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Abstract: The advancement in therapy has provided a dramatic improvement in the rate of recovery
among cancer patients. However, this improved survival is also associated with enhanced risks
for cardiovascular manifestations, including hypertension, arrhythmias, and heart failure. The
cardiotoxicity induced by chemotherapy is a life-threatening consequence that restricts the use of
several chemotherapy drugs in clinical practice. This article addresses the prevalence of cardiotox-
icity mediated by commonly used chemotherapeutic and immunotherapeutic agents. The role of
susceptible genes and radiation therapy in the occurrence of cardiotoxicity is also reviewed. This
review also emphasizes the protective role of antioxidants and future perspectives in anticancer
drug-induced cardiotoxicities.

Keywords: anticancer drugs; cardiotoxicity; pharmacogenetics; radiation therapy;
chemotherapeutic agent

1. Introduction

The advancement of medical science is associated with a paradigm shift in new anti-
cancer therapies, causing a significant increase in long life expectancy in patients. Though
a tremendous improvement has happened in cancer chemotherapy, the serious adverse
effects associated with the therapy are still a major challenge [1–3]. Earlier studies reported
a 0.5% prevalence rate of cancer in the general population with a mortality rate of 25%.
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The cytotoxic effects of the therapy affect all major organs and the clinical manifestations
are associated with the development of co-morbidities [4]. Since cardiotoxicity is the
most common adverse effect manifested by anticancer drug therapy, the increase in life
expectancy owing to anticancer therapy may be negated by the enhanced death rate due to
heart issues [5,6]. Cardiotoxicity can strike at any point during pharmacological treatment,
with symptoms ranging from modest myocardial dysfunction to permanent heart failure
and death [6].

The principle involved in chemotherapy is that it impairs the metabolic and mitotic
processes of cancer cells and, in maximum cases, it also damages normal cells and tissues,
which leads to various side effects ranging from mild to severe forms of gastrointestinal
upset, the suppression of bone marrow, in addition to cardiovascular toxicities including
myocardial dysfunction, heart failure, hypertension, and tachyarrhythmia [2,7].

Cancer therapies, including molecular target therapies, cytotoxic chemotherapy, and
mediastinal irradiation, are seen to be linked with myocyte damage, ischemia, conduction
and rhythm disturbances, left ventricular dysfunction, cardiac failure, and several other
cardiovascular complications [3,8,9].

Various biochemical investigations into the different pathways of cardiovascular dam-
age have been documented. Chemotherapeutic drugs cause cardiotoxicity by enhancing
the formation of reactive oxygen and nitrogen species (ROS and RON), which impairs redox
equilibrium. Although peroxisomes and other subcellular components are critical regula-
tors of redox equilibrium, mitochondria remain the prime targets for anticancer-induced
cardiotoxicity [10].

Anthracyclines (ANT) (doxorubicin), alkylating drugs (cyclophosphamide, cisplatin),
and taxanes (paclitaxel, docetaxel) are the most common chemotherapeutic medications
linked to serious cardiac events. More than half of the currently used anticancer ther-
apies include anthracyclines, which cover breast cancer, sarcoma, gynecological cancer,
and lymphoma [11].

This review aims to bring attention to several regularly used cancer medicines and
their links to cardiotoxicity. Since each chemotherapeutic agent has a particular effect on
the heart, this study covers the cardiac toxicities associated with different chemotherapeutic
agents.

2. Mode of Cardiotoxicity Induction
2.1. Cyclophosphamide-Induced Carditoxicity

Cyclophosphamide is an anticancer drug with antitumor properties that is commonly
used in humans for a range of neoplasms [12]. However, multiple reports have indi-
cated that, in addition to having tumor-selective properties, cyclophosphamide has a
slew of highly hazardous adverse manifestations (Figure 1), the most serious of which is
cardiotoxicity [13].

Cyclophosphamide is activated by the cytochrome P-450 (CYP) enzyme in the liver,
which transforms it into 4-hydroxycyclophosphamide. Aldo cyclophosphamide (AldoCY)
and 4-hydroxycyclophosphamide are in equilibrium. AldoCY may be oxidized by alde-
hyde dehydrogenase 1 (ALDH1) to the inactive metabolite o-carboxymethylphosphoramide
mustard (CEPM) or beta eliminated through a chemical mechanism that decomposes to
produce cytotoxic phosphoramide mustard (PM) and the byproduct acrolein, depending
on the cell type [14]. The antineoplastic activity of cyclophosphamide is due to the pres-
ence of phosphoramide mustard, which is the therapeutic metabolite in the active form
present in cyclophosphamide, and it shows DNA alkylation activity, whereas acrolein, the
other metabolite of cyclophosphamide, has the ability to interfere with the antioxidant
system, further causing the generation of strongly active oxygen-free radicals, superoxide
radicals, and hydrogen peroxide [15]. These free radicals are implicated in several enzyme
inhibitions, lipid peroxidation, as well as membrane injury [16]. The generation of free
radicals mediates oxidative stress associated with cyclophosphamide treatment witnessed
by the following pathways.
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Figure 1. The mechanism of cyclophosphamide-mediated cardiac toxicity.

2.1.1. Mitochondrial-Dependent ROS Production

Cyclophosphamide (CP) treatment is responsible for the generation of a tremendous
amount of ROS, which damages the inner membrane of the mitochondria, resulting in a
reduced capacity of the myocardial cell mitochondria to neutralize the toxic effect of ROS.
The toxic effect of CP treatment is associated with a reduction in oxidative phosphorylation
in mitochondrial cristae, which causes a decrease in ATP production and contributes to
further damage in mitochondria [17–19]. This is one of the prime reasons for altered cardiac
physiology and contractility. The increased expression of the pro-apoptotic molecule BAX in
the mitochondrial membrane by CP treatment is responsible for the induction of apoptosis.
The cleavage of caspases, inhibition of protein kinase, and the activation of phosphatase and
increased intracellular PH are responsible for the stimulation of BAX proteins. The ratio of
proapoptotic and antiapoptotic molecules Bax and Bcl2 makes the mitochondrial pathway
susceptible to apoptosis. The disturbance in calcium homeostasis is also responsible for the
initiation of apoptotic cell death [20,21]. The interaction of ROS and calcium is bidirectional.
The calcium ions increase the production of mitochondrial ROS by stimulating respiratory
chain activity. The released ROS acts on the endoplasmic reticulum to generate more
calcium and ROS. This leads to the opening of the mitochondrial permeability transition
pore, resulting in the release of pro-apoptotic factors [22,23].

2.1.2. Oxidative Stress Produced by NADPH

CP-intoxicated cardiomyocytes are responsible for increased synthesis of NADPH
oxidase, NADH dehydrogenase, and NADPH oxidase. The activation of these enzymatic
systems is associated with the generation of free radical-mediated oxidative stress [24,25].
The myocardial cell when exposed to CP treatment increases NADPH oxidase and other
mediators of ROS. The oxidative stress generated by the NADPH-mediated pathway is
responsible for the alteration of the Nrf2-HO/Nrf2-NQO-1 pathway, which causes damage
in the myocardial cell [16,25,26].

2.1.3. Oxidative Stress and Nrf2 Expression

The leucine zipper protein Nuclear factor erythroid-2 related factor 2 (Nrf2) plays an
important role in antioxidant regulation. Nrf2 is a major transcription factor that regulates
the expression of genes involved in antioxidant and detoxifying enzymes [27,28]. Nrf2
protects against a number of pathological conditions associated with oxidative stress. It
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has been reported that Nrf2 can activate the autophagy-mediated clearance of different
toxic protein aggregates generated due to the secondary effect of ROS formation. The
myocardial cell exposed to CP is responsible for a decrease in Nrf2 expression responsible
for DNA damage, while the excessive release of inflammatory cytokine levels is responsible
for inflammation and death of myocardial cells [13].

2.1.4. Endoplasmic Reticulum Stress Associated with CP

Oxidative stress and damage of mitochondria associated with CP administration
generates a tremendous amount of stress in the myocardial endoplasmic reticulum. The
toxic metabolite of CP acrolein contributes to the generation of ER stress, apoptosis, and
the alteration of calcium homeostasis [21]. The imbalance of calcium homeostasis is mainly
due to alterations in calsequestrin and the enzyme Ca++ ATPase (SERCA2a) present in the
sarcoplasmic reticulum. As discussed in the previous sections, CP treatment is associated
with the generation of ROS and mitochondrial damage, which may be a prime reason for
the development of excessive stress conditions in the endoplasmic reticulum of myocardial
cells. When these two pathological conditions coexist, they result in altered systolic and
diastolic functions [29,30].

2.1.5. Cyclophosphamide and Nitric Oxide

Different studies have reported the myocardial toxicity of nitric oxide (NO) generated
by several anticancer drugs. CP exposure in the myocardial cell is responsible for an
increase in the formation of NO due to the activity of eNOS and iNOS. On myocardial
cells, eNOS and iNOS have been shown to have both protective and toxic effects [31,32].
The protective effect is due to the formation of NO, but generated NO when reacting
with oxygen free radicals generates peroxynitrite (ONOO−), which is responsible for the
toxic effects on the myocardial cell. It has been observed that iNOS is always associated
with cardiotoxic events, but the effects of eNOS depend on the concentration of O2

−. The
exposure of CP treatment is responsible for the generation of NO and iNOS and causes
the generation of nitrative stress. The generation of nitrative stress causes the induction of
apoptosis by the activation of the p38/JNK cascade pathway [33–35].

2.2. Doxorubicin-Induced Cardiotoxicity

Doxorubicin (DOX) is an anthracycline antibiotic that was first derived from a bac-
terium called Streptomyces peucetius in the early 1960s and was first used as a cytotoxic drug
in 1969 [36,37]. It is a highly successful chemotherapeutic medication for solid tumors, soft-
tissue sarcoma, breast cancer, Hodgkin’s disease, Kaposi’s sarcoma, acute lymphoblastic
leukemia, pediatric leukemia, lung cancer, lymphomas, and various metastatic malignan-
cies [2,38,39]. The drug’s utility is limited owing to its large number of side effects, such as
the suppression of the hematopoietic system, gastrointestinal disturbances, and baldness,
with cardiac damage being the most dangerous [40–42].

The advanced conditions of cancer patients treated with repeated doses of doxorubicin
for more than a month developed severe symptoms of myocardial toxicity with a prevalent
rate of more than 30%. The wide spread of symptoms ranged from ventricular failure, a
decrease in QRS segment, cardiac dilatation, tachycardia (150 beats/min), and hypotension
(blood pressure 70/50 mmHg) [43]. The patients were unresponsive to inotropic drugs
and mechanical circulatory assist devices. Several biomarker levels such as creatine phos-
phokinase, serum glutamic-oxaloacetic transaminase, and lactate dehydrogenase were
also elevated. The histopathological examination reported decreased myofibrils, altered
structure of the sarcoplasmic reticulum, vacuolization of the cytoplasm, mitochondrial
inflammation, and elevated numbers of lysosomes [44,45]. Different experimental animals
such as rats, mice, and rabbits treated with doxorubicin also reported similar symptoms
of myocardial toxicities. The experimental animals in several studies in a reproducible
manner showed the symptoms of cardiomyopathy and heart failure with the exposure of
doxorubicin [46,47].
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Multiple processes are involved in doxorubicin-induced cardiotoxicity, which has
been linked to increased myocardial damage due to oxidative free radicals, as well as lower
levels of sulfhydryl groups and antioxidants. In addition to myofibrillar deterioration and
intracellular calcium dysregulation, doxorubicin-induced cardiac toxicity is known to cause
myofibrillar deterioration [48,49]. Mitochondrial biogenesis is also hypothesized to be
actively involved in doxorubicin-mediated cardiac damage due to its potential to stimulate
the cell death pathway while blocking topoisomerase 2β [50,51]. Alterations in gene
expression of the cardiac system, such as the expression of muscle-specific genes (cardiac
actin, myosin light chain, and muscle creatine kinase), are shown to decrease in response to
doxorubicin exposure in acute doxorubicin cardiotoxicity [52,53]. Endothelial dysfunction,
an activated ubiquitin protease system, autophagy, and cell death collectively participate
in doxorubicin-induced cardiotoxicity, as do NO release, impaired adenosine triphosphate
(ATP) levels, iron regulatory protein (IRP) production, and augmented inflammatory
mediator release [54,55].

2.2.1. Mechanism of Doxorubicin-Induced Cardiotoxicity
Oxidative Stress

The generation of a tremendous amount of oxidative stress associated with DOX is the
main culprit for the degeneration of myocardial cells. The imbalance between reactive oxy-
gen species, reactive nitrogen species, and the intrinsic antioxidant systems is responsible
for the development of oxidative stress. The following are some of the important cellular
mechanisms that are responsible for the development of this oxidative stress [56,57].

A. Altered mitochondrial functions

The mitochondria fulfill the huge oxygen demand of cardiomyocytes. DOX treatment
is responsible for structural changes in the mitochondria responsible for the depletion of
energy production in the form of ATP [58,59].

The inner membrane of mitochondria contains an important component—cardiolipin.
The interaction between cardiolipin and DOX is one of the major events responsible for
cardiotoxicity associated with DOX. DOX and cardiolipin bind irreversibly due to the
cationic charge of DOX and the anionic charge of cardiolipin, resulting in the accumulation
of DOX in mitochondria. Cardiolipin has a major role in electron transport, but due to
the formation of a complex with DOX, the activation of several enzymes is inhibited,
resulting in an altered electron transport chain. Apart from this, DOX-mediated oxidative
phosphorylation also plays an important role in the events of myocardial toxicity [60,61].

B. Fe–Dox complex

The hydroxy and ketone groups of DOX interact with Ferric ion (Fe3+) and form a
complex. This complex interacts with the cell membrane and causes lipid peroxidation and
generates free radicals. DOX is responsible for the accumulation of iron in mitochondria
and initiates the event of apoptosis in the myocardial cell. DOX treatment is responsible
for the inactivation of iron regulatory protein IRP1, and IRP2 and iron are transported
into mitochondria by transport protein Mitoferrin-2. DOX causes the alteration of the
post-translational modification of IRP1 and the recognition of iron-responsive elements is
lost and results in altered iron homeostasis [62,63].

C. Role of NADPH in the generation of ROS

The catalytic activities of the enzymes nicotinamide adenosine dinucleotide phosphate
(NADPH) and mitochondrial NADH dehydrogenase are responsible for the generation
of free radicals. Angiotensin II is responsible for the elevation of NADPH oxidase and
having a pivotal role in the generation of free radicals. DOX treatment is associated with
the incremental genesis of nitric oxide synthase; nitric oxide reductase and P450 reductase
enzymes contribute to the development of oxidative stress in the myocardial cell due to the
formation of reactive oxygen species [64,65].

D. Generation of reactive oxygen species by nitric oxide
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DOX treatment is responsible for the increased synthesis of nitric oxide mediated by
the enzymes neuronal NO synthase, inducible NO synthase, and endothelial NO synthase.
Nitric oxide is found in increased levels in damaged myocardial tissues. Nitric oxide by
lipid peroxidation from peroxynitrite is responsible for the development of oxidative stress
in mitochondria, resulting in necrosis and apoptosis [66,67].

E. Generation of oxidative stress by nrf2

The depletion of Nrf2 protein in DOX treatment is responsible for associated myocar-
dial toxicities. The expression of Nrf2 is responsible for the induction of autophagy and
maintains homeostasis between autophagy and oxidative stress [68].

Apoptosis

Through both the intrinsic and extrinsic pathways, DOX stimulates the apoptosis of
the cardiac muscle cells. DOX toxicity results in an imbalance in various factors including
an increase in oxidative stress, which activates HSF-1 (heat shock factor 1), thereby inducing
HSP-25 (heat shock protein), and subsequently, p53 is equalized, leading to the production
of proapoptotic factors such as Fas, FasL, and c-Myc, which is responsible for cardiac
muscle cell death [69,70]. Another factor responsible for the cardiotoxicity associated
with DOX is DOX-induced cardiotoxicity leading to the depletion of transcriptional factor
GATA-4, which is responsible for regulating the apoptotic pathway via activating the anti-
apoptotic gene Bcl-XL. In addition, DOX-induced cardiotoxicity is also found to increase
active glycogen synthase kinase 3β (GSK3β), which is a negative regulator of GATA-4
in the nucleus [71]. Similarly, a role of TLR-2 (Toll-like receptor-2)-mediated cytokine
production, cardiac dysfunction, and apoptosis by the activation of the pro-inflammatory
nuclear factor-κB (NF-κB) pathway has been observed to be involved in DOX-induced
cardiotoxicity [39]. Some studies showed that DOX-treated murine hearts inhibit Protein
Kinase B (PKB/AKT), which is involved in the regulation of cell survival, proliferation,
and metabolism. AKT is also found to play a critical role in decreasing oxidative stress
via deactivating (GSK3β), which thereby decreases FYN nuclear translocation-mediated
NF-E2-related factor 2 (Nrf2) nuclear export and degradation [72,73].

Necrosis

The various factors involved in the cellular necrosis in cardiomyocytes have typically
been associated with cytoplasm and mitochondrial swelling, plasma membrane rupture,
and coagulated sarcomere. Mitochondrial function disruption could have been attributed
due to the dysregulation of lipid metabolism, the increased mitochondrial calcium level,
and promoted mPTP opening that contributes to mitochondrial swelling and reduction in
used ATP, and thus necrotic cell death is induced. DOX-induced cardiotoxicity has also
been seen to be accompanied by disarray and a loss of myofilaments of the sarcomere since
it is capable of degrading titin (a component of cardiac sarcomere) through the activation
of the proteolytic pathway [74,75].

Pyroptosis

A new form of programmed cell death known as pyroptosis, which is characterized by
cell lysis, cell swelling, and large bubbles blowing from the plasma, which further results in
the release of cell contents and pro-inflammatory molecules, has been found to have been
involved in the DOX-induced cardiotoxicity regulated by the Bnip3–caspase-3–GSDME
pathway [76]. Pyroptosis can usually result in increased inflammation and can cause the
activation of various caspases (caspase-1, caspase-3, caspase-4, and caspase-11 ), and it
is also associated with the activation of NLR family pyrin domain containing 3 (NLRP3),
leading to the cleavage of Gasdermin D (GSDMD) or GSDME and resulting in the rupture
of the plasma membrane, which allows the release of interleukin-1beta (IL-1β) and IL-18,
contributing to cardiac cell damage [77,78].
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Autophagy

DOX treatment has a pivotal role in autophagy. DOX treatment has witnessed both
the induction and inhibition of autophagy reactions. The reduction in the autophagy
reaction is mediated by unc-51-like kinase 1 and AMPK pathways [79,80]. DOX is also
associated with a decrease in GATA4 and Bcl-2 gene expression, whereas a rise in S6 kinase
beta-1 expression can be observed, leading to an increase in autophagy gene expression.
DOX treatment is responsible for the up-regulation of Atg12, Atg4, Atg5, and Bad genes.
DOX-induced cardiomyopathy is associated with the up-regulation of autophagy marker
LC3B. The induction and inhibition of the process of autophagy play an important role in
doxorubicin-induced cardiomyopathy [81,82].

Fibrosis

The pathological process, like fibrosis, is also very common in doxorubicin-induced
cardiotoxicity. DOX treatment is responsible for the development of interstitial fibrosis
and perivascular fibrosis [83,84]. It is evident that the cell culture and animal model
effects of DOX treatment on MMP-1 and MMP-2 genes are associated with the fibrosis
of myocardial tissues. DOX is responsible for the inhibition of collagen synthesis by
inhibiting transcription and translation responsible for the destruction of myocardial cells.
The modulating effects of DOX treatment on phosphor-SMAD3 and transforming growth
factor-beta (TGF-β) are responsible for the activation of the fibrosis signal pathway [85–87].

2.3. Trastuzumab-Induced Cardiotoxicity

This is a monoclonal antibody that is employed for the treatment of breast cancer
patients who concurrently have an elevated human epidermal growth factor receptor 2
(HER2, also known as ErbB-21) level [88]. While therapeutic therapy with trastuzumab
is reported to reduce morbidity and mortality in breast cancer patients, there are serious
cardiac adverse effects that need to be checked [89,90]. HER2 is an important target
for breast cancer and, similarly, a prime target for trastuzumab [91]. However, some
mutant mouse models have documented that there are also some important roles regulated
by ErbB-2 genes, such as in postnatal cardiomyocyte function and development [92].
Similarly, evidence suggests that ErbB-2 genes are involved in the normal functioning of
the myocardium, which includes the involvement of a number of key pathways (such as
phosphoinositide 3-kinase, mitogen-activated protein kinase, and focal adhesion kinase)
that are required for cardiomyocyte maintenance, and the inhibition of apoptosis. Therefore,
the blockade of ErbB signaling by trastuzumab could have been a major reason for its
ability to induce cardiotoxicity [93,94].

However, the risk of developing trastuzumab cardiotoxicity has been seen to increase
in patients who receive concurrent anthracycline therapy [90,95,96]. When trastuzumab
suppresses ErbB2 signaling, it was reported that it further accelerates the anthracycline’s
ability to induce sarcomeric protein breakdown, increasing the chances of cardiac tox-
icity and heart failure [97]. The pathogenesis and molecular mechanism involved in
trastuzumab-induced cardiotoxicity are given in Figure 2 [98].
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Figure 2. Mode of action of trastuzumab and its cardiotoxicity induction.

2.4. Fluorouracil-Induced Cardiotoxicity

5-fluorouracil (5-FU) is a pyrimidine analogue chemotherapy medication employed
in the treatment of a number of cancer types, including colorectal, breast, gastric, pancre-
atic, prostate, and bladder cancers, among others [99,100]. Myelosuppression, diarrhea,
stomatitis, nausea, vomiting, and baldness are common side effects of the medication.
Furthermore, 5-FU has been linked to cardiotoxicity, which includes myocardial infarction,
cardiac arrhythmias, altered blood pressure, left ventricular failure, cardiac arrest, and
sudden death [99]. The potential mechanisms involved in 5-FU-induced cardiotoxicity are
given in Figure 3 [101]. Angina is noticeable mostly during infusions, and occasionally it is
delayed until a few hours after 5-FU application. The incidence of angina associated with
the use of 5-FU ranges from 1.2 to 18 percent [102–105]. Cardiotoxicity that is severe or
life-threatening or ventricular arrhythmias, on the other hand, are far less common, with an
incidence of about 0.55 percent [106]. When compared to anthracyclines, cardiac adverse
effects of 5-FU are rare, with an incidence of 1.2–7.6%, and life-threatening cardiotoxicity of
5-FU has been documented in less than 1% of cases [107]. Though the exact processes of
5-FU-mediated cardiac toxicity are yet unknown, spasm of the coronary artery is suggested
as a hypothesis [64]. Ultrasound and angiography have been used in several investigations
to show that 5-FU infusion causes both coronary and brachial artery vasospasm. Patients
with coronary vasospasm may have ECG findings suggestive of coronary occlusion, such
as ST-segment elevation and biochemical changes in myocardial injury with increased
troponin. As a result, it is recommended that when 5-FU is given to cancer patients, a high
index of suspicion for probable cardiac toxicity be maintained [108].
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Figure 3. Diagrammatic representation of two major mechanisms of 5-fluorouracil-induced cardiotoxicity.

2.5. Cisplatin-Induced Cardiotoxicity

Cisplatin, commonly known as cis-di ammine dichloroplatinum (CDDP), is a highly
effective chemotherapy drug [109]. In diseases such as ovarian and cervical cancer and
testicular cancer, it is used alone or in combination regimens [110]. However, due to
adverse effects, including toxicities to the kidney, liver, and gastrointestinal disturbances,
cisplatin’s clinical use is restricted. Despite these side effects, many survivors of cisplatin
treatment may develop acute or chronic cardiovascular problems, which can negatively
impact their quality of life [111]. CDDP-induced cardiotoxicity has been linked to ven-
tricular and supraventricular arrhythmias, occasional sinus bradycardia, alterations in
electrocardiography, occasional total atrioventricular block, and congestive heart failure.
With cisplatin-based chemotherapy, oxidative stress is considered as a major reason for
cardiac toxicity [112]. It has also been shown that cisplatin-based chemotherapy causes a
decrease in the concentration of different antioxidants in patients. It may also cause ROS
generation by accumulating in mitochondria [113]. However, it has been documented that
all of these factors collectively lead to congestive heart failure and sudden cardiac death.
Table 1 summarizes the adverse cardiotoxic consequences of chemotherapy [114].

Table 1. Different types of cardiotoxic effects of chemotherapeutic agents.

Drugs Causing Ischemia or Thromboembolism
Cisplatin, Thalidomide, Fluorouracil, Capecitabine,

Paclitaxel, Docetaxel, Trastuzumab,
Anthracyclines/Anthraquinones, Cyclophosphamide

Drugs that Cause Hypertension bevacizumab, cisplatin, sunitinib, sorafenib
Tamponade and Endomyocardial Fibrosis busulfan

Autonomic Neuropathy vincristine
Bradyarrhythmias paclitaxel

Myocarditis with Hemorrhage (rare) cyclophosphamide (high-dose therapy)
Pulmonary Fibrosis bleomycin, methotrexate, busulfan, cyclophosphamide

Raynaud’s Phenomenon vinblastine, bleomycin
Torsades de Pointes or QT Prolongation arsenic trioxide
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2.6. Immunotherapy-Induced Cardiotoxicity

With cancer progression, initially, the body’s immune system prevents tumor out-
growth. However, cancer cells can escape the various pathways that provide immunologic
antitumor responses, and such pathways include immune system inhibitory pathways
such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed cell death
ligand 1 (PD-L1), and programmed cell death 1 (PD-1) (natural checkpoints that dampen
the antitumor responses of T cells). Therefore, various studies were carried out to deter-
mine if by stimulating an antitumor immune response in cancer patients, cancer could be
fought better. Since then, immunotherapy came into existence, and this is divided into
passive immunotherapies such as monoclonal antibodies, checkpoint inhibitors, cytokine
therapy, bispecific T cell engager and antitumor vaccines or adoptive T cell transfer, which
dramatically improved outcomes for wide varieties of cancer, among which adoptive T
cell therapy and immune checkpoint inhibitors are most widely used and are used as
longer duration therapy. However, having the benefit of activated immune response came
with a price, as both the therapies have been reported to cause various cardiovascular
complications such as hypotension, arrhythmia, left ventricular dysfunction, myocarditis,
with clinical presentations ranging from asymptomatic cardiac biomarker elevation to heart
failure, and cardiogenic shock [115–119].

2.6.1. Immune Checkpoint Inhibitors and Cardiac Complications

Immune checkpoint inhibitors (ICIs) show their action by amplifying T cell-mediated
immune response against cancer cells, by blocking the intrinsic down-regulators of immu-
nity, such as programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1),
and cytotoxic T-lymphocyte antigen 4 (CTLA-4). These immune checkpoint inhibitors can
induce tumor responses in different types of tumors including non-small cell lung cancer,
renal cancer, melanoma, and Hodgkin’s disease. Although ICIs have brought improvement
in the treatment of many aggressive malignancies, several studies have reported that PD-1
deletion and CTLA-4 inhibition can cause serious cardiac complications. When an experi-
ment was carried out in a mouse model, it was reported that with the loss of the PD-1 or
CTLA-4 receptor, significant infiltration of CD4+ and CD8+ T cells took place, resulting in
the development of a dilated cardiomyopathy. However, the exact mechanism underlying
cardiac toxicity associated with checkpoint inhibitors has not been studied comprehen-
sively, and immune-mediated myocarditis could also be the exaggerated adaptive immune
response against shared epitopes in the myocardium and tumor cells [120–124].

2.6.2. CDK4/6 Inhibitors

Cyclins have a major role to play in regulating the cell cycle. They show their activity
by interacting with their partner serine/threonine CDKs (cyclin-dependent kinases). There
are different types of CDKs available. CDKs 1–6 have a major role in coordinating cell
cycle progression, whereas CDKs 7, 8, and 9 show downstream effects as transcriptional
regulators. Among all the CDKs, the major target in cancer therapy is CDK 4/6, since
it is required for the initiation and progression of various malignancies and is usually
hyperactive in cancers [125,126]. CDKs generally help in regulating the cellular transition
from G1 phase to S1 phase in the cell cycle, and the inhibitors (CDK 4/6 inhibitors) show
their action by blocking the proliferation of cancer cells by effectively inducing G1 cell
cycle arrest. However, CDK inhibitors have been seen to cause cardiac complications. One
major concern about the use of CDK inhibitors is that they have been seen to potentially
increase the QTc interval, which is most commonly seen with ribociclib. Some studies
showed that ribociclib is capable of down-regulating the expression of KCNH2 (which
encodes for the potassium channel Herg) and up-regulating the expression of SCN5A and
SNTA1 (which encode for the sodium channels syntrophin-α1 and Nav1.5), which are the
genes associated with long QT syndrome. There is also evidence that shows the increasing
risk of thromboembolic events with the use of CDK inhibitors. However, there are limited
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data available regarding the cardiac safety of CDK 4/6 inhibitors. Therefore, it requires
detailed investigation to understand the exact mechanism [127,128].

2.6.3. VEGF Inhibitors

Anti-VEGF agents are novel drugs recently introduced in the treatment of different
types of cancer. These drugs are responsible for the inhibition of angiogenesis induced
by cancer tissues. VEGF is responsible for maintaining the integrity of blood vessels.
Therefore, long-term systemic administration of anti-VEGF as anticancer therapy can cause
several side effects. Cardiovascular side effects such as hypertension and the impairment
of cardiac functions are well documented with the treatment of anti-VEGF drugs [129].

Patients who are under the therapy of bevacizumab reported the symptom of hyper-
tension with a prevalence rate of 32%, whereas for sunitinib treatment it was 28% in the
phase II clinical trial and 15% in the phase III clinical trial. Patients who are under the
therapy of sorafenib report an incidence rate of 17% [130].

The prime mechanism behind the hypertension associated with anti-VEGF agents
is the reduction in nitric oxide (NO) synthesis by the walls of arterioles. NO synthesis is
mediated by the up-regulation of endothelial NO synthase, and anti-VEGF agents cause a
decrease in NO synthesis. The decrease in NO synthesis results in vasoconstriction and
promotes peripheral resistance resulting in hypertension [131].

Altered cardiac functions are also evident in patients under the treatment of anti-
VEGF agents such as sunitinib or sorafenib. A total of 15% and 11% of patients who
received sunitinib and sorafenib, respectively, for the treatment of renal cancer developed
decreased left ventricular ejection. In a randomized phase III trial, 2.9% of patients under
the therapy of sorafenib for the treatment of advanced renal cancer developed cardiac
ischemic conditions. In an animal model, mice treated with the ectodomain of VEGFR-1
for 2 weeks reported a 32% decrease in cardiac output [132].

2.6.4. Chimeric Antigen Receptor (CAR) T Cell Therapy

Although CAR T cell therapies have been reported to have robust clinical efficacy in
hematological malignancies, similarly, their treatment-related comorbidities are increas-
ingly becoming a measure of concern. CAR T cell therapy has usually been found to have
been accompanied by toxicities, among which the most common one is CRS (cytokine
release syndrome). CRS involves symptoms such as high fever, malaise, fatigue, and
anorexia, and it has been seen to cause toxicities in various organs as well, such as the
cardiovascular system, nervous system, respiratory system, gastrointestinal tract, hepatic
system, hematological system, and the renal system, as shown in Figure 4. From all the
other adverse effects associated with CAR T cell therapy, cardiovascular events were seen
to occur in between 10 and 36% of the patients, ranging from arrhythmia, tachycardia, hy-
potension, and decreased left ventricular systolic function to cardiogenic shock and death.
The various mechanisms associated with cardiovascular complications have been poorly
understood, but they could be multifactorial. The pathophysiology of cardiac dysfunction
with CRS resembles cardiomyopathy during stress and sepsis, likely associated with IL-6
(interleukin-6), which is usually found as a mediator of myocardial depression in cases
of inflammatory and infectious states. However, the onset of cardiac dysfunction can be
either acute or severe, but usually it is reversible [133–135].
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Figure 4. Clinical manifestation of CRS-related toxicities.

3. Genes’ Susceptibility to Cardiotoxicity Induced by Chemotherapeutic Agents

Genes that are responsible for cardiotoxicity are found to have alleles that initiate the
disease. Some of these genes are reactive oxygen species [90], nicotinamide adenine dinu-
cleotide phosphate oxidase [136], P450 oxidoreductase, glutathione S-transferase, renin–
angiotensin system-related genes, titin-truncating variants, histamine N-methyltransferase,
DNA methyltransferase 1, G protein-coupled receptor 35, ultraviolet irradiation resistance-
associated gene, general control nonderepressible 2, eukaryotic initiation factor 2, uncou-
pling protein 2, B-cell lymphoma-2, catalase, hyaluronan synthase 3, superoxide dismu-
tase, T cell leukemia/lymphoma 1A, human leukocyte antigen, Toll-like receptor 2 and
9, heme oxygenase-1, carbonyl reductase, carbonyl reductase 1 and 3 [137,138], ERBB2
genes, CUGBA Elav-Like Family Member 4, Retionic Acid Receptor Gamma, Solute Carrier
Family 28 Member 3, and UDP-Glucuronosyltransferase 1–6 [139].

3.1. ErbB2 Gene

ErbB2, also known as HER2/Neu, is a membrane receptor that belongs to the ErbB1,
ErbB3, and ErbB4 families of epidermal growth factor receptors. It is generally activated by
interacting (dimerizing) with another ErbB receptor once that receptor is triggered by a
ligand. To date, six monoclonal antibody-based therapeutics such as cetuximab, necitu-
mumab, panitumumab, trastuzumab, pertuzumab, and ado-trastuzumabemtansine and
five tyrosine kinase inhibitors (TKIs) such as erlotinib, gefitinib, lapatinib, vandetanib, and
afatinib that target ErbB family members are recognized by the US FDA for clinical use [140].
ErbB2’s clinical link with the functioning of the heart was reported in a study where 27%
of the patients who received doxorubicin and anti-ErbB2 (trastuzumab/herceptin) for
breast cancer with overexpression of ErbB2 subsequently developed synergistic cardiac
toxicity. According to certain studies, when trastuzumab is given after anthracyclines, the
chances for cardiac toxicity are enhanced, resulting in a substantial decrease in left ven-
tricular ejection fraction (LVEF) in around 25% of patients or symptomatic heart failure in
0.8–4.0 percent of patients [141]. When an experiment was conducted to better understand
the effect of ErbB2 in adult heart mutant mice with a cardiac-restricted removal of ErbB2,
these ErbB2 mutants showed a number of signs of dilated cardiomyopathy, including
chamber dilation, wall thinning, and decreased contractility. Because these genes are also
important in the maintenance of normal cardiac activity, treatment with trastuzumab and
other monoclonal antibodies in a patient with overexpression of ErbB2 resulting in cardiac
dysfunction has been linked to the suppression of the ErbB2 gene [142].
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3.2. NOX2

The two forms of Nox enzymes, Nox2 and Nox4, are excessively shown in the mam-
malian heart. The activation of Nox2 is generally carried out by angiotensin II, endothelin-1,
tumor necrosis factor-β, growth factors, and mechanical force. Several studies have re-
ported Nox2-dependent ROS generation mediating congestive heart failure [143]. Although
the antibiotic doxorubicin (DOX) is a commonly used and effective first-line cancer treat-
ment, it can cause cardiotoxicity, which is linked to a rise in myocardial reactive oxygen
species generation (ROS). Recent research suggests that ROS produced by Nox2 NADPH
oxidase plays a role in essential pathways causing cardiac dysfunction caused by chronic
DOX therapy [144,145]. Although the significance of Nox2 NADPH oxidase in cardiac
damage caused by doxorubicin has not been confirmed to date, doxorubicin has been
shown to enhance myocardial NADPH oxidase in vivo and to stimulate MMP-2 function
and apoptosis in vitro through the NADPH oxidase-dependent activation of c-Jun NH2-
terminal kinase (JNK)/extracellular signal-regulated kinase (ERK) and hydrogen peroxide.
Further, doxorubicin increases the synthesis of various recognized triggers of NADPH
oxidases, which are critical in cardiac remodeling [146,147].

3.3. CBR Gene

Carbonyl reductase (CBR) is an oxidoreductase protein that is a part of the short-
chain dehydrogenase reductase (SDR) family [148]. The conversion of anthracyclines
to secondary alcohol metabolites (i.e., doxorubicinol, daunorubicinol) catalyzed by CBR
has been suggested as a possible mechanism of anthracycline cardiotoxicity [149,150].
The well-known cardiomyopathy linked to anthracycline (doxorubicin) treatment was
examined in vitro and ex vivo, indicating that the C-13 hydroxy metabolite doxorubicinol
may play a crucial role in the development of DOX-induced cardiotoxicity. When mice with
overexpression of human CBR were used in an experiment, there was a high frequency of
the development of cardiac toxicity when compared to normal animals [63]. According to
certain studies, a single nucleotide polymorphism (SNP) in CRB can affect the enzyme’s
pharmacokinetics and toxicity [151,152].

3.4. TTN Gene

The use of doxorubicin in breast cancer therapy was responsible for developing
familial and sporadic dilated cardiomyopathy due to the altered TTN gene. Linschoten
et al. in their study observed two women who suffered from heart failure after months of
receiving anticancer therapy. The genetic screening study witnessed mutations in TTN,
encoding the myofilament titin responsible for the occurrence of heart failure [153].

3.5. G Protein-Coupled Receptor 35 (GPR35)

The overexpression of GPR35 is responsible for a significant reduction in cell viability
and altered morphological changes in cardiomyocytes. Ruiz-Pinto et al. observed the
treatment of anthracyclines in 83 cancer patients and found a strong association between
chronic ACT treatment and GPR35. This treatment protocol was associated with severe
symptomatic cardiac presentation [154].

3.6. CELF4, RARG, SLC28A3, UGT1A6

Anthracycline treatment witnessed clinically significant cardiac toxicity due to a
generic polymorphism in CELF4, RARG, SLC28A3, and UGT1A6 genes responsible for
alterations in anatomical and physiological characteristics of the sarcomere, the expression
of topoisomerase-2β, the transportation of drugs, and the biotransformation of drugs,
respectively [155].

4. Radiation Therapy-Induced Cardiotoxicity

Cardiovascular harm can occur even when the heart is only partially exposed to
radiation therapy. CHF, restrictive cardiomyopathy, coronary artery disease, valvular
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heart disease, constrictive pericarditis, and pericardial effusion are all conditions that
affect the heart [156]. However, the chances of cardiac toxicity are found to be higher
in patients undergoing radiation therapy along with the contemporary administration
of chemotherapeutic agents [157]. Radiation therapy is used to treat diseases such as
lymphoma, breast cancer, thymoma, high and low respiratory tracts, and esophageal
and gastric lesions, among others. Radiation therapy-induced heart disease, on the other
hand, was most typically detected after radiotherapy for malignant tumors in the chest,
particularly left breast cancer [158]. Breast cancer is one of the most frequent cancers in
women, impacting women all over the world. Radiation therapy is now considered as part
of the standard care among the different therapies used to treat breast cancer as it is found
to reduce mortality. However, long-term cardiotoxicity in breast cancer patients under
radiation therapy has been linked to a range of 1.2 to 3.5 times greater chances of cardiac
toxicity due to higher exposure to the heart. The mechanism underlying radiation therapy-
induced cardiotoxicity is unknown, although it is thought to entail the development of
inflammation, which leads to endothelial dysfunction, microvascular alterations, and the
acceleration of the atherosclerotic process in coronary vessels. Various studies are working
on preparing appropriate dose limitations for the heart and developing approaches that
can reduce the potential cardiotoxic effect of radiation therapy [159].

5. Role of Herbs as Antioxidants in the Inhibition of Anticancer Drug-Induced
Cardiac Toxicity

The utilization of herbs and herbal-based therapy against several disease conditions is
gaining popularity throughout the world due to its potency and apparent safety profile.
Traditional healers are using plant-based therapy from ancient times to deal with several
clinical manifestations. The potent phytoconstituents present in different parts of plants
have a strong antioxidant capacity. To deal with severe drug-induced toxicities such as
anticancer drug-induced organ toxicities, natural antioxidants obtained from plant sources
are found to be very beneficial (Table 2). Different preclinical studies reported significant
protective activity against anticancer drug-induced organ toxicities [14].

Table 2. Role of medicinal herbs and their active constituents against cardiac toxicity due to anticancer drugs.

References Animals Used Method and Intervention Major Findings

Bhatt et al. [12] Wistar rats

Rats were exposed to CP toxicity with
the dose of (200 mg/kg, i.p.) on day 1
of the treatment protocol. The animals

were treated with 100 mg/kg of
mangiferin for 10 days.

The treatment with mangiferin
restored serum biomarker enzymes,

antioxidant levels, lipid profile,
electrocardiographic parameters, and

histological score and mortality.

Ayza et al. [16] Sprague Dawley rats

Rats were exposed to CP toxicity with
the dose of (200 mg/kg, i.p.) on day 1
of the treatment protocol. The animals

were treated with 100 mg/kg of
mangiferin for 10 days.

The crude extract and ethyl acetate
and aqueous fractions of Croton

macrostachyus exhibited in vitro free
radical scavenging activities in DPPH

free radical scavenging assay. The
treatment also restored serum

biomarker enzymes, lipid profile, and
histological score.

Qin et al. [32] Wistar rats

Rats were exposed to CP toxicity with
the dose of (07 mg/kg, i.p.) on day 6 of

the treatment protocol. The animals
were treated with 5, 15 and 45 mg/kg

of resveratrol for 10 days.

Resveratrol treatment reported
synergistic antineoplastic activity

with cisplatin to A549
adenocarcinoma cells. Resveratrol

treatment in a dose-dependent
manner restored blood pressure,

heart rate, serum biomarker enzymes,
tissue antioxidant level, and

histopathology of myocardial cell
against CP-induced cardiotoxicity.
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Table 2. Cont.

References Animals Used Method and Intervention Major Findings

Bahadır et al. [103] Wistar rats

Rats were exposed to cisplatin toxicity
with the dose of 5 mg/kg/week for two
weeks. The animals were treated with

curcumin (200 mg/kg) and
beta-carotene (100 mg/kg)

Curcumin and beta-carotene reported
significant improvement in tissue
antioxidant levels, tumor necrosis

factor-α, interleukin-1β, and
interleukin-6 against

cisplatin-induced cardiotoxicity.

El-Hawwary et al.
[106] Wistar rats

Rats were exposed to cisplatin toxicity
with the dose (2 mg/kg/day) for

1 week. The animals were treated with
ginger (500 mg/kg) for 12 days.

Ginger treatment reported significant
restoration of cardiac histology

ultrastructure and a decrease in P53
and TNF-α immune expressions and

creatinine kinase and lactate
dehydrogenase levels against

cisplatin-induced cardiotoxicity.

Ahmed et al. [157] Wistar rats

Rats were exposed to cisplatin toxicity
with the dose of doxorubicin

(25 mg/kg i.p.) on 7th day. The animals
were treated with methyl gallate (150

and 300 mg/kg) for 7 days.

Methyl gallate treatment restored
ECG recording, serum biomarkers,

and tissue antioxidant and lipid
profile levels against

doxorubicin-induced cardiotoxicity.

Birari et al. [158] Wistar rats

Rats were intoxicated with a dose of
(6 mg/kg, i.p.) with doxorubicin on

alternate days (cumulative dose
30 mg/kg). The rats were treated with
aloin as aqueous solution (1, 5, 25 and

125 mg/kg, p.o., once a day)

Aloin treatment restored ECG
tracings and tissue antioxidant levels

and reduced the levels of
proinflammatory cytokines TNF-α,

IL-1β, and IL-6 against
doxorubicin-induced cardiotoxicity.

Hu X et al. [159] C57BL/6 mice

Mice were administered with
doxorubicin with a dose of (15 mg/kg,
i.p.). Mice were treated with asiatic acid
(10 mg/kg and 30 mg/kg) two weeks

before doxorubicin treatment

Asiatic acid treatment restored
echocardiographic and tissue
antioxidant level. Asiatic acid
reduced oxidative stress and

apoptosis induced by doxorubicin by
AKT signaling pathway.

Meng et al. [160] C57BL/6 mice

Mice were administered with
doxorubicin with a dose of (15 mg/kg,
i.p.). Mice were treated with geniposide
(25 mg/kg and 50 mg/kg) for 10 days,

which was started three days before
doxorubicin treatment.

Geniposide witnessed
cardio-protection against

doxorubicin-induced cardiotoxicity
by the activation of AMP-activated

protein kinase α.

Zhang et al. [161] C57BL/6 mice

Mice were treated with doxorubicin
with a dose of (20 mg/kg, i.p.). Mice

were treated with oroxylin A for
10 days, which was started five days

before doxorubicin treatment

Oroxylin A treatment restored
oxidative damage and reduced
inflammation accumulation and

myocardial apoptosis in vivo and
in vitro. Oroxylin A showed

protection by activation of sirtuin 1
signaling pathway via the
cAMP/protein kinase A.

6. Proposed Future Hopes

The wide availability of different potential phytoconstituents such as catechins,
flavonoids, anthocyanin, flavones, isocatechins, and isoflavones means that they are poten-
tial candidates for relieving free radical stress mediated by oxygen free radicals [16].

Polyphenolic compounds have the capacity to inhibit vasoconstrictor endothelin-
1 present in endothelial cells and inhibit angiogenesis in smooth muscle cells by the
down-regulation of endothelial growth factor and matrix metalloproteinase-2 [162–164].
Polyphenols are also responsible for the reduced production of cytokines associated with
inflammation and vascular adhesion [165].
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Apart from antioxidant capacity associated with phenolic compounds and flavonoids,
they also have potential action on different enzyme systems such as lipoxygenase, matrix
metalloproteinases, cyclooxygenase, xanthine oxidase, angiotensin-converting enzyme,
cytochrome P450, and proteasome, which have very important roles in signal transduction
pathways. Flavonoids also have a role in drug transport at the cellular level. These targets
can be utilized to develop strategies for anticancer drug-induced myocardial toxicities [166]
(Table 3).

Table 3. Different agents under trial for anticancer drug-induced cardiac toxicity [166].

Title Drugs under Trial Phase Justification of the Study

Anticancer Drug-Induced Cardiac
Toxicity in High-Risk Patients

(NCT00292526)
Enalapril Phase 4

The patients who received chemotherapy
experienced an elevation of troponin I

responsible for development of left ventricular
dysfunction and altered cardiovascular

functions. The activation of renin–angiotensin
system is responsible for development of several

myocardial dysfunctions and resulted in
chemotherapy-induced cardiotoxicity (CTIC).

This study found the effect of ACE inhibitors in
the prevention of CTIC in high-risk

cancer patients.

Protective Effects of the
Nutritional Supplement

Sulforaphane on
Doxorubicin-Associated Cardiac

Dysfunction (NCT03934905)

Sulforaphane as
supplement Phase 2

Sulforaphane (SFN) is responsible for activation
of transcription factor Nrf2 and induces defense
mechanisms in normal cells. SFN was shown to

inhibit carcinogenesis and metastases and
increase the sensitivity of cancer cells

to doxorubicin.

Cardiotoxicity Prevention in
Breast Cancer Patients Treated
with Anthracyclines and/or
Trastuzumab (NCT02236806)

Bisoprolol and
ramipril Phase 3

This study showed a protective effect of beta
blockers and ACE inhibitors against breast

cancer patients treated with anthracyclines with
or without trastuzumab.

STOP-CA (Statins TO Prevent the
Cardiotoxicity from

Anthracyclines) (NCT02943590)
Statins Phase 2

This study demonstrated the protective effect of
atorvastatin, a drug used in the treatment of
hyperlipidemia against doxorubicin-induced

cardiac damage.

Carvedilol Effect in Preventing
Chemotherapy-Induced

Cardiotoxicity (NCT01724450)
Carvedilol Phase 3

This research found the preventive effect of
carvedilol against chemotherapy-induced

cardiotoxicity in breast cancer patients.

Prevention of
Chemotherapy-Induced

Cardiotoxicity in Children with
Bone Tumors and Acute Myeloid

Leukemia (NCT03389724)

Captopril Phase 3

This study found the protective effect of
captopril against chemotherapy-induced

cardiotoxicity in children with bone tumors and
acute myeloid leukemia.

7. Conclusions

This article provides a comprehensive overview of the incidence of cardiotoxicity
caused by commonly used chemotherapeutic and immunotherapeutic drugs, susceptible
genes, and radiation therapy, and the protective role of antioxidants and other treatments
as future expectations to combat anticancer cardiotoxicities. Cardiac toxicity is the most
common adverse effect of practically all anticancer medications currently on the market,
including anthracyclines, inhibitors of the epidermal growth factor receptor type 2 (anti-
HER2), and antimetabolites. Apoptosis, autophagy, increased oxidative stress, and the
inhibition of heart contractile function are among the mechanisms behind the negative
effects on the cardiovascular system. Immunotherapy, which includes T cell therapy and
immune checkpoint inhibitors, is also associated with a significant level of cardiotoxicities.
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Radiation therapy, responsible for augmenting inflammatory reactions, also contributes
to the events of myocardial toxicity. The antioxidants obtained from herbal sources were
found to be beneficial to curb anticancer drug-induced cardiotoxicities. Cardiotoxicity
due to anticancer therapy needs to be kept in mind as an essential factor that can negate
the positive outcomes of the anticancer regimen and may impact the prognosis and pos-
sible recovery of the patient. Indeed, this poses a challenge for health care professionals
dealing with patients, particularly oncologists and cardiologists, and especially when new
anticancer agents with significant anticancer potency fail to show a good safety index. Reg-
ular examination of patients for possible cardiac toxicity is an essential step to alleviating
the development of later stage complications. Additionally, there is a need to conduct a
thorough examination of each drug’s cardiotoxicity mechanisms, which would aid in the
development of appropriate cardioprotective strategies.
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