. The results established key time points
during infection for the evaluation of simulation results such as the peak of C. difficile popula-
tion between days 3 and 4, of the inflammatory response between days 4 and 5, and of the regu-
latory response between days 8 and 10. Additional data from Buffie, et al. was used to calibrate
the commensal populations with 16S analysis of the host microbiome regrowth following anti-
biotic ablation [9]. Data from Blake, et al. was used in combination with generated data to cali-
brate neutrophil populations [24]. Epithelial cells were calibrated with a combination of
previously reported data [25, 26]. The data from two time courses of infection was compiled
into separate calibration and validation datasets. The calibration dataset includes data gathered
during the first experiment on days 1, 4, 7 and 10 post-infection as well as further sourced data
from intermediate days. The validation dataset includes data generated on days 3, 5 and 8 post-

Fig 2. Time course of Clostridium difficile infection in mice. (a and b) Flow cytometry analysis of colonic lamina propria lymphocytes from days 1 to 10
post-infection showing the differences in CD4+ CD25+ FoxP3+ regulatory T (Treg) and CD4+ IL17+ T helper 17 (Th17) cells, respectively, between control
andC. difficile challenged wild type mice. (c) Re-isolation data of C. difficile from colonic contents from day 1 to day 8 post-infection. Data points and error
bars represent mean ± standard error of the mean (SEM). Asterisks (*) mark significance (P�0.05) in comparison between control andC. difficile infected
mice (n = 10).

doi:10.1371/journal.pone.0134849.g002
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infection. Parameters for the computational model were estimated using Particle Swarm and
Genetic algorithms as implemented in COPASI [27]. The calibrated ODE model is able to rep-
licate the dynamics observed in the time course of infection shown in Fig 3.

Sensitivity analysis helps identify determinants of C. difficile population
control and epithelial damage
The clearance of C. difficile and colonic epithelial damage are two interconnected end effects
that contribute to the overall infection severity. Sensitivity analysis on the computational
model was used to determine which parameters in the network had the greatest influence on
these factors. Each quantity has a distribution of parameter impacts with a large number of low
impact parameters centered around zero, and smaller amounts with both positive and negative
effects at larger magnitudes (Fig 4A and 4B). In each case the very large impact parameters are,
by majority, directly involved with the population being analyzed. Because of this direct rela-
tion, little can be gained beyond what is naturally intuitive from delving into these parameters
further. As a result, these parameters were not evaluated further. Parameter 5 through 8 in Fig

Fig 3. Simulated dynamics of mucosal immune response to Clostridium difficile.Modeling results following calibration and validation of the host
response model in populations of (a)C. difficile, (b) protective commensal bacteria, (c) infection-exacerbating commensal bacteria, (d) lamina propria T
helper 17 cells, (e) effector dendritic cells, (f) infiltrating neutrophils, (g) regulatory T cells, (h) tolerogenic dendritic cells and (i) activated macrophages. Lines
represent simulation results, filled points represent experimental calibration data and unfilled points represent experimental validation data.

doi:10.1371/journal.pone.0134849.g003
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4C were associated with an increase in the C. difficile population in the lumen and included the
degradation and death rates of effector immune cells, macrophages, neutrophils and Th17
cells, as well as the death rate of commensal species. In contrast, the production of effector DC,
parameter 1, greatly contributed to a decrease in the C. difficile population. The impact of bal-
ancing regulatory and effector arms of the mucosal immune response is also displayed through
effects on epithelial cell death (Fig 4D). The induction of the Treg cell response through the
production of tolerogenic DC (P1), plasticity with Th17 cells (P2) and a regrowth of commen-
sal bacterial species (P3) possess strong decreasing effects on the amount of epithelial cell
death.

Fig 4. Relative effects of parameters onClostridium difficile population and epithelial cell death. (a and b) Histograms showing the distribution of
parameter impact on C. difficile population and epithelial cell death, respectively. Measurements are based on sensitivity analysis of the calibrated model. (c
and d) Highest impact parameters for each quantity in which positive amounts indicate an increasing effect on the quantity and negative amounts indicate a
decreasing effect. For the C. difficile population results, P1 contributes to effector dendritic cell production, P2 to neutrophil activation and migration, P3 to
protective commensal bacteria regrowth, P4 to macrophage activation, P5 to commensal bacteria death, P6 to macrophage death, P7 to Th17 cell death,
and P8 to neutrophil death. For epithelial cell death, P1 contributes to tolerogenic dendritic cell production, P2 to Th17 to Treg cell plasticity, P3 to commensal
bacteria death, P4 to Treg to Th17 cell plasticity, P5 to macrophage activation and P6 toC. difficile growth.

doi:10.1371/journal.pone.0134849.g004
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Increased production of anti-microbial peptides by epithelial cells exerts
an inhibitory effect on beneficial commensal microbiota species
Quantitative RT-PCR analyses conducted on colonic contents demonstrated a difference in
commensal species regrowth between C. difficile challenged and control mice (Fig 5A). After
intraperitoneal injection of clindamycin, amount of the baiCD gene is reduced 1.5 orders of
magnitude on day zero compared to the initial amount on day 5 pre-infection, showing a dra-
matic reduction of protective commensal species after administration of antibiotics. Addition-
ally, prior to challenge, there is no significant difference between the two experimental groups.
The control mice quickly recover nearly one-third of baiCD containing microbiota levels as
early as day one with slight fluctuations around that point for the remainder of the time course.
After C. difficile challenge, the baiCD containing microbiota levels continue to decrease
through day 5 post-infection. The level begins to rebound to pre-challenge amount by day
seven. The difference between the C. difficile challenged and control levels of baiCD content
suggest that a C. difficile- or immune-mediated effect is present during CDI that prevents the
regrowth of protective commensal species. The colonic expression of anti-microbial peptides,
DefB1 and S100A8, was assayed by using qRT-PCR. The expression of DefB1 is significantly
upregulated on days 2 and 4 post-infection in colonic contents of C. difficile infected mice
before returning to control level on day 6 (Fig 5B). Concurrently, the expression of S100A8 in
the C. difficile challenged mice followed that of the uninfected controls with the exception of a
significantly upregulated peak on day 4 post-infection (Fig 5C).

Fig 5. Commensal bacteria regrowth inhibited withClostridium difficile infection. (a) The baiCD content is decreased by antibiotic treatment in both
control andC. difficile challenged mice and further decreased post-infection in the C. difficile challenged mice compared to the controls. (b and c) The
expression of anti-microbial peptides DefB1 and S100A8 are upregulated with infection. Data points and error bars represent mean ± standard error of the
mean (SEM). Asterisks (*) mark significance (p�0.05) in comparison between control andC. difficile infected mice (n = 10).

doi:10.1371/journal.pone.0134849.g005
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Removal of commensal bacteria regrowth inhibition alters host response
to infection
To display the effect of neutrophil and epithelial cell-derived anti-microbial peptides on the
regrowth of commensal species, four scenarios were considered. A simulation exists for the
combined inhibition by neutrophils and inflamed epithelial cells (NE), by only neutrophils (N),
by only inflamed epithelial cells (E) and by neither. In both the NE and E simulations, the initial
regrowth of beneficial commensal species, within the first two days post-infection, is slowed
compared to the uninhibited case (Fig 6A). In comparison, the N simulation follows a similar
pattern to the uninhibited case over the same time period. The NE simulation displays a reduc-
tion in beneficial commensal species following the initial stage and continuing through day 5
post infection. This reduction and deviation from regrowth of baiCD content on day 5 is repre-
sentative of the in vivo data displayed in Fig 5A. The NE simulation further mimics the in vivo
situation with a clear commitment to regrowth from day 5 to day 7. The N simulation has a
similar trend to a smaller degree while the uninhibited and E simulations show continuation of
their respective initial trends. In the final stage of the simulation, the N and NE cases return to
increasing trends. The regrowth begins to slow in the uninhibited case and has an even greater
deceleration in the E simulation. The E simulation showed little change in the C. difficile popu-
lation at the peak of infection and a delayed clearance (Fig 6B) compared to the NE simulation.

Fig 6. In silico simulation of altered commensal bacteria regrowth duringClostridium difficile infection. Four cases were tested with variations to the
inhibition of the commensal bacteria growth: inhibited by both neutrophils and inflamed epithelial cells (N and E_i), by only neutrophils (N), by only inflamed
epithelial cells (E_i), and by neither (none). Resulting changes in species populations for each case are shown: (a) baiCD-containing commensal species, (b)
C. difficile, (c) activated neutrophils, and (d) iTreg cells in the lamina propria.

doi:10.1371/journal.pone.0134849.g006
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Both the N and uninhibited simulations displayed small reductions of C. difficile at the peak of
infection relative to the NE case; however, only the uninhibited case cleared the Cdiff species by
an earlier time point. The three altered simulations had reductions in peak neutrophil activa-
tion and influx compared to the NE case as well as occurring at slightly earlier times (Fig 6C).
Each simulation possessed a larger iTreg peak in comparison to the NE case prior to converg-
ing to a similar resolution (Fig 6D). Only the uninhibited simulation greatly altered the timing
of the peak in the iTreg response with an advance of approximately one half of a day.

Discussion
CDI is a rising problem in the health care system. The standard treatment of infection is the
discontinuation of any previous antibiotics and the administration of a new antibiotic regime.
While the treatment is effective in certain cases, it can also result in significant rates of re-
occurrence of CDI starting from a baseline of 25% [28]. Currently, numerous methods of alle-
viation of these treatment methods are under investigation, including the development of vac-
cines, toxin-based antibodies and microbiome reconstitution [7, 29, 30]. In this study, we used
computational modeling in combination with immunology experimentation in vivo in an itera-
tive systems biology cycle to better understand the dynamics of infection and the mechanisms
of immunoregulation underlying mucosal immune responses to C. difficile.

The computational model described captures the roles and dynamics of multiple immune
and epithelial cell types at the colonic mucosa during the course of CDI (Fig 3). The validated
model enables the initial testing of interventions or modulation hypotheses aimed at the
improvement of the understanding or treating the CDI. This model could also be used as a tool
in determining crucial time points for data collection to maximize the utility of specific pre-
clinical and clinical studies. The combined effect of initial testing and targeted time points may
greatly improve the cost-efficiency of wetlab experimentation. The model replicates other pre-
viously reported experimental results. For instance, treatment with anti-Gr-1 reduces both
neutrophil and monocyte levels in the context of a mouse model of C. difficile infection [31].
However, the reduction does not result in a large change in either the C. difficile population or
disease severity, which also can be shown through varying parameter values and the resulting
neutrophil and monocyte levels in silico. The association between antibiotic use and recurrence
of CDI has been described clinically [28]. Following a simulated reduction of all bacterial spe-
cies after the initiation of the time course study, the clearance of C. difficile is incomplete and
results in the occurrence of a second peak at a time beyond when complete resolution would
occur without intervention. Together with our own generated data, these published experi-
ments serve to verify and validate the ability of the computational model to replicate an in vivo
infection and produce reliable predictions.

The presence of a robust pro-inflammatory mucosal immune response following CDI at the
colonic mucosa is a crucial determinant of the resulting severity of infection. Sensitivity analy-
ses demonstrate that the induction of a regulatory response decreases damage to the epithelium
following CDI (Fig 4). Specifically, parameters controlling the production of tolerogenic DC
and the plasticity of Th17 cells to become Treg cells are highly associated with decreased epi-
thelial damage. However, the induction of regulatory responses can also slow C. difficile clear-
ance and increase the overall length of infection, as the removal of pro-inflammatory cell types
is largely associated with a larger C. difficile population. In sensitivity analyses, parameters
relating to the production of activated dendritic cells show a large effect in comparison to other
parameters. While this may be partially due to the sequential nature of the dendritic cell section
of the model network, further investigation of this behavior could be very insightful and immu-
nologically relevant. In many cases, C. difficile acts as a non-invasive pathogen and the
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resultant damage is toxin-mediated [32]. However, the epithelium, after damage by the toxins,
is still breached, often by bacterial species present in the healthy microbiome that do not nor-
mally exhibit pathogenic behavior [33, 34]. Toxin-mediated activation of immune cells occurs,
but dendritic cells could potentially exert control over the reactivity to non-C. difficile infiltrat-
ing bacteria. From the high sensitivities in model analysis, the relative ability or inability of
dendritic cells or mononuclear phagocytes to maintain tolerogenic responses to commensal
bacteria may contribute to the variation in disease severity between patients. Specifically, den-
dritic cells appear to act as the main drivers of establishing the Th17 response during the peak
of infection that controls the pathogenic bacterial population, while also acting as a crucial ele-
ment in the switch to an iTreg-dominated state during resolution. Similar impact of dendritic
cells could be seen in other infections that cause broad damage to the epithelium or are a result
of a non-invasive pathogen. Indeed, CX3CR1+ mononuclear phagocytes, a population with
similar functions to macrophages and conventional dendritic cells, has been shown to prevent
reactions to commensal bacteria via driving the differentiation of innate lymphoid cells into
subclasses that promote maintenance of barrier integrity and intestinal homeostasis. Recently,
these populations have been implicated in the prevention of disease in the context of inflamma-
tory bowel disease and H. pylori [35]. The use of computational modeling in precision medi-
cine may allow for the determination of a proper balance between pro-inflammatory and
regulatory arms of the mucosal immune response in the context of new therapeutic
interventions.

CDI is associated with the use of broad-spectrum antibiotics, and microbiome reconstitu-
tion through fecal transplantation or probiotic treatment has gained some traction with vary-
ing degrees of success [36, 37]. The unspecific nature of these treatments results in the
proliferation of a spectrum of Bifidobacterium that promotes tolerance to commensal species.
However, the C. difficile population dynamics may be unchanged or poorly altered as a result.
Among other methods of inhibition, the growth of C. difficile has been shown to be slowed by
the presence of secondary bile acids [38, 39]. Recently, specific commensal species, that convert
primary bile acid to secondary bile acids, have displayed a protective ability against C. difficile
infection [9, 40]. However, the presence of C. difficile indirectly inhibits the regrowth of these
commensal species. Anti-microbial peptides DefB1 and S100A8 are upregulated in colons of C.
difficile-infected mice at distinct time points during infection (Fig 5). DefB1, the gene responsi-
ble for beta-defensin-1 produced largely by epithelial cells, is upregulated early and for an
extended period in the time course between days 2 and 4 post-infection [41]. While beta-defen-
sin-1 has broad membrane lysis ability, it has its largest effect on gram-negative bacteria [42].
Notably, C. scindens, a highly prevalent member of bile acid inducible operon containing
microbiome, is gram-negative. The combination of elevated beta defensin-1 and the suscepti-
bility of a major constituent of the beneficial microbiome to this anti-microbial peptide suggest
a strong probability that the host response to C. difficile is also inhibitory to the regrowth of
beneficial commensal strains. In contrast, expression of S100A8, a component of calprotectin
sourced mainly from neutrophils and monocytes, is elevated with a distinct peak on day 4 cor-
responding with the peak of neutrophil activation [43]. The combined anti-microbial activity
may contribute to decreased efficiency in the regrowth of the native microbiome during CDI
suggested by computational experimentation (Fig 6). The simulated removal of epithelial cell-
related inhibition of commensal bacterial regrowth in the model allows for an increased
amount of beneficial commensal species early in the infection, resulting in slightly decreased C.
difficile levels through direct competitive effects on the population itself and indirectly through
down-regulation of neutrophil and Th17 cell-mediated effector responses. The alterations
within the C. difficile population during this simulation would be unlikely to significantly affect
the initial establishment of a clinical cure through clearance of C. difficile [44]. However, the
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lack of effect is still an important result as it suggests that the simulated changes do not result
in an inhibition of C. difficile clearance or a worsening of the hypothetical prognosis. Addition-
ally, the increased and quicker re-growth of commensal bacteria would likely exhibit greater
direct effects on the C. difficile population through the prevention of relapse. The lack of micro-
bial diversity is a major predictor of relapse susceptibility [45]. The return of this diversity
would greatly reduce the capacity for the persisting C. difficile population to expand back to
pathogenic levels. During the course of the initial infection, the effect of continued commensal
re-growth is largely immunomodulatory rather than displaying a large effect on the C. difficile
population. Continued commensal re-growth throughout the time course displays an ability to
shorten the length of CDI and decrease the overall magnitude of the inflammatory host
response at the colonic mucosa and resultant collateral damage. This suggests a need for a
microbiome reconstitution intervention to restore beneficial effects in terms of the C. difficile
growth inhibition and regulation of a pro-inflammatory environment. The ability to further
increase the specificity and success of microbiome reconstitution therapies can be aided by
computational modeling.

Neutrophilic influx is a major cause of symptom severity as indicated by sensitivity analysis
of our model (Fig 4) and previously reported connections [46, 47]. Subsequently, the chemo-
kine, IL-8, has been studied as a potential marker for severity and prognosis in the diagnosis of
C. difficile infection [48]. In addition to IL-8, other promising biomarkers of C. difficile associ-
ated disease severity include the antimicrobial peptide calprotectin, hepatocyte growth factor,
and procalcitonin [49–51]. A future direction in the analysis and application of multiscale
models of CDI could be the determination of a non-intuitive vital node in the network; the lat-
ter may allow for the extrapolation of easily measurable biomarkers of disease in the context of
data-driven models and multiscale models of mucosal immune responses [52]. Consequently,
the discovered marker could indicate the stage of infection or the need for or extension of treat-
ment. Methods have been described based on the correlational evaluation of model quantities
in virtual populations and global sensitivities in the analysis and discovery of potential bio-
markers in the context of lipoprotein metabolism and acute inflammation, respectively [53,
54]. The sensitivity analysis allows for the determination model parameters that are most
impactful on immune response and infection outcome. Both methods illustrate the difficulty in
the determination of biomarkers without the aid of computational modeling due to the inher-
ent variation of expression levels between individuals. As we have demonstrated the potential
changes in mucosal immune response following modifications to the microbiome composition,
measurement of beneficial commensal bacterial metabolites, such as deoxycholate and litho-
cholate, in combination with the computational modeling simulations could help predict the
effectiveness of fecal microbiota transplantation and other therapeutic or prophylactic inter-
ventions on a patient-to-patient basis or prove to be an effective predictor of untreated out-
come. The generation of a synthetic population through a random sampling of parameter
values within a normal distribution of the calibrated values would allow for these predictions
to be extended into in silico clinical trials of CDI.

The model developed and analyzed in this article was specific for the host response to C. dif-
ficile; however, many of the strategies used for this purpose can be extended to better the
understanding the responses to other enteric pathogens and inflammatory conditions. Specifi-
cally, while fecal transplantation and microbiome reconstitution may be more greatly estab-
lished in the context of CDI, the concept of promoting the growth of beneficial bacteria could
have wide reaching implications in the understanding of mucosal immunity. Currently, there
is an increasing prevalence of auto-immune and auto-inflammatory diseases, especially within
developed countries [55]. One hypothesis is that improved hygiene and the resultant reduction
in microbial exposure have led to decreased regulation of the immune system and an over-
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exuberant response when an exposure does occur [56]. Additionally, the ability of the host to
generate an accommodating environment for commensal species, such as through the secre-
tion of polysaccharides, has been shown to affect the susceptibility to disease [57, 58]. Through
the creation of a computational model describing the interactions of bacterial families with the
epithelium and elements of the mucosal immune system, an enhanced understanding of which
species contribute to the susceptibility and severity of the response could be generated. Further-
more, this increase in knowledge could contribute to the development of targeted pro-biotic
and reconstitution therapies to combat the rising rates of auto-immune and auto-inflammatory
disease and altered microbiomes resulting from genetic and environmental differences.

In conclusion, we have examined the time course of the immune response to C. difficile
infection through a combination of experimental and computational approaches using an iter-
ative systems biology cycle. We described the importance of maintaining a balance between
effector and regulatory arms of the mucosal immune response in the clearance of pathogen
and severity of infection. Specifically, the production of anti-microbial peptides may exacerbate
disease and pathology, and prolong the CDI due to non-specific inhibition of commensal bac-
terial regrowth. Computational simulations supported the role of this inhibition on the disease
severity with a virtual removal of neutrophil and epithelial cell derived anti-microbial inhibi-
tions, separately and together, on commensal bacterial regrowth. The simulated shifts in host
response behavior provide novel insights underlying the mechanisms of interaction between
the mucosal immune system and the gut microbiota during CDI.

Methods

Ethics Statement
All experimental procedures were approved by the Institutional Animal Care and Use Com-
mittee (IACUC) of Virginia Tech and met or exceeded requirements of the Public Health Ser-
vice/National Institutes of Health and the Animal Welfare Act. The IACUC approval ID for
the study was 12-173-VBI. C57BL/6J wild type mice were bred and maintained in experimental
facilities at Virginia Polytechnic Institute and State University. Mice were housed two to five
per cage on a ventilated rack in a room with a standard 12 hours on, 12 hours off light cycle.
The animals were given ad libitum access to standard rodent chow and water. After infection,
mice were monitored daily for signs of disease severity and weighed. Four hour checks were
triggered when an animal reached a score of three. Mice were euthanized prior to scheduled
end point if severe signs of illness, such as a large weight loss, piloerection or a loss of mobility,
were present. All mice were euthanized with carbon dioxide narcosis and a secondary cervical
dislocation.

C. difficile Animal Model
This study followed a previously reported model of Clostridium difficile infection [59]. Prior to
bacterial challenge, mice were treated with a mixture of antibiotics in drinking water. The mix-
ture consisted of colistin 850 U/mL (4.2 mg/kg), gentamycin 0.035 mg/mL (3.5 mg/kg), metro-
nidazole 0.215 mg/mL (21.5 mg/kg), and vancomycin 0.045 mg/mL (4.5 mg/kg). Mice were
kept on the antibiotic water for a three day period corresponding to days 5 to 3 prior to chal-
lenge. The mice were returned to standard autoclaved water two days before challenge. The
mice were given an intraperitoneal injection of clindamycin, 32 mg/kg, one day prior to infec-
tion. The control group received the same antibiotic pretreatment. The infected group was
challenged through intragastric gavage with Clostridium difficile strain VPI 10463 (ATCC
43255) 107 cfu in 200 uL/mouse of Brucella broth. Mice were weighed and scored daily to
assess the presence of disease symptoms (diarrhea, piloerection, hunchback position, etc.).
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Mice were sacrificed through CO2 narcosis and secondary cervical dislocation at different time
points (days 1, 3, 4, 5, 7, 8, 10) post infection.

Sample Processing
Mesenteric lymph nodes and colons were collected. Mesenteric lymph nodes (MLN) were
crushed using the frosted ends of microscope slides. Samples were centrifuged and washed
with phosphate buffered saline (PBS) containing 5% fetal bovine serum (FBS) and Golgi stop.
Cells were centrifuged and re-suspended in FACS buffer and counted using BD Coulter cell
counter. Colon samples were washed in BD Cell Recovery Media to remove epithelial cells.
Remaining tissue was degraded in RPMI containing collagenase and DNase at 37°C while stir-
ring. Samples were filtered using and centrifuged. Remaining cells were re-suspended and puri-
fied in a Percoll gradient. Cells at the Percoll interface were collected and counted.

Flow cytometry
MLN and colonic lamina propria lymphocytes were plated in 96 well plates (6x105 cells/well).
Cells were incubated with fluorochrome conjugated antibodies to extracellular markers, anti-
CD45 APC-Cy7, anti-CD3 PE-Cy5, anti-CD4 PE-Cy7, anti-CD25 biotin, anti-CD64 PE, anti-
CD11b AlexaFluor700, anti-F4/80 PE-Cy5, anti-CD11c FITC, anti-Gr1 PE-Cy7, anti-Ly6c
PerCP-Cy5.5, and anti-MHC-II biotin. Samples needing a secondary staining were incubated
with Streptavidin-Texas Red. The samples were then fixed and permeabilized. Cells were incu-
bated with antibodies to intracellular markers, anti-FoxP3 FITC, anti-IL-10 APC, anti-RORγT
PE, and anti-IL-17 APC. Data was acquired with a BD LSRII flow cytometer and analyzed
using FACS Diva software (BD Pharmingen).

Bacterial re-isolation
Colonic contents were collected from excised colons. Samples were homogenized in Brucella
broth and incubated at 68°C for one hour. Samples were centrifuged at 10,000 rpm for 30 sec-
onds and the supernatant was collected. The supernatant was serially diluted (1:10, 1:100,
1:1000) and plated on Oxoid Clostridium difficile agar plates containing Clostridium difficile
selective supplement. Plates were incubated in anaerobic conditions using a BD EZ anaerobic
container system kit for 2 days at 37°C. Colonies were counted and compared to sample weight
for normalization.

Gene expression
Total RNA was isolated from mouse colonic contents using a Qiagen RNA isolation mini kit.
Complementary DNA (cDNA) was generated from each sample using the iScript cDNA syn-
thesis kit. Standards were produced through a polymerase chain reaction on the cDNA with
Taq DNA polymerase from Invitrogen. The amplicon was purified using the Mini-Elute PCR
purification kit from Qiagen. Expression levels were obtained through quantitative real-time
PCR on a Bio-Rad CFX 96 Thermal Cycler using the Bio-Rad SYBR Green Supermix. For anal-
ysis, the starting amount of anti-microbial peptide cDNA was compared to that of beta-actin,
as a control. Primer sequences are provided in supplemental information (S3 Table).

Computational modeling
The generation of a computational model was used in combination with experimental methods
to improve our understanding of gathered data, to create a more systematic experimental pro-
cess and to generate new knowledge. The model generation was a multi-step process, including
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the creation of a model network, calibration and validation of the model equations, analysis of
the model, and execution of in silico simulations. The structure of the computational model,
which includes the species and their interactions, was constructed in CellDesigner, a Systems
Biology Markup Language (SBML) compliant software. The network was generated based on a
combination of generated time course data and a thorough literature review and depicts the
cellular host involving interactions between dendritic cells, T helper cells, macrophages, neu-
trophils, epithelial cells and commensal bacteria. The model was imported into Complex Path-
way Simulator (COPASI) software[27]. In COPASI, the interactions and transitions were
assigned ordinary differential equations representing multiple kinetics including mass action,
simple activation and Hill-type activation and inhibition, available in supplemental informa-
tion (S1 File). The resulting parameters were estimated using Particle Swarm and Genetic algo-
rithms with time course data generated through the mouse model of infection on days 1, 4, 7
and 10 in addition to extra days post-infection included in sourced data. The parameter search
algorithms seek to minimize the sum of squares for the calibration dataset. To further train the
model, a separate dataset set containing data from days 3, 5, and 8 post-infection was used as a
validation dataset. In the parameter estimation process, the sum of squares for the validation
dataset is monitored but not minimized. Rather an increase in the sum of squares for the vali-
dation dataset is used as a stop criterion for the search algorithm which serves as a preventative
measure against over-fitting. Parameters values and further information on the parameter fit-
ting process are available in supplemental information (S1 Table and S2 File). Time course sim-
ulations were conducted using an LSODA deterministic method. The model displays the
ability to represent activation, differentiation and death of the cell types involved and allows
for distinctions to be made in patterns and sequences of events. Local sensitivities were calcu-
lated through numerical differentiation using a finite difference method with delta factor 0.001
and delta minimum 1x10-12. The sensitivity analysis was used to elucidate the combination of
direct and indirect effects. Furthermore, all model quantities had on specific outcome events
which allows for the identification of potential target nodes with which a desired change can be
induced. In silico simulations on the effects of anti-microbial inhibition of commensal
regrowth were conducted through modification of the CommB to CommD transition. The
resulting changes were observed in a time course simulation. The full model is deposited in the
Biomodels Database (https://www.ebi.ac.uk/biomodels-main/) with identifier
MODEL1507200000.

Model assumptions
Initial particle numbers are assumed to be representative of a post-antibiotic ablation state in
which commensal species are greatly reduced. The model requires an initial amount of the
Cdiff species to be present for the response to be initiated. Reactions may represent direct cell-
to-cell contact (sensing of C. difficile by dendritic cells), cytokine- or toxin-mediated effects
(the differentiation and activation of CD4+ T cell populations), or cellular movement (migra-
tion of T cells from the mesenteric lymph nodes to the lamina propria). Cross-compartmental
reactions are possible through the environmental changes induced by the effector cell in the
reaction. The model assumes that protective commensal species follow a regrowth pattern sim-
ilar to a summation of Clostridiaceae, Ruminococceae, Verrucomicrobiaceae, Porphyromonada-
ceae, Turicibacteraceae, and Eubacteriaceae bacterial families, while the infection-exacerbating
population is assumed to follow that of Enterobacteriaceae, Streptococcaceae, and Enterococca-
ceae families. Reactions in the model may be simplifications of multi-step processes. Non-
informative parameters were eliminated from the model through simple deletion of the reac-
tion or fusion with a related neighboring reaction. Parameters were deemed non-informative
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through local sensitivity analysis within COPASI using numerical differentiation through finite
differences. For instance, the initial model contained separate steps for the activation and
migration of neutrophils. Because the sensitivity to the migration parameter was five orders of
magnitude less than the sensitivity to the activation parameter, the reaction corresponding to
the migration was combined into the activation reaction.

Statistical analysis
A one way analysis of variance (ANOVA) was performed to determine significance in the data
using a SAS (SAS Institute) general linear model procedure. Differences of p�0.05 were con-
sidered significant. Data was comprised of multiple experiments. The number of samples per
for each group at each time point varied between five and eight. Data is displayed as mean val-
ues with error bars representing standard error of the mean and asterisks to mark significance.

Supporting Information
S1 File. Ordinary differential equations of model. Equations control the dynamics of the
computational model. Mass action, simple activation/inhibition and Hill-type activation/inhi-
bition were used in the generation of the equations.
(PDF)

S2 File. Description of parameter fitting process. The file provides more in-depth discussion
of parameter fitting to complement the summary provided in Methods.
(PDF)

S1 Table. Parameters values. Table contains the calibrated parameter values of the model
which were generated through Particle Swarm and Genetic algorithms parameter estimation
methods in combination with experimentally obtained data.
(XLSX)

S2 Table. Calibration and validation databases for estimation of model parameters. Data-
base includes newly generated and previously reported time course data for the response to C.
difficile infection.
(XLSX)

S3 Table. Primers used to characterize commensal species and anti-microbial peptide
expression. Primers cover the baiCD operon in bacterial strains and the anti-microbial peptide
associated genes DefB1 and S100A8.
(XLSX)
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