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IGFBP-2 (1) has been described as a brain tumor oncogene (2) and is widely expressed
in cancers from different origins (3–8). IGFBP-2 alone cannot cause malignant transforma-
tion, yet progression of brain tumors to higher grade (9) and also has been provided as a
protective element in earlier stages of multistage colon carcinogenesis (10). Therefore, it
is crucial to understand the factors that determine expression patterns of IGFBP-2 under
normal and malignant conditions.The present review provides a comprehensive update of
known factors that have an impact on expression of IGFBP-2.
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INTRODUCTION
Shortly after the identification of IGFBP-2 (1), it was realized that
its expression both in liver and ovary is induced by E2 (Table 1) in
hypophysectomized rats (11). Notably, hypophysectomy increased
IGFBP-2 mRNA levels in the liver but decreased IGFBP-2 gene
expression in the ovary. In the following 10 years of IGFBP-2
research, particular interest was taken in the somatotropic con-
trol of IGFBP-2 (8). However, it also was realized soon, that the
gonadotropic axis may play a particular role in the control of
IGFBP-2 expression (12). Just recently, Foulstone and cowork-
ers have identified a feedback loop between IGFBP-2 and the
ERa (estrogen receptor-alpha), whereby both factors can mutually
induce gene expression of each other (13). This particular finding
further underlined the current need for a detailed meta-analysis
that is dedicated to the question which factors presently are known
to control expression of IGFBP-2?

IGFBP-2 PROMOTER REGION
First of all, tissue- and stage-specific expression patterns of IGFBP-
2 are defined by endogenous stimulatory or repressor promoter
elements within the IGFBP-2 gene. The promoter region of the
gene encoding IGFBP-2 contains putative Sp1 binding sites (1,
85–87), potential response elements for E2 and P4 receptors, and
overlapping sequences for albumin D-box binding (88). Kwak et al.

Abbreviations: AR, androgen receptor; AKT, protein kinase B; DHEA, dehy-
droepiandrosterone; E2, 17β-estradiol; ER, estrogen receptor; FSH, follicle stimulat-
ing hormone; GH, growth hormone; GHR, GH receptor; IGF, insulin-like growth
factor; IGFBP, IGF binding protein; IGF1R, IGF-I receptor; LH, luteinizing hormone;
mTOR, mammalian target of rapamycin; PTEN, phosphatase and tensin homolog;
P4, progesterone; T, testosterone.

have studied the structural basis for the stage-specific expression
of IGFBP-2 in the porcine endometrium during pregnancy and
identified two novel cis-elements in the promoter region of the
IGFBP-2 gene (89). In this study, an endometrial 34-kDa nuclear
binding protein was characterized with potential repressor func-
tions for IGFBP-2 gene expression. These might confer site- and
stage-specific expression of IGFBP-2 during pregnancy. Further-
more, a distal enhancer-like region, identified earlier in hepatic
HepG2 cells (90) is active in the porcine endometrium (89). Four
putative binding sites for NF-kB have been identified in lung alve-
olar epithelial cells isolated from rats that were exposed to oxygen
(73). This finding by Cazals and coworkers may provide the func-
tional basis for the effects of hyperoxia or hypoxia on IGFBP-2
expression described so far (74–76, 81). In small cell lung can-
cer cell lines, a proximal E-box was identified that binds NeuroD
and thereby induces IGFBP-2 expression (77). In 11 out of 12
primary small cell lung cancer tissues assessed, the IGFBP-2 pro-
moter was present in an unmethylated form, which confers higher
gene expression in comparison with other histological subtypes
(77). Since NeuroD is expressed also in other neuroectodermal
cells, NeuroD-dependent induction of IGFBP-2 expression was
discussed also for retinoblastomas, medulloblastomas, or neurob-
lastomas (77). However, also prostate carcinoma cells are known to
express NeuroD (91) and, as discussed further down, also IGFBP-
2. In human breast cancer cells (MCF-7), Mireuta and coworkers
could demonstrate that the proximal promoter region of IGFBP-2
is activated by an IGF-I/PI3K/AKT/mTOR-dependent manner via
an increase of nuclear Sp1 (44). The authors discussed the poten-
tial use of Sp1 inhibitors particularly in cancers that highly express
IGFBP-2. Two potential androgen binding sites have been iden-
tified via bioinformatic analysis of the region upstream from the
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Table 1 | Cell- and tissue-specific control of IGFBP-2 expression in vertebrates.

Tissue/cell type Species Factor Effect Reference

Brain ch Fasting − (14)

Astroglial cells ra IGF-I/II, insulin + (15)

Cortex rat E2, lithium − (16, 17)

Hippocampus ra, mo E2 + (18, 19)

ctd ra Stress − (20)

Hypothalamus ra E2 + (21, 22)

Pituitary ov, pi, ra E2 + (18, 23–25)

Ovaries ra, mo DES, SSAT + (11, 26)

Follicle bo, ov, ho, FSH, P4 GHRH, leptin + (27–29)

ctd fi Leptin, E2, FSH, insulin + (30–32)

ctd hu A, LH, activin, IFγ + (33, 34)

ctd bo, fi PGF2a, IGF-I, E2 − (27, 35, 36)

Uterus pi, ra, mo P4, relaxin, E2, SSAT + (26, 37–39)

Endometrium hu, ap E2, P4 + (40–42)

Vagina mo E2 + (43)

Breast hu, mo, ra IGF-I/PI3K, E2 + (43–45)

Cancer hu IGF-I/PI3K, E2, P4 + (46–48)

Cancer hu, ra E2 − (49–51)

Prostate ra, hu Antiandrogen + (52, 53)

Stromal hu T and DHT + (54)

Cancer hu DHEA, T, DHT, E2 + (55, 56)

Cancer hu A, vitamin D − (57–60)

Leydig cells ra hCG − (61)

Liver ra, mo DES, SSAT, leptin, fasting + (11, 26, 62–67)

ctd ov, ra T, insulin − (68–70)

Bone ra Mechanical loading + (71)

Kidney hu, mo IGF-I, SSAT + (26, 72)

Lung hu NF-kB, NeuroD, RA, O2 + (73–77)

Cancer hu IGF-I + (78)

Spleen ra GH + (79)

Colon hu Vitamin D − (80)

Retina ra O2 + (81)

Gizzard ch Insulin − (67)

Fin fi Androgen + (82)

Myoblasts mo IGF-I + (83)

Fibroblasts hu E2 + (84)

hu, human; ap, ape; pi, pig; ov, ovine; bo, bovine; ra, rat; mo, mouse; co, cony; ch, chicken; fi, fish; E2, estradiol; P4, progesterone; DES, diethylstilbestrol; SSAT,

spermidine/spermine N1-acetyltransferase; FSH, follicle stimulating hormone; GHRH, GH releasing hormone; PGF, prostaglandin F; DH/T, dihydro/testosterone; DHEA,

dehydroepiandrosterone; RA, retinoic acid; LH, luteinizing hormone; IFγ, interferon gamma; hCG, human chorionic gonadotropin; ctd, continued.

IGFBP-2 transcription initiation site that may explain the effects of
androgen treatment on IGFBP-2 gene expression as demonstrated
in prostate cancer cells (57, 58).

CONTROL OF IGFBP-2 EXPRESSION IN THE BRAIN
More than 20 years ago, Pons and Torres-Aleman found that E2
significantly increases protein levels of IGFBP-2 in cultures of
hypothalamic neurons isolated from rats (21). In vivo, application
of E2 to ovariectomized rats also increased IGFBP-2 immunoreac-
tivity in tanycytes and other ependymal cells of the hypothalamus
(22). On the other hand, P4 led to reduced IGFBP-2 protein levels
in the apical membrane of tanycytes in the same model. In both
reports, functional interaction of steroids and the IGF-system was

discussed. Also in the anterior pituitary glands from sheep (23),
pigs (24), or rats (25) E2 increased IGFBP-2 levels. A positive
effect of E2 on IGFBP-2 mRNA expression was present in MtT/S
and GH3 cell lines established from rat pituitary adenomas (18).
Notably, E2 seems to be permissive for steady state IGFBP-2 lev-
els in the anterior pituitary since reduction of estrogens by use
of anastrozole in boars decreased expression of IGFBP-2 (92). In
contrast, DHEA increased IGF-I expression in the hypothalamus
of rats but did not affect expression of IGFBP-2 (93). Estradiol fur-
ther increased expression of IGFBP-2 mRNA in the hippocampus
of ovariectomized rats (18) or in the hippocampus from normal
mice 1 h after injection (19). Interestingly, also mice subjected
to neonatal isolation had reduced hippocampal IGFBP-2 mRNA
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expression in adulthood when exposed to restraint stress (20).
During hormone replacement therapy, E2 downregulated IGFBP-
2 mRNA in the frontal cortex of ovariectomized rats (16). IGFBP-2
mRNA expression was robustly down regulated also by lithium in
primary cell cultures from rat cortices (17).

The important role of IGFBP-2 in malignant brain tumors, par-
ticularly glioblastoma, has already been mentioned. Reactivation
of IGFBP-2 expression in glioblastoma multiforme was discussed
in a context of defect astrocyte differentiation and PI3K/AKT
activation (94–96). Conversely, a stable knockdown of IGFBP-2
resulted in decreased invasiveness, decreased saturation density of
the cells in vitro, and decreased tumorigenicity in nude mice (97).

A strong inverse relationship between elevated IGFBP-2 lev-
els and low p16INK4a indicates a negative regulatory function of
p16INK4a for IGFBP-2 (98) similar to the negative correlation
of IGFBP-2 mRNA and PTEN expression levels found both in
glioblastomas and prostate cancers, implicating IGFBP-2 as a bio-
marker for PTEN status (95). This may be in concordance with an
observation of E2-induced apoptosis of glioblastoma cells (99).
The inverse relationship between IGFBP-2 and PTEN expression
is not restricted to malignant cells and has been described also
during osteoclast differentiation (100).

CONTROL OF IGFBP-2 EXPRESSION IN FEMALE
REPRODUCTIVE TISSUES
Hormone replacement therapy over 15 months to postmenopausal
women revealed a negative effect of E2 on serum IGFBP-2 concen-
trations (101). Also in human adolescents with constitutional tall
stature, E2 reduced serum IGFBP-2 concentrations 3 and 6 months
after starting the therapy (102). In contrast, in aged women and
men supplementation of sex steroids over a period of 6 months
revealed no effect of a hormone replacement therapy or testos-
terone on IGFBP-2 serum levels (103). In human granulosa cells,
LH, activin, and interferon gamma increased expression of IGFBP-
2 (33) and insulin and androstendione increased secretion of
IGFBP-2 into cell conditioned media (34). After the preovulatory
surge of LH, when steroid levels are low, an inverse relation-
ship between follicular IGFBP-2 concentrations and steroid (E2,
androstendione and P4) concentrations has been described in
sows already in 1992 (104). FSH increased whereas prostaglandin
F2a decreased IGFBP-2 concentrations in bovine ovarian follicular
fluid and low levels of IGFBP-2 in E2-active follicles suggested a
role of IGFBP-2 for aromatase activity (27). By contrast, P4 treat-
ment in cattle increased protein levels of IGFBP-2 in follicular
fluids (28). In equine granulosa cells, both E2 and FSH induced
expression of IGFBP-2 in vitro (30). Furthermore, in follicles, also
the GH/IGF axis is involved in the control of IGFBP-2 expres-
sion. Application of growth hormone releasing hormone in cattle
increased IGFBP-2 in the circulation and in the fluid from subor-
dinated but not from dominant follicles (29). As described earlier
for E2, also human recombinant IGF-I decreased IGFBP-2 mRNA
expression and protein levels in granulosa cells and the oocytes
from cultures bovine antral follicles in a stage- and dose-specific
manner (35). In addition, granulosa cells from bovine follicles but
not the oocyte have been shown to produce an IGFBP-2 protease
(105). Thus, also IGFBP-2 protein stability is under active control
in bovine follicles. Finally, leptin infusion for 3 days in cycling ewes

increased follicular IGFBP-2 mRNA expression although this effect
may be related to other hormones since at the same time insulin
and FSH serum concentrations were increased while those of E2
were reduced (31).

IGFBP-2 secretion is stimulated by E2 and P4 in human
endometrial stromal cells and in endometrial explants from
baboons (40, 41). Short-term E2/P4 treatment of ovariec-
tomized monkeys over 2 weeks increased IGFBP-2 mRNA in the
myometrium in response to E2 and to a higher degree after treat-
ment both with E2 and P4 (42). High amounts of IGFBP-2 mRNA
are found in the porcine uterus (106), which might be related
to the specific IGFBP-2 promoter configuration as summarized
above (88). Progesterone increased gene expression of IGFBP-2
in pig uteri while E2 slightly reduced mRNA levels of IGFBP-
2 (37). Notably, the trophic effects of relaxin administration on
uterine weight in pigs were accompanied by robust increase of
IGFBP-2 as found as a band doublet in uterine flushes (38).
High IGFBP-2 levels in earlier but not in later phases of the
estrus in pigs are potentially due to kallikrein/matrix metallo-
proteases (107). In fact, kallikrein, matrix metalloprotease 3, or
plasminogen activator were sufficient to rapidly degrade IGFBP-
2 in uterine flushes or breast milk from pigs (107) or humans
(108), respectively. Six hours after E2 injection in mice, IGFBP-
2 mRNA expression was increased in the mammary gland but
even more in the vagina (43). Similarly, E2 treatment significantly
increased IGFBP-2 mRNA levels also in uteri of ovariectomized
rats (39). A robust increase of IGFBP-2 gene expression was fur-
ther found in uteri from mice characterized by transgenic sper-
midine/spermine N 1-acetyltransferase (SSAT) expression (26).
Steroid control of IGFBP-2 is also observed in non-mammalian
species as gonadotropin, E2, and P4 were able to increase expres-
sion of IGFBP-2 mRNA in de-yolked follicles from the rainbow
trout (32) whereas E2 decreased IGFBP-2 mRNA expression in
the orange-spotted grouper (36).

CONTROL OF IGFBP-2 EXPRESSION IN BREAST CANCER
CELLS
In human breast cancer cells (MCF-7), IGF-I potently induced
expression of IGFBP-2 (46) and E2 enhanced the effect of IGF-
I with its basal activity being on a lower level if compared to
IGF-I (47). Martin and Baxter further demonstrated that both
the effects of IGF-I and E2 were mediated by the PI3/AKT path-
way since inhibitors of IGF1R, PI3K, and mTOR blocked the
basal effects of IGF-I and E2 (47). Also in mammary glands from
rats, E2 increased mRNA expression of IGFBP-2 mRNA (45),
while in pseudo-pregnant pigs E2 injection did not affect mam-
mary IGFBP-2 mRNA expression (109). In invasive (MCF-7/6) or
in breast cancer cell lines adapted to low serum concentrations
(MCF-7/S0.5) (49, 50) and in Fischer rat mammary adenocar-
cinoma cells (51), E2s suppressed intracellular and/or secreted
levels of IGFBP-2. Nevertheless, secretion of IGFBP-2 was lower in
ER-negative breast cancer cells compared to ER-positive cells indi-
cating a positive or at least a permissive effect of ER on IGFBP-2
expression in mammary cells (110). Therefore, similar to cells from
the brain a synergistic effect of E2 and P4 on IGFBP-2 secretion
was found in breast cancer explants (48). Since this was true only
for hormone-sensitive but not for hormone-insensitive samples,
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it also supports at least a permissive role of ER for the functional
relationships between E2- and P4-signaling on the one hand and
IGFBP-2 expression on the other. Furthermore, IGFBP-2 is highly
expressed by antiestrogen-resistant breast cancer cell lines (111)
and in antiestrogen-resistant RU58R-1 cells, IGFBP-2 expression
was suppressed by E2 but massively stimulated by pure antiestro-
gen (50). Therefore, an indirect effect of E2 and the interaction of
estrogens and IGFs has been suggested (49). In fact, a dedicated
review discusses the crosstalk between IGFs and E2 (112) with
E2 being introduced as an enhancer of IGF-signaling pathways in
breast cancer. This kind of view was further elaborated and thus
supported by the work of Chan et al., who described significant
activation of IGF1R, IRS-1 and -2, AKT, and PI3K in response to
E2 in the rat mammary gland (45).

CONTROL OF IGFBP-2 IN PROSTATE CELLS
In primary human prostate stromal cells and in human prostate
cancer cells (LNCaP), androgens and in part also E2 signifi-
cantly induced IGFBP-2 mRNA expression (54–56). Flutamide,
an androgen receptor antagonist, blocked androgen-dependent
induction of IGFBP-2 expression (54). Also antisense oligonu-
cleotides or antiandrogen treatment reduced gene expression of
IGFBP-2 in LNCaP cells (113). It was speculated, that the effects
of DHT and T are mediated by the AR. Looking at the level
of protein, it was demonstrated that androgen treatment rapidly
decreased IGFBP-2 levels in LNCaP cells (59). Notably, negative
androgen regulation of IGFBP-2 secretion involved extracellu-
lar proteolytic cleavage (59). A reduction of IGFBP-2 proteolysis
in androgen-insensitive prostate carcinoma cells increased the
metastatic potential in that study. Androgen-dependent regula-
tion of IGFBP-2 mRNA expression might be established by means
of the IGFBP-2 promoter specifically, as stated earlier, but also
by an effect on global protein translation: unexpectedly, andro-
gen treatment of prostate carcinoma cells for an extended period
of time (48 h) downregulated the polysomal fraction of mRNA
and thus global protein synthesis (57). Further supporting neg-
ative effects of androgens, castration induced gene expression of
IGFBP-2 in the rat ventral prostate (114). Also antiandrogenic
treatment increased tissue levels of IGFBP-2 in human patients
(52) or in rats (53). Therefore, reports are available that demon-
strate or suggest positive or negative (58) effects of androgens
both on mRNA and protein levels of IGFBP-2 depending on the
physiological condition in prostate cells.

CONTROL OF IGFBP-2 BY GH AND IGFs
Zapf et al. performed the initial study on hormonal control of
IGFBP-2 by GH and IGF-I (115). In this study, GH suppressed
expression of IGFBP-2 while IGF-I increased this particular IGFBP
as demonstrated by Western ligand blotting. Notably, GH sup-
pressed the effect of IGF-I on IGFBP-2 concentration. After devel-
opment of a specific radioimmunoassay by Blum and coworkers
(116), higher levels of IGFBP-2 have been quantified during GH
deficiency and IGF-I administration whereas reduced IGFBP-2
levels were present in acromegalic patients. An inverse relationship
between IGFBP-3 and IGFBP-2 was diagnosed (116), indicating
that GH is a suppressor of IGFBP-2 expression. This finding
was repeatedly confirmed by others and may represent the basis

for altered IGFBP-2 levels during fasting, in aging, or impaired
liver function as suggested, e.g., by Bannink and coworkers (117).
Exogenous GH downregulates IGFBP-2 in humans (117–119),
whereas impaired GH receptor signaling in mice (120) elevated
IGFBP-2 serum levels. Although not confirmed as a rule (121, 122),
the strength of the inverse relationship between GH and IGFBP-2
and its bidirectional nature suggested the use of IGFBP-2 levels as
a biomarker to monitor GH-doping (123) or IGF/IGFBP-3 mis-
use in male and female athletes (124). Interestingly, testosterone
blocked the negative effects of growth hormone on IGFBP-2 levels
in men (103) and in GHR-deficient mice testosterone increased
serum levels of IGFBP-2 (125). Conditional effects of GH have
been described with more suppressive effects on IGFBP-2 levels
in lean versus obese sheep (126). To date, exclusively in the spleen
from juvenile rats exogenous GH stimulated gene expression of
IGFBP-2 in that particular tissue (79).

IGF-I increased IGFBP-2 in human subjects (121, 127), in
human embryonic kidney fibroblasts (72), in human lung adeno-
carcinoma cells (78), in transgenic rabbits (128), in rat astroglial
cells (15), or in mouse C2C12 myoblasts (83). Administration of
pegylated IGF-I in mice increased serum levels of IGFBP-2 up to
30 µg/ml, which corresponds to an increase of 1–2 magnitudes
(129). Positive correlations of serum levels between IGF-II and
IGFBP-2 have been frequently observed, e.g., in human subjects
(116) or in IGF-II transgenic mouse models (130, 131). Thus,
also IGF-II has been considered as a major regulator of IGFBP-2
expression. In the medulla oblongata of IGF-II transgenic mice,
protein levels of IGFBP-2 were 10-fold upregulated if compared
to non-transgenic mice (132). IGF-II also increased secretion of
IGFBP-2 by primary rat astroglial cells (15). An interaction of
IGF-I and estrogens has been discussed in women with anorexia
nervosa (133). In that setting, E2 reduced IGF-dependent increase
of IGFBP-2, which was discussed in a context with higher levels of
free IGF-I in the presence of estrogens.

CONTROL OF IGFBP-2 EXPRESSION BY DIET AND INSULIN
IGFBP-2 has been provided as an antidiabetic and antiobesity pro-
tein by the pioneer work of Wheatcroft and coworkers (134). This
finding was confirmed and leptin was shown also to stimulate
hepatic expression of IGFBP-2 (62). Accordingly, an important
role of IGFBP-2 for metabolic homeostasis has been discussed
(135). On the other hand, in humans serum concentrations of
IGFBP-2 can be increased by protein or carbohydrate intake (136–
138). In addition, also single supplementations, e.g., lycopene in
humans (139), or vitamin D analogs in cancer cell lines (60,
80) can induce or repress IGFBP-2 concentrations. Serum lev-
els of IGFBP-2 were positively associated with insulin infusion in
humans (140) and negatively correlated in dairy cows (141, 142).
With exceptions (121), fasting increased serum levels of IGFBP-2
from humans to chicken and re-feeding normalized high fasting
IGFBP-2 serum levels (130, 143–146). So far, in catfish, fasting
did not affect IGFBP-2 expression (147). Altered serum levels
may be due to hepatic expression of IGFBP-2 mRNA, which is
increased in fasted or diabetic rats (63–66). Also in chicken, fasting
increased IGFBP-2 expression in the liver and gizzard, and insulin
administration decreased IGFBP-2 expression in both tissues (67).
By contrast, in the brain, fasting efficiently reduced expression of
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IGFBP-2 mRNA as shown by Kita and coworkers in chicken (14).
Insulin suppression of IGFBP-2 expression was also observed in
hepatocytes isolated from rats (68, 69). However, dietary control
of IGFBP-2 expression seems to occur also in non-hepatic cells,
since insulin significantly increased mRNA expression of IGFBP-
2 in primary rat astroglial cells (15). Nutritional regulation of
IGFBP-2 also expands into the ovaries from sheep, where dietary
factors (infusion of glucose and glucosamine or lupine supple-
mentation) increased its expression in follicular granulosa cells.
Thereby, higher IGFBP-2 levels correlated with the number of
atretic follicles (148).

SUMMARY AND CONCLUSION
Expression of IGFBP-2 is depending on tropic signals from the
IGF/PI3K pathway, dietary factors, and oxygen. However, in a
wide variety of tissues, steroids have been identified as effectors of
IGFBP-2 expression. Steroids may impact on the level of IGFBP-2
mRNA and protein expression or stability. In addition to repro-
ductive organs particularly within the brain steroids have major
effects on the expression of IGFBP-2. Above all other steroids, E2
appears to have a particular function for the control of IGFBP-
2 levels. Furthermore, in different tissues E2 seems to modulate
IGF-signaling pathways. With respect to IGFBP-2 levels, interac-
tions of GH/IGF-signals and steroid signals seem to exist on the
level of cytosolic signal transduction but also on the level of RNA
transcription within the cell nucleus. Those interactions might
provide novel molecular targets in the prevention or therapy of
malignant or metabolic diseases (2–7). Looking back at 25 years
of IGFBP-2 research, the dominant role of E2 for regulation of
IGFBP-2 activity is intriguing. To date, the understanding of func-
tional interrelations between IGFBP-2 and steroids is likely just in
its beginnings.
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