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In the era of newborn screening (NBS) for severe combined immunodeficiency (SCID)

and the possibility of gene therapy (GT), it is important to link SCID phenotype to the

underlying genetic disease. In western countries, X-linked interleukin 2 receptor gamma

chain (IL2RG) and adenosine deaminase (ADA) deficiency SCID are two of the most

common types of SCID and can be treated by GT. As a challenge, both IL2RG and

ADA genes are highly polymorphic and a gene–based diagnosis may be difficult if the

variant is of unknown significance or if it is located in non-coding areas of the genes that

are not routinely evaluated with exon-based genetic testing (e.g., introns, promoters,

and the 5′and 3′ untranslated regions). Therefore, it is important to extend evaluation to

non-coding areas of a SCID gene if the exon-based sequencing is inconclusive and there

is strong suspicion that a variant in that gene is the cause for disease. Functional studies

are often required in these cases to confirm a pathogenic variant. We present here two

unique examples of X-linked SCID with variable immune phenotypes, where IL2R gamma

chain expression was detected and no pathogenic variant was identified on initial genetic

testing. Pathogenic IL2RG variants were subsequently confirmed by functional assay

of gamma chain signaling and maternal X-inactivation studies. We propose that such

tests can facilitate confirmation of suspected cases of X-linked SCID in newborns when

initial genetic testing is inconclusive. Early identification of pathogenic IL2RG variants is

especially important to ensure eligibility for gene therapy.

Keywords: interleukin 2 receptor gamma (IL2RG), X-linked severe combined immunodeficiency (SCID), newborn

screening, maternal X-inactivation studies, functional assays, gamma chain signaling
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INTRODUCTION

SCID is caused by a defect in cellular and humoral immunity,
primarily stemming from abnormal T cell development and/or
function. Severe T cell dysfunction will impede effective humoral
immunity as B cell responses to most antigens are T cell
dependent. Due to the severity of the disease, early diagnosis
is essential. After 10 years of implementation process, as of
December 2018, all the states in United States (US), District
of Columbia and Puerto Rico have implemented newborn
screening (NBS) for SCID, thus covering all children born in the
United States (1, 2).

When detected by NBS, neonates with typical SCID present
asymptomatically due to protection from maternal antibodies
and lack of exposure to pathogens, but nevertheless require
prompt preparation for allogeneic or autologous (gene therapy)
hematopoietic stem cell transplantation (HSCT) to prevent fatal
outcomes from infections. With advances in genetic sequencing
technology, pathogenic variants have been discovered in over
20 genes that cause classic or leaky SCID phenotypes (3, 4).
Novel genes contributing to a SCID phenotype continue to be
discovered such as the recent finding of a frameshift variant in
the linker for activation of T cells (LAT) (4), moesin (MSN)
(5), and BCL11B genes (6, 7). The most common genetic cause
of SCID in the developed world are variants in IL2RG, which
encodes for the common gamma chain (γc) of the interleukin-
2 (IL-2) receptor. The common γc is also shared by leukocyte
receptors for other cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21)
that are relevant in T cell, natural killer (NK) cell, and memory
B cell development; therefore most patients have a T−B+NK−

SCID phenotype (3, 8). These receptor complexes mediate signal
transduction through JAK1 and/or JAK3, and various signal
transducer and activator of transcription (STAT) molecules,
which induce gene transcription inmultiple cell types in response
to different cytokines, hormones, and growth factors. Specifically,
IL-2Rγ activates STAT5b through its dedicated JAK3 in T cells
and IL-21Rγ activates STAT3 in T and B cells and therefore
proper γc signaling can be measured by in vitro STAT5 and
STAT3 phosphorylation. Since the gene is on the X chromosome,
practically all cases are males and mothers are often carriers
with preferential inactivation of the X chromosome with the
pathogenic variant.

In humans, null variants in the IL2R gene result in typical

X-linked SCID with absent peripheral T and NK cells and

dysfunctional B cells due to absent γc signaling (9). In contrast,

hypomorphic variants in the IL2R gene result in atypical X-linked
SCID or combined immunodeficiency with variably reduced
numbers and/or function of T, B, and NK cells because of partial
impairment in γc signaling (10, 11). Typical X-linked SCID is
fatal if not corrected early with HSCT whereas patients with
hypomorphic variants of IL2Rmay survive untreated and present
with autoimmune complications in addition to infections (12).

Currently most practicing immunologists rely on immune
phenotyping (T-B+NK-), DNA sequencing, and/or flow
cytometry for γc protein (CD132) expression to assess for γc
pathology. The drawback of sequencing is that the IL2RG gene
is highly polymorphic with pathogenic variants in both coding

and non-coding regions (13, 14). Whole exome sequencing
(WES) may miss variants in deep intronic regions or in the 3’
polyA signal sequence that may affect RNA-splicing or stability
as has occurred in published reports (11, 15, 16). Flow cytometry
for CD132 protein expression can also be misleading as the
abnormal γc protein may be present but dysfunctional.

As a feasible functional assay for γc pathology, a recent
publication highlighted the clinical importance of testing IL-
21-stimulated B cells for γc signaling in X-linked SCID
patients (17). Although γc functional assays are evaluated
in multiple research laboratories in the US and across the
world, clinically, only one laboratory in the US provides such
testing (Immunology Diagnostic Laboratory: A Jeffrey Modell
Foundation Diagnostic Center, Seattle Children’s Hospital, X-
SCID Screen by Flow, pSTAT3/5).

These uncertainties in the diagnostic steps point to the
importance of creating an algorithm for early identification of X-
linked SCID with high confidence including functional assays in
addition to germline DNA sequencing.

CASE PRESENTATION

We report two unique cases of X-linked SCID, in which a disease-
causing variant could not be identified on initial genetic testing,
but functional assays and additional DNA sequencing led to the
discovery and/or confirmation of a pathogenic variant.

Case A
Patient A is a male infant who had a positive newborn screen for
SCID in a US state which routinely performs newborn screening.
He was born at 39 weeks gestational age via spontaneous vaginal
delivery without prenatal or delivery complications. Around 3 h
of life, he developed respiratory distress and required continuous
positive pressure ventilation. His newborn screen for SCID with
T cell receptor excision circles (TRECs)<20 copies/µL suggested
a SCID diagnosis. He was subsequently referred for further
immunological evaluation. Absolute lymphocyte counts were
low, including near absence of T cells and low NK and B cell
counts. Notably, the ratio of CD4+CD45RA+ naïve to total
CD4+ T cells was also very low (11%) (Table 1). These findings
suggested abnormal thymic T cell maturation.

Laboratory evaluation with the carboxyfluorescein
succinimidyl ester (CFSE) method revealed decreased CD3+
T cell proliferation with phytohemagglutinin (PHA) (<10%
of lower range of normal), but normal B cell proliferation
to pokeweed mitogen (PWM) (Table 1). A phenotype of
T−B+NKlow SCID was determined based on Primary Immune
Deficiency Treatment Consortium (PIDTC) criteria and the
patient was referred for evaluation for HSCT (10). In the interim,
genetic testing revealed a novel hemizygous missense change
in IL2RG (c.G175C; p.E59Q), reported as variant of unknown
significance (VUS) (Figure 1A). This variant has not been
reported in the Exome Aggregation Consortium (http://exac.
broadinstitute.org/). His mother and two sisters were carriers of
the same variant.

The patient was born to biracial parents and had no
matched donor. There was no evidence of maternal engraftment.
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TABLE 1 | Clinical history and immune phenotyping of patients A and B, and additional studies on family members.

Patient A (<1 mo) Patient B (9 mo) Reference range

Clinical presentation at time of lab evaluation asymptomatic PJP pneumonia on steroids

Phenotype of SCID variant T−/B+/NKlow T+(CD8low)/B+/NKlow

TREC (copies/microliter) at birth* 0 (L*) 0 (L*) >15 [Patient A NBS in Florida],

> 252 [Patient B NBS Massachusetts]

Absolute lymphocyte (cells/µL) 669 (L) 1,596 (L) >2,600

Absolute CD3 T (cells/µL) 9 (L) 1,062 (L) >1,600

Absolute CD4 T (cells/µL) 9 (L) 1,043 >1,000

Absolute CD8 T (cells/µL) 7 (L) 27 (L) >400

Absolute CD19 B (cells/µL) 450 (L) 365 (L) >600

Absolute CD56 NK (cells/µL) 61 (L) 145 (L) >200

CD4+CD45RA+ naïve T (cells/µL), (% of total CD4) 1 (11%) (L) 0 (L) >50% of total CD4

CD8+CD45RA+ naïve T (cells/µL), (% of total CD8) 2 (30%) (L) 0 (L) >50% of total CD8

CD3+ T cell proliferation to mitogens PHA 0.9% (L) 7.1% (L) >58.4%

PWM 11.5% 4.1% >3.4%

T cell proliferation with interleukins anti-CD3

anti-CD3/CD28 n.a. Absent

anti-CD3/IL-2

CD132 (common γ chain) expression T cells n.a. 84% (L) >99%

B cells 87% 84% >58%

NK cells 71% (L) 66% (L) >84%

CD132 signaling absent absent

X chromosome inactivation (XCI) in carriers

Mother PBMC 76:24 85:15 (H) <80:20

Mother T cells 100:0 (H) 100:0 (H) <80:20

13-year-old sister PBMC 90:10 (H) n.a. <80:20

14-year-old sister PBMC 91:9 (H) n.a. <80:20

X-inactivation studies on peripheral blood mononuclear cells (PBMCs) were performed by Greenwood Genetics (Greenwood, SC). This study does not allow for distinguishing wild type

(wt) or mutant alleles. X-inactivation studies in T cells at the NIH allowed for distinction between wt and mutant alleles (Figure 2A). *From NBS card. L indicates low, H indicates high.

PJP: Pneumocystis jirovecii pneumonia.

Therefore, he underwent haploidentical HSCT with his father
as donor. He did not receive conditioning and received CD34-
selected peripheral stem cell graft. His post-transplant course
was complicated by prolonged neutropenia requiring growth
factor support and no evidence of T cell reconstitution by
4 months post-transplant. He remained with severe T cell
lymphopenia against stem cell boost over 1 year of age. To review
his next treatment options including GT, it was necessary to
prove that his IL2RG variant was pathogenic. Flow cytometry
confirmed that the patient had normal level of common γc
(CD132) expression on B cells, and low expression on NK
cells (Table 1).

Additional tests were initiated to confirm an X-linked
inheritance. Under normal circumstances, one of the two X
chromosomes is randomly inactivated. Since this is a random
process, the ratio of inactivated X1 vs. X2 chromosomes is less
than 80:20. However, if one allele carries a pathogenic variant in
IL2RG, inactivation is typically highly skewed toward the mutant
allele (18). This is especially evident in T cells that are dependent
on common γc for their development.

In genomic DNA (gDNA) extracted from maternal peripheral
blood mononuclear cells (PBMCs), X chromosome inactivation
(XCI) studies were within normal ranges (76:24). However,
XCI studies in maternal T cells did demonstrate complete

skewing toward the inactivation of X chromosome with the
p.E59QVUS as verified by two independent laboratories (Table 1
and Figure 2A, upper panel); no preferential inactivation was
seen in monocytes, which do not depend on common γc
function (Figure 2A, upper panel). Notably, testing of the
patient’s two sisters (13 and 14 years of age) also showed
skewing of X-inactivation in gDNA from PBMCs (90:10 and 91:9,
respectively) (Table 1).

Further, signaling studies via common γc in the patient’s T
cells detected impaired signaling for all γc dependent cytokines
(IL-2, IL-4, IL-7, IL-15, and IL-21), while γc independent
signaling in T cells (IL-6 and IFN-α) and monocytes (IFN-
α and IFN-γ) was preserved (Figure 2B). Subsequent studies
for IL-21 and IL-2 signaling in the patient’s total lymphocytes
demonstrated similar results (Figure 2C). The impaired signaling
in γc dependent cytokines and the skewing of X-inactivation
in maternal T cells and carrier sisters’ PBMCs, taken together,
strongly support that the p.E59Q variant detected in IL2RG
is pathogenic.

Case B
Patient B presented at 9 months of age with a history of failure
to thrive and recurrent upper respiratory infections. He was
hospitalized with acute respiratory failure requiring intubation
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FIGURE 1 | Gene Map of IL2RG gene showing novel variants for patients A and B. (A) IL2RG cDNA map with sites of variants (indicated by arrows) found in patients

A and B with X-linked SCID. Patient A has a novel hemizygous missense variant: c.G175C in exon 2 (p.E59Q), which was designated a variant of unknown

significance. Patient B has a novel variant in a non-coding region of IL2RG: a deletion within the 3′ UTR (AA *307 *308). (B) Chromatogram of Sanger sequencing of

the 3′ UTR of the IL2RG gene for patient B, his mother and a healthy control (HC). Sequencing reveals patient B and his mother (a carrier) have a 2 base pair deletion

within the polyA signal sequence: AATAAA is changed to AATA, as indicated by the blue rectangles.

and mechanical ventilation. The diagnosis of Pneumocystis
jirovecii pneumonia (PJP) was confirmed with bronchoscopy.
He was born to non-consanguineous parents under care by
a midwife in an out-of-hospital setting in a US state that
has fully implemented newborn screening. In keeping with
protocol, the original NBS specimen for SCID was rejected
for analysis because the sample was insufficient. Repeat testing
was delayed due to problems with follow up. However,
consented retrieval and retrospective analysis of the original
newborn specimen at 9 month of age by an independent
and experienced SCID NBS laboratory confirmed the absence
of TRECs (Table 1).

During the patient’s hospitalization for PJP pneumonia, the
absolute lymphocyte count and lymphocyte subsets were mildly
decreased. The patient had low CD8+ but normal CD4+
T cell counts (Table 1). However, both CD4+ and CD8+
CD45RA+ naive T cells were absent, indicating impaired T cell
development in the thymus. The patient had no evidence of
maternal engraftment.

Functional studies were initiated to assess for a SCID
phenotype. CD3+ T cell proliferation was poor with mitogen
PHA (<30% of lower limit of normal) suggestive of leaky
SCID (Table 1) (10). Upon stimulation with anti-CD3 and IL-2,
lymphocyte proliferation was absent, which indicated defective T
cell receptor signaling. However, γc (CD132) expression was low
but detected on T and NK cells, and normal on B cells by flow

cytometry (Table 1) (Figure 2D). Mean fluorescence intensity
of CD132 was also decreased on CD3+ T cells (Figure 2D).
Gamma chain signaling, however, was absent. The diagnosis of
ZAP-70 protein deficiency was considered due to low CD8+
and normal CD4+ T cell counts. However, ZAP-70 protein
expression was normal by flow cytometry and the gene had
no variant.

As a next step, comprehensive genetic testing of 26 genes
associated with SCID or combined-immunodeficiency (ADA,
AK2, ATM, CD3D, CD3E, CD3Z, CORO1A, DCLRE1C,
DOCK8, FOXN1, IL2RG, IL7R, JAK3, LIG4, NHEJ1,
ORAI1, PNP, PTPRC, PRKDC, RAC2, RAG1, RAG2,
RMRP, STIM1, TBX1, and ZAP-70) was pursued and
was unrevealing. Neither did subsequent WES identify a
candidate gene.

Since immune phenotyping was inconclusive and genetic
testing was not informative regarding a causative molecular
defect, T-cell repertoire diversity studies with spectratyping
of the T-cell receptor beta chain variable region (TCRVβ) at
the DNA level were performed. In spectratyping, diversity is
estimated by the variation in CDR3 length of mRNA encoding
the TCRVβ region. Spectratyping demonstrated that most of the
23 Vβ families assessed were completely absent and the families
present were profoundly oligoclonal (≤5 independent peaks) in
CD3+ T cells, which was consistent with a Tlow leaky SCID
phenotype (Figure 3).
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FIGURE 2 | Immune functional assays for interleukin receptor signaling in subsets of lymphocytes. (A) X chromosome inactivation (XCI) with (+) or without (−) Hpall.

Hpall digests unmethylated alleles. The X chromosome that is active is under methylated, thus, once digested by Hpall, PCR amplification does not occur and band

disappears. XCI in CD3+ T cells is skewed toward. (B) Histogram of T cell and monocyte response with STAT phosphorylation to several γc dependent (IL-2, IL-4,

IL-7, IL-9, IL-15, IL-21) and independent (IL-6, IFN-α, IFN-γ) cytokines in PBMCs of patient A. (C) Total lymphocyte response with STAT5 phosphorylation to IL-21 and

IL-2 stimulation in patient A, patient B and a healthy control (unstimulated in red, stimulated in blue). (D) Level of CD132 (γc) expression on CD3+ T cells of patient B

and a healthy control (patient unstimulated in green, patient stimulated in red, and healthy control in blue). Eighty-four percent of patient’s cells expressed CD 132

when stimulated, however, mean fluorescence intensity was lower in patient than control. X inactivation and STAT phosphorylation studies in Figures 2A,B were

performed by the Department of Laboratory Medicine, Clinical Center, National Institutes of Health (Bethesda, MD).

Maternal XCI studies by two independent laboratories using
PBMCs demonstrated mild skewing, while subsequent testing of
maternal T cells indicated complete skewing toward inactivation
of the X-chromosome with the allele containing the pathogenic
variant carried by the patient (Table 1 and Figure 2A lower
panel). IL-21 and IL-2 signaling in the patient’s total lymphocytes
demonstrated impaired signaling (Figure 2C). CD4+ T cell
signaling studies could not be done due to inadequate sampling.

The results of the maternal XCI studies and the abnormal IL-2
and IL-21 receptor signaling on isolated lymphocytes suggested
an X-linked defect, likely in γc. Further genetic testing of the
noncoding regions of IL2RG, revealed a 3 prime untranslated
region (3′ UTR) deletion NM_000206.2 c.∗307_∗308del within
the polyA site (AATAAA was changed to AATA) (Figures 1A,B).
The patient’s mother is a carrier of the same variant. With
his mother as donor, the patient underwent haploidentical
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FIGURE 3 | T cell repertoire study. Spectratyping of CD3+ T cells for TCRβ was performed for patient B. The patient has essentially absent TCRVβ repertoire diversity

(Cellular and Molecular Immunology Laboratory, Mayo Clinic). The majority of the 23 Vβ families assessed are completely absent and those that show the presence of

T cell receptor Vβ families are profoundly oligoclonal (≤5 independent peaks). Patient in red, house-keeping gene (β-actin) in blue, and size marker in orange.

HSCT and subsequent T and B cell engraftment. The
patient was conditioned with fludarabine/melphalan/thiotepa
using unmanipulated bone marrow graft from mother.
Cyclophosphamide, tacrolimus and mycophenolate mofetil
were administered for graft versus host disease prophylaxis.
Patient engrafted neutrophils on day19 and platelets on
day32 and subsequently demonstrated full T and B cell
immune reconstitution.

METHODS

Measurement of STAT Phosphorylation in
Stimulated Lymphocyte Subsets
IL2RG γc dependent and independent signaling were studied on
gated CD4+ T cells (using APC anti-CD4 from BD Biosciences,
La Jolla, CA), monocytes or total lymphocytes using the
following cytokines: IL-2, IL-4, IL-6, IL-7, IFN-γ, IL-21 (each
10 ng/mL, except IL-21 50 ng/mL for Figure 2B) (PeproTech,
Rocky Hill, NJ), IFN-α (10 ng/mL, Cell Signaling Technology,
Danvers, MA), and IL-15 (50 ng/mL, Invitrogen, Waltham, MA).
Signaling was assessed usingmonoclonal antibodies to phosphor-
STATs (p-STAT1[Y701], p-STAT3[Y705], p-STAT5[Y694], and
p-STAT6[Y641]) (BD Biosciences) and acquired by FACSCanto
II flow cytometry. Data was analyzed by FlowJo (Treestar FlowJo,
Inc., Ashland, OR).

X Chromosome Inactivation Assay
Genomic DNA was extracted from the PBMCs of patient and
mother using PureLink gDNA minikit (Invitrogen, Waltham,
MA). CD3T and CD14 cells were enriched using EasySep
enrichment kit (StemCell Technology, Cambridge, MA). gDNA
was first digested with RsaI, then incubated with or without
HpaII (Promega, Madison, WI) and finally amplified by
polymerase chain reaction using GoTaq DNA polymerase
(Promega) (forward primer: 5′-TGCGCGAAGTGATCCAGA
ACC-3′; reverse primer: 5′-TGGGCTTGGGGAGAACCATC-
3′). The products were of different sizes due to the polymorphic
nature of the X-chromosome. The percent of active allele was
subsequently calculated (19).

T Cell Diversity Studies
Spectratyping of the TCRVβ family was performed at the
Diagnostic Immunology Lab of the Mayo Clinic (Rochester, MN)
on clinical grounds using CD3+ T cells from patient B.

DISCUSSION

Since NBS has been implemented for SCID, the phenotypic
and genotypic variability of patients continue to broaden,
partly secondary to identification and classification of new
hypomorphic variants. We describe two unique cases of X-
linked SCID with hypomorphic variants in the IL2RG gene.
Exon sequencing cannot detect variants located in introns or
untranslated regions (patient B), and genetic panel testing may
reveal only novel variants of unknown significance (patient A).
In either situation, subsequent testing with functional assay
of common γc signaling is necessary to confirm whether or
not the observed variant is pathogenic, as occurred in the two
aforementioned cases.

XCI studies from maternal T cells compared to other
hematopoietic lineages are highly useful to support X-linked
γc pathology. As T cells are the major, although not only,
gDNA contributor to PBMCs, gDNA from other randomly
inactivated hematopoietic lineages (e.g., B cells and monocytes)
can contribute to falsely normal and misleading results in female
SCID-gene carriers. Therefore, when evaluating γc dependent
pathology, it is critical to test XCI in separate lineages (e.g.,
T and NK cells vs. B cells and monocytes) where skewing is
differently regulated.

Similar to patient A, there have also been reported cases of
atypical X-linked SCID due to a novel variant in the common
γc, which required functional analysis to confirm the diagnosis
(11, 16). In these two previous cases, the γc protein was truncated
or likely truncated whereas in patient A, the protein was detected
by flow cytometry (the size of the protein by Western blot was
not assessed). Yet in published cases, γc signaling was impaired
but not absent, whereas patient A had no γc signaling.

In case of patient B, we report the second known case of
a variant in the 3’ untranslated region that is associated with
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X-linked SCID. The first report by Hsu et al. (15) confirmed
abnormal mRNA expression due to a single base change from the
consensus sequence of the polyA site (AATAAA to AATAAG)
(15). We could not accomplish mRNA studies secondary to
limited patient sample and inability to establish immortalized
cell line from PBMCs despite multiple attempts. It is likely that
similar to the previous report, a change from the consensus
of AATAAA leads to aberrant transcripts due to the utilization
of alternate polyA consensus sequences that causes nonsense
mediated decay and unstable transcripts. It is likely that the
mRNA is unstable with the polyA tail variant in patient B
and this will result in decreased CD132 expression. However,
the detection of common γc (CD132) by flow cytometry and
impaired signaling through γc indicates a dysfunctional protein.
Therefore, it is unclear why signaling is impaired as the γc still
could be functional having an intact coding region.

In patient A, the SCID NBS was abnormal and in patient B,
NBS was not done at birth but later retrospective studies at about
9months of age showed absent TREC in a birth specimen. In both
cases, the clinical and laboratory findings were consistent with the
range of clinical presentation of SCID phenotypes. Common γc
expression was detected early and was misleading. Identification
of pathogenic IL2RG variants associated with abnormal γc
signaling and X-linked SCID was delayed for months.

To facilitate identification of γc variants, we propose
that in male infants with abnormal SCID NBS that is
also confirmed with abnormal lymphocyte subsets, and for
whom no pathogenic variant is revealed by DNA sequencing
analysis, continue evaluation for IL2RG variants using the
following studies: (1) screen with X-inactivation studies in
maternal T lymphocytes and compare it to other hematopoietic
lineages (e.g., B cells or monocytes), and (2) evaluate γc
function by assessing its signaling in lymphocytes. These two
steps may take only a few days to complete. Even though
not all of these tests are commercially available, there is
growing evidence to highlight the utility of pursuing functional
assays, such as γc signaling in the clinical setting, prior to
proceeding with more extensive genetic testing. For instance,
whole exome testing takes a few months and is considerably
more expensive.

Although SCID patients may receive HSCT before full
understanding of their genetic defect, it is important to identify
the underlying defect for genetic counseling and targeted GT,
especially if a proper donor is not available. In fact, based on a
recent consensus approach for the management of SCID caused
by ADA deficiency, gamma retrovirus- or lentivirus-mediated

autologous HSC-GT is considered an equal alternative (9). This
may soon be followed by other gene defects, such as HSC-GT
for X-linked SCID. Early identification of a pathogenic variant
is critical since minimizing morbidity and mortality of SCID
patients is dependent upon timely intervention with GT or
allogeneic HSCT.
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