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Progress in constructing biological networks will rely on the development of more advanced
components that can be predictably modified to yield optimal system performance. We have
engineered an RNA-based platform, which we call an shRNA switch, that provides for integrated
ligand control of RNA interference (RNAi) by modular coupling of an aptamer, competing strand,
and small hairpin (sh)RNA stem into a single component that links ligand concentration and target
gene expression levels. A combined experimental and mathematical modelling approach identified
multiple tuning strategies and moves towards a predictable framework for the forward design of
shRNA switches. The utility of our platform is highlighted by the demonstration of fine-tuning,
multi-input control, and model-guided design of shRNA switches with an optimized dynamic range.
Thus, shRNA switches can serve as an advanced component for the construction of complex
biological systems and offer a controlled means of activating RNAi in disease therapeutics.
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Introduction

To maintain fitness under diverse conditions, biological
systems must integrate multiple environmental cues (inputs)
to determine appropriate phenotypic outcomes (outputs) over
short and long time scales. This relationship, which can be
interpreted as an input–output function or transfer function, is
specified by the behaviour of the individual system compo-
nents and their network interactions. The complexity of
natural biological systems, reflected by the sheer number of
associated components and network interactions, can appear
intractable to scientists and engineers seeking to understand
and reliably construct biological systems.

Synthetic biological systems that perform information
processing operations with specified transfer functions can
be constructed through the design of either individual complex
components encoding multiple integrated functionalities or
simpler components assembled into networks with emergent
properties. For example, the ultrasensitive switch behaviour of
the mitogen-activated protein kinase signalling cascade
(Huang and Ferrell, 1996) has been replicated with one
component (Dueber et al, 2007) or a network of components
(Hooshangi et al, 2005). The majority of previously engineered

biological systems have employed design strategies focused on
the assembly of simpler components into networks (Elowitz
and Leibler, 2000; Gardner et al, 2000). However, as biological
engineers move towards constructing large-scale systems with
more advanced behaviours, integration of complex compo-
nents into network design will be critical, especially as current
network design strategies do not effectively scale with system
complexity (Croft et al, 2003). Furthermore, engineering of
complex components and their integration into networks will
facilitate the construction of advanced systems with a reduced
number of constituent parts. Such design strategies will result
in a lower energetic load on the cell and will comply with size
limitations associated with packaging synthetic systems for
delivery applications (Flotte, 2000; Grieger and Samulski,
2005).

RNA is a rich biological substrate for engineering complex
components (Isaacs et al, 2006), where scalable molecular
information processing systems have been built in vitro from
nucleic acid components (Stojanovic and Stefanovic, 2003;
Seelig et al, 2006). Natural biological systems exhibit wide-
spread utilization of regulatory RNAs in larger networks
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(Shalgi et al, 2007) and integrated functionalities by ribos-
witches (Sudarsan et al, 2003; Grundy and Henkin, 2006). The
latter is an example of a complex RNA component that
converts the intracellular concentration of a molecular signal
into levels of a target protein. Building on these natural
examples, researchers have integrated synthetic regulatory
RNAs into larger networks (Deans et al, 2007; Rinaudo et al,
2007) and developed synthetic riboswitch elements (Isaacs
et al, 2006; Suess and Weigand, 2008) to yield desired transfer
functions. Synthetic riboswitches have been developed
through the coupling of regulatory RNA elements to aptamers,
sensory elements that bind specific ligands, to achieve in vivo
ligand control of transcription (Buskirk et al, 2004), RNA
stability (Win and Smolke, 2007), translation (Grate and
Wilson, 2001; Suess et al, 2003; Bayer and Smolke, 2005;
Lynch et al, 2007; Ogawa and Maeda, 2008; Wieland and
Hartig, 2008), splicing (Thompson et al, 2002; Weigand and
Suess, 2007), and RNA interference (RNAi) (An et al, 2006). As
aptamers can be generated de novo to potentially any molecule
(Lee et al, 2004; Gopinath, 2007) and regulatory RNAs can be
designed to target practically any gene of interest, the potential
exists to construct complex regulatory RNAs that respond to
molecular inputs displaying low cytotoxicity, tissue targeting,
or endogenous production to impose desired phenotypic
outcomes. In addition, the ability to alter or tune the
component transfer function, which allows manipulation of
component performance towards optimal system perfo-
rmance, has been demonstrated for in vivo (Suess et al, 2003;
Isaacs et al, 2004; Bayer and Smolke, 2005; Win and Smolke,
2007) and in vitro systems (Hall et al, 2007) by modifying RNA
folding energetics. However, broader implementation of these
synthetic regulatory components has been limited, as most
examples do not support domain swapping of different
sensory and regulatory elements. Furthermore, the design of
such regulatory systems has lacked predictive tools for the
translation of sequence information into component transfer
functions to enable in silico optimization of system behaviour
before construction.

We have developed a framework for the construction of
shRNA switches that mediate ligand control of RNAi across
diverse mammalian cell types. Our platform utilizes a strand
displacement strategy, where the functions of ligand binding,
RNAi activation (Kim and Rossi, 2008), and translation of the
binding interaction into reduced processing by the RNAi
machinery are isolated to individual domains, which increases
the generality and ease of successful domain swapping and
subsequent broad application. In addition, we systematically
investigated tunability of the shRNA switch transfer function
through a combined experimental and mathematical model-
ling approach that resulted in the identification of five tuning
strategies. Standard RNA folding algorithms (Mathews et al,
2004) were used to establish a quantitative sequence-to-
function relationship. Our efforts highlight the current limita-
tions of these broadly used algorithms for the design of RNAs
that function in vivo and offer a framework for optimizing
shRNA switch behaviour in silico. By demonstrating combi-
natorial tuning strategies, multi-input control, and model-
guided forward design of shRNA switches with an optimized
dynamic range within a specified context, we show that
shRNA switches extend the utility of RNAi as a regulatory tool

and are valuable components for the construction of complex
biological systems.

Results

Design and characterization of a modular shRNA
switch platform

We engineered a complex RNAi substrate that encodes a
ligand-controlled gene regulatory function by replacing the
loop of a small hairpin (sh)RNAwith two domains: an aptamer
and a competing strand (Figure 1A). The shRNA switch
molecule is designed to adopt distinct ‘active’ and ‘inactive’
conformations due to complementarity between the compet-
ing strand and the shRNA stem, similar to previously
engineered RNA regulatory systems (Bayer and Smolke,
2005; Lynch et al, 2007; Win and Smolke, 2007). In the active
conformation, irreversible processing by the RNAi machinery
of the formed shRNA stem results in small interfering (si)RNA
production and subsequent RNAi-mediated silencing of the
target gene. In the inactive conformation, base-pairing by the
competing strand disrupts the shRNA stem, which is predicted
to inhibit processing by the RNAi machinery (Zeng and Cullen,
2004; Macrae et al, 2006). This base-pairing coincides with
formation of the aptamer domain, such that ligand binding
stabilizes the inactive conformation and indirectly reduces
siRNA production, thereby linking intracellular ligand con-
centration to target protein levels through a component
transfer function. To decrease the activation energy separating
the two conformations, we removed two nucleotides in the
passenger strand, thereby mimicking the bulge from the
microRNA (miRNA) mir-30a (Griffiths-Jones, 2004; Griffiths-
Jones et al, 2006).

The three domains that comprise an shRNA switch perform
distinct functions: the shRNA stem encodes the guide strand
that activates RNAi-mediated silencing of the target gene, the
aptamer detects the molecular input concentration through a
ligand-binding interaction, and the competing strand trans-
lates the binding interaction into a decrease in regulatory
activity by affecting processing by the RNAi machinery. On the
basis of the action of the competing strand that is comple-
mentary to the shRNA stem, the sequences of the shRNA stem
and aptamer domains are independent of one another.
Therefore, the shRNA stem and aptamer domains can be
independently modified without altering the functionality of
the opposing domain or requiring sequence reassignment.

We designed an initial shRNA switch (S1) to target EGFPand
respond to theophylline by incorporating an EGFP-targeting
guide strand and the theophylline aptamer (Zimmermann
et al, 2000) into our switch platform (Figure 1A). We used
in-line probing (Soukup and Breaker, 1999) to assess the
structural characteristics of a T7-transcribed variant similar to
S1 (S4t; Figure 1B). In-line probing provides information on
structural changes within the molecule as a result of theophyl-
line binding from the ligand dependence of spontaneous RNA
cleavage. Theophylline-dependent changes in cleavage rates at
individual nucleotides were observed in the aptamer domain,
competing strand, and the downstream shRNA stem sequence.
The results suggest that theophylline binding promotes
structural changes in the shRNA switch as expected for
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dynamic RNAs undergoing ligand-dependent conformational
switching. The apparent dissociation constant (KD) of B5mM,
which was determined by quantifying the cleavage products
at two positions (Supplementary Figure S1), is an order of
magnitude larger than that of the aptamer alone
(KDE0.29 mM) (Zimmermann et al, 2000). The observed
increase in KD is in agreement with our proposed mechanism
(see below), where only the inactive conformation provides a

formed aptamer that can bind ligand. As shRNA switches can
occupy both conformations, the apparent affinity will be lower
because ligand can only bind the inactive conformation that is
transiently present in a fraction of the shRNA switch
population.

The functionality of shRNA switches was assessed in
mammalian cell culture. We transiently transfected plasmids
harbouring S1 and various switch controls transcribed from a
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Figure 1 Design and characterization of an shRNA switch platform. Colour schemes for switches shown in all figures are as follows: shRNA stem, green; aptamer
domain, blue; competing strand, red; mutations to aptamer core, orange. (A) Sequence and representative structures of shRNA switch S1 and proposed mechanism for
ligand control of RNAi-mediated gene silencing. Kcomp, Kapt, and e are parameters from the mathematical model; L denotes ligand. (B) In-line probing of S4t under the
following theophylline concentrations (mM): 0.001, 0.01, 0.1, 1, 10, 100, 1000, and 8000. S4t was also resolved as unreacted (NR), partially digested with the G-specific
RNase T1 (T1), and under basic conditions (OH). The included secondary structure of S4t is representative of the inactive conformation. Band quantification (right) is
aligned with the resolved gel image. Nucleotides undergoing constant ( ), increased ( ), or decreased ( ) cleavage in the presence of theophylline are shown. (C)
Sequence and representative structure of shRNA switch S1 in the inactive conformation and associated controls. (D) Component transfer functions of S1 and switch
controls. Dependence of GFP levels on theophylline concentration for HEK293T tTA-d2EGFP cells transfected with plasmids harbouring the indicated constructs in the
presence of varying theophylline concentrations. Median fluorescence values from flow cytometry analysis were normalized to that of untransfected cells in the same
well. Error bars represent one s.d. from duplicate transfected wells.
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U6 promoter into HEK293T cells stably expressing EGFP
(Abbas-Terki et al, 2002). Flow cytometry analysis revealed
that S1 elicits intermediate knockdown of EGFP as compared
to the original shRNA targeting EGFP (sh) and a scrambled
shRNA (neg) (Figure 1C and D), where the observed silencing
by S1 can be attributed to activation of RNAi on the basis of
antisense inhibition of guide strand activity (Hutvagner et al,
2004; Meister et al, 2004) (Supplementary Figure S2). In the
presence of theophylline, GFP levels increased in a dose-
dependent manner for S1 but not for the control shRNAs. The
effective concentration to achieve 50% activity (EC50) for S1 of
B300mM was much larger than the KD of 5 mM measured
in vitro, which can be primarily attributed to a concentration
drop in theophylline across the cellular membrane (Koch,
1956) (J Liang, J Michener, C Smolke, unpublished data,
2008). Mutating the aptamer core of S1 (S10) greatly reduced
the observed theophylline dependence without perturbing
basal expression levels. We attribute the minor increase in GFP
levels at high theophylline concentrations for S10 to pleiotropic
effects of the ligand (An et al, 2006) and potentially to reduced
binding capability of the mutated aptamer. Taken together, S1
links theophylline concentration to GFP levels in vivo through
a relationship described by a component transfer function
(Figure 1D). We obtained qualitatively similar results when
shRNA switches targeting EGFP were transiently transfected
into other cell lines (Supplementary Figure S3), suggesting that
shRNA switches can be broadly applied in different cell lines
and types.

Mathematical modelling offers tuning parameters
to predictively modulate component transfer
functions

Previous switch platforms utilizing strand displacement
strategies have demonstrated tuning on the basis of aptamer
swapping and modulation of folding energetics (Bayer and
Smolke, 2005; Win and Smolke, 2007). We systematically
evaluated the tuning capabilities of shRNA switches with the
aid of a mathematical model relating ligand concentration and
target gene expression levels. Standard model parameters were
incorporated to represent each chemical step from our
proposed mechanism (Supplementary text 1). We assumed
that the two adopted conformations are at thermodynamic
equilibrium, that ligand only binds the inactive conformation,
and that the active conformation is solely processed to an
siRNA with a reduced efficiency as compared to the original
shRNA. These assumptions yield the following relationship
between relative expression levels of the target gene (f; output)
and exogenous ligand concentration (L; input):

f ¼ 1 � efshRNA½1 þ Kcompð1 þ KAptLÞ��h ð1Þ

where e is the processing efficiency, fshRNA is the relative
knockdown achieved by the original shRNA (sh), Kcomp is the
partitioning constant between active and inactive conforma-
tions (Kcomp¼[inactive]/[active]), Kapt is the association
constant for binding between ligand and the formed aptamer,
and h is the Hill coefficient to account for non-linearity
between siRNA concentration and target expression levels.
Although mathematical models have been developed for RNAi

(Raab and Stephanopoulos, 2004; Bartlett and Davis, 2006;
Malphettes and Fussenegger, 2006), our approach utilizes a
minimal parameter set that is experimentally tractable, fully
represents RNAi in the context of shRNA switches, and
captures the steady-state behaviour of our system (Supple-
mentary Figure S4). For one shRNA stem sequence and input
ligand (fixed fshRNA, h), our model provides three tuning
parameters that can be varied to tune the component transfer
function: Kcomp, Kapt, and e (Figure 2A–C). Varying Kcomp

results in a concomitant and opposing variation in EC50 and
basal expression levels, which are independently tuned by Kapt

and e, respectively. In addition, as Kcomp approaches zero,
basal expression levels approach a lower limit that is
dependent on the value of e and is higher than that of the
original shRNA (Figure 2D). As each tuning parameter
represents individual steps in the proposed mechanism, we
examined how modifying the sequence in each domain,
specifically the competing strand and aptamer domains,
corresponds to parameter variation to identify unique tuning
strategies (Figure 3A).

Competing strand tuning strategies enable
predictive alteration of the component transfer
function

Modifying competing strand base-pairing interactions is
anticipated to reflect changes in Kcomp, as this parameter
represents the thermodynamic partitioning between active
and inactive conformations. We developed competing strand-
tuning strategies to target modifications to three regions within
the competing strand domain: the length of the competing
strand on the 30-end (Figure 3B and C) or the 50-end (Figure 3D
and E), or the base-pairing complementarity (Figure 3Fand G).
We introduced iterative nucleotide changes under each
competing strand tuning strategy and generated component
transfer functions as before. Regardless of the selected
strategy, each nucleotide change resulted in a shift in the
response curve in line with the model prediction for variation
in Kcomp. The results suggest that decreasing the extent of base-
pairing interactions between the competing strand and the
shRNA stem decreases the stability of, or bias towards, the
inactive conformation (lower Kcomp), resulting in lower basal
expression levels and a higher EC50. The trend towards higher
EC50 is consistent with the order-of-magnitude difference
between the apparent KD of S4t observed in the in-line probing
experiment and that reported for the aptamer alone
(Figure 1B). Thus, sequence modifications to the competing
strand that affect the extent of base-pairing solely map to
variation of Kcomp.

Aptamer tuning strategies enable predictive
alteration of the component transfer function

Although ligand binding to the formed aptamer directly relates
to aptamer affinity, represented by Kapt, sequence changes in
the aptamer domain may affect other parameters. To evaluate
how sequence modification of the aptamer domain corre-
sponds to parameter variation, we tested two theophylline
aptamer variants (S11 and S12) with dissimilar KD values
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(Zimmermann et al, 2000) and the mutated aptamer (S10)
(Figure 4A and B). Mutating the aptamer core (S10) without
perturbing shRNA switch secondary structure or sequence
length resulted in a shift in EC50, whereas decreasing aptamer
affinity by decreasing the aptamer stem length (S11 and S12)
resulted in a shift in both EC50 and basal expression levels.
The shifts in EC50 for S11 and S12 matched the relative KD

measured in vitro for the aptamer variants alone (Zimmer-
mann et al, 2000), suggesting that modulating aptamer affinity
is reflected by variation in Kapt. However, Kapt affects only
EC50, suggesting that either Kcomp or e varies with aptamer size.
As the competing strand sequence is preserved for S1, S10, S11,
and S12, we hypothesized that the shift in basal expression
levels independent of Kapt (most obvious in comparing the
transfer functions of S1 and S11) is solely attributed to the third
tuning parameter e (Figure 2C).

To evaluate the relationship between aptamer size and the
tuning parameter e, we replaced the theophylline aptamer with
the smaller xanthine aptamer (Kiga et al, 1998) or the larger
tetracycline aptamer (Berens et al, 2001). As variation of e and
Kcomp both affect basal expression levels, sole evaluation of e
requires estimation of the lower limit of basal expression levels
for vanishingly small values of Kcomp (Figure 2D). To this end,
we constructed at least one shRNA switch with each aptamer
that strongly prefers the active conformation (low Kcomp) and
measured GFP basal expression levels of cells transfected with
these constructs (Figure 4C). Assay results indicated that
aptamer size strongly correlated with the lower limit of basal
expression levels. The results suggest that the tuning
parameter e, which is predicted to have a significant effect

on the lower limit of basal expression levels, maps to the size
of the aptamer domain. Our observations led to the specifica-
tion of two aptamer tuning strategies: targeted changes in
aptamer affinity without changing aptamer size alter Kapt and
targeted changes to aptamer size to alter the processing
efficiency of the switch (e). Taken together, variation of Kapt

and e map to the aptamer domain and depend on the nature of
the sequence modification.

We examined whether placement of new aptamers into the
aptamer domain imparts new ligand dependence while
preserving shRNA switch functionality. Previous RNA-based
regulatory platforms have demonstrated alteration of ligand
dependence by the modular incorporation of new aptamers
(Bayer and Smolke, 2005; Win and Smolke, 2007) or minimal
mutation of the base aptamer (Thompson et al, 2002; Desai
and Gallivan, 2004). We evaluated the xanthine aptamer, as it
produced low basal expression levels and tightly binds the
water-soluble and non-cytotoxic small molecule hypox-
anthine. Following construction of shRNA switches that
incorporate the xanthine aptamer by direct replacement of
the aptamer domain, we generated component transfer
functions in HEK293T cells stably expressing EGFP. As
observed for S1, intermediate basal expression levels of GFP
increased in a dose-dependent manner that was abolished by
mutating the aptamer core (Figure 4D and E). Furthermore, the
competing strand tuning strategies were preserved as evi-
denced by the effect of changing the competing strand length
on the hypoxanthine response curves (Figure 4F and G).
Contrary to model predictions, mutation of the xanthine
aptamer resulted in increased basal expression levels, which
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may be attributed to base-pairing interactions between the
mutated aptamer and the competing strand or shRNA stem
sequences, or changes in aptamer folding and stability.
However, the shift in basal levels upon mutation of the
aptamer sequence is less than that observed for changes in the
competing strand, supporting the conclusion that our model
serves as a sufficient first approximation. Thus, our shRNA
switch design can accommodate different aptamers to alter the
identity of the molecular input that regulates gene expression.

Programming transfer functions by combining
competing strand or aptamer tuning strategies

The ligand-regulated behaviour of shRNA switches can be
programmed through application of the competing strand and
aptamer tuning strategies described above. If these program-
ming strategies could be combined, then a collection of shRNA
switches could be constructed that display finely tuned
transfer functions and respond to a range of molecular inputs.
Such capabilities will be integral to the construction of higher-
order biological networks that display multi-input control over
gene expression.

On the basis of the independence of the competing strand
tuning strategies, we examined whether the strategies can be
combined to fine-tune the component transfer function

beyond the capabilities of any single strategy. To generate
small deviations in the transfer function of a parent shRNA
switch, we added compensatory nucleotide changes under
each competing strand tuning strategy in a stepwise manner
(Figure 5A and B): a point mutation (G68A) within the
competing strand to increase complementarity, deletion of two
base pairs to decrease the competing strand length at the
50-end, and a single insertion at the 30-end to increase the
competing strand length. Each nucleotide change yielded the
expected shift in the transfer function corresponding to the
relative stabilization (increased Kcomp) or destabilization
(decreased Kcomp) of the inactive conformation. The final
switch, S10, displayed a transfer function slightly shifted from
that of the parent switch, S4, demonstrating that nucleotide
changes following the three competing strand tuning strategies
can be combined to yield fine-tuning of the component transfer
function.

In addition to fine-tuning of a single shRNA switch,
combining shRNA switches with different ligand dependen-
cies would contribute to the construction of networks that
integrate multiple molecular inputs, as suggested from recent
work on siRNA-based logic evaluator systems (Rinaudo et al,
2007). To evaluate the efficacy of combining shRNA switches,
we transfected HEK293T cells stably expressing EGFP with
shRNA switches that incorporate the theophylline aptamer
(S4) or the xanthine aptamer (X1), where both switches
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Figure 4 Experimental validation of aptamer tuning strategies. (A) Theophylline aptamer variants swapped into the equivalent box in Figure 3A. Dissociation constants
(KD) as reported previously (Zimmermann et al, 2000) are indicated for each aptamer. (B) Tuned theophylline response curves as described in Figure 1D for shRNA
switches that incorporate aptamers from (A). (C) Relationship between aptamer size and the lower limit of basal expression levels estimated from shRNA switches that
primarily adopt the active conformation. HEK293T tTA-d2EGFP cells were transfected with shRNA switches containing the following aptamers: none
(�; sh), xanthine aptamer (xa; X3), smaller theophylline aptamer (thS; S7, S14, S15), larger theophylline aptamer (thL; S5, S7, S9, S10), and tetracycline aptamer
(tc; T1). Values represent the average of the indicated switches for each aptamer. The original shRNA targeting EGFP (sh) represents the lower theoretical limit in this
cellular context. (D, E) Modular replacement of aptamer imparts new ligand dependence while maintaining switch functionality. Hypoxanthine response curves were
generated for shRNA switches incorporating the xanthine aptamer as described in Figure 1D, except that cells were grown in the presence of varying concentrations
of hypoxanthine. Indicated sequence variants are swapped into the equivalent box in Figure 3A. (F, G) Preservation of competing strand tuning strategies for

shRNA switches containing the xanthine aptamer. Variations targeted the length of the 30-end of the competing strand. Error bars represent one s.d. from
duplicate transfected wells.
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target EGFP and display similar basal expression levels.
On the basis of the combined component transfer functions
(Materials and methods), we anticipated that the combined
regulatory effects of S4 and X1 would require the presence of
both hypoxanthine and theophylline to fully inhibit GFP
silencing (Figure 5C and D). Relative GFP levels were
measured for cells transfected in the presence of theophylline,
hypoxanthine, or the combination of the two (Figure 5E).
GFP levels were high when individual switches were paired
with their cognate ligand or both ligands. Some signal cross

talk was observed as evidenced by the lower responsiveness of
S4 and X1 to their non-cognate ligands, and primarily
attributed to low aptamer specificity as observed in previous
theophylline aptamer studies (Jenison et al, 1994) and not
explicitly tested for the xanthine aptamer (Kiga et al, 1998).
When the switches were cotransfected, high GFP levels
coincided only in the presence of both ligands as expected
on the basis of the circuit configuration. On the basis of the
results, shRNA switches allow the construction of finely tuned
genetic networks that can process multiple inputs.
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Figure 5 Programming transfer functions through combinatorial design strategies. (A) Combinatorial tuning strategies enable fine-tuning of the component transfer
function. Stepwise nucleotide changes were made to S4, where each change fell under a different competing strand tuning strategy. (B) Tuned theophylline
response curves as described in Figure 1D. Arrows depict the systematic modifications designated in (A). (C) Circuit configuration of shRNA switches responsive to
theophylline (S4) or hypoxanthine (X1) that both target EGFP. (D) Predicted transfer function on the basis of application of the mathematical model to the circuit depicted
in (C). Fit curves represent the individual component transfer functions for S4 ( ) and X1 ( ), respectively. (E) Combinatorial implementation of shRNA switches
enables construction of networks that process multiple molecular inputs. Results are shown for HEK293T tTA-d2EGFP cells transfected with each shRNA construct
(250 ng) or cotransfected with both shRNA constructs (125 ng of each) in the presence of water (’), 3 mM theophylline ( ), 2 mM hypoxanthine ( ), or both theophylline
and hypoxanthine (&). Error bars represent one s.d. from duplicate transfected wells.
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An in silico framework towards component
sequence-to-transfer function prediction

The construction of large-scale biological systems will require
the simultaneous optimization of the behaviour of all system
components to yield proper network behaviour as suggested
for natural (Suel et al, 2007) and synthetic (Gardner et al, 2000;
Yokobayashi et al, 2002) systems. Although the transfer
functions associated with shRNA switches and other synthetic
riboswitches are amenable to physical tuning, a computational
framework to effectively navigate through qualitatively func-
tional sequences is necessary for the rapid optimization of
switch performance. Folding energetics dictate conformational
partitioning and therefore switch performance for a strand
displacement mechanism. RNA secondary structure predic-
tion algorithms (Mathews et al, 2004) have the potential to
perform accurate in silico prediction of in vivo switch
performance, although these algorithms have not been
sufficiently tested for in vivo folding dynamics. To investigate
the applicability of the secondary structure algorithms to
predict in vivo switch behaviour, we sought to develop a
sequence-to-function relationship for shRNA switches using
such algorithms in combination with our model (Figure 6A).

On the basis of our tuning analysis, we identified Kcomp as
the sole parameter that reflects partitioning between active
and inactive conformations and maps to the competing strand.
The free energy difference (DG) between conformations is
directly related to Kcomp such that transfer function prediction
is possible by calculating DG from sequence information with
the aid of structure prediction algorithms, converting this
value into Kcomp, and inserting Kcomp into Equation (1) to
quantitatively relate ligand concentration and target gene
expression levels. A fully determined model requires values for
the remaining model parameters; as these parameters are not
currently amenable to calculation in silico, experimental
estimation can be conducted with a minimal set of experi-
ments on the basis of our model construction (Supplementary
text 1).

We first determined if DG values calculated from the
algorithm correlate with the measured basal expression levels
for shRNA switches with varying competing strand sequences.
The implicit assumption is that competing strand alterations
affect only conformational partitioning, which can be calcu-
lated with the structure prediction algorithms. We evaluated
DG (DGmethod) by separating active and inactive conformations
on the basis of the minimal free energy (MFE) and the
weighted energies from a partition function (PF) calculation
(Supplementary text 2 and Supplementary Figure S5), where
both methods are commonly used to evaluate RNA folding in
vitro and in vivo. These methods were employed to calculate
DGmethod for shRNA switches S1–10, which differ only in their
competing strand sequence. To measure the correlation
strength between DGmethod and basal expression levels for
either method, we performed a least-squares fit using a three-
parameter equation of the same form as our model with both
data sets. Ideally, the fit relationship between DGmethod and
measured basal expression levels should align with the same
relationship predicted by the model (Figure 6B), where DG
(DGmodel) is related to Kcomp according to Equation (3). Both
MFE and PF calculations failed to provide a significant

correlation between DGmethod and basal expression levels
(Supplementary Figure S6), suggesting that these methods are
insufficient for accurate prediction of RNA folding dynamics in
vivo.

For all competing strand tuning strategies, increasing the
stability of the inactive conformation always resulted in an
increase in basal expression (Figure 3B–G). The MFE and PF
methods did not effectively capture each energetic shift
potentially due to the inclusion of binding interactions outside
of the major stems. We hypothesized that the interactions
outside of the competing strand domain are less prevalent in
vivo and are biasing the energetic calculations. To examine this
possibility, we devised a third method, the ‘Stems’ method,
that accounts only for the energetics of the major stem in each
conformation (Supplementary Figure S5). Implementing the
‘Stems’ method resulted in a strong correlation (R2¼0.94)
between basal expression levels and DGmethod (Figure 6C).

Despite the absence of a perfect overlap between the
correlation of the ‘Stems’ method and that predicted by our
model (Figure 6B and C), the correlation established a
significant empirical link between shRNA switch sequence
and behaviour in the absence of ligand. This correlation can be
assimilated into the model by equating basal expression levels
predicted by the fit equation and the model to determine the
relationship between DGmethod and Kcomp (Supplementary text
2). Doing so yields a predictive component transfer function
that is now dependent on the calculated value of DGmethod:

fmodel ¼ 1 � efshRNA

	 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
efshRNA

C1
C2 þ exp �DGmethod

kBNAT

� �� �C3h

s
� 1

2
4

3
5ð1 þ KaptLÞ

2
4

3
5
�h

ð2Þ
where C1�3 are empirical constants from the fit correlation.
Our extended model provides a general framework for
predicting shRNA switch transfer functions from sequence
information, where energetic values produced from structure
prediction algorithms are inserted into the model for the
prediction of switch behaviour. Although the extended model
currently requires parameter fitting to yield the predicted
relationship between ligand concentration and target gene
expression levels, the framework establishes a starting point
for the development of methods that rely on in silico
calculations for transfer function prediction from sequence
information.

Model-guided forward design of shRNA switches
with optimized transfer functions

To apply the extended model to the forward design of shRNA
switches with defined functional properties, we sought to
design a theophylline-regulated shRNA switch displaying a
maximized dynamic range (Z). Z is defined as the ratio of GFP
levels at high (3 mM) and low (1mM) theophylline concentra-
tions. We used our extended model to calculate the range ofDG
values where Z is maximized. Model predictions suggest that
Z is maximized for switches with DGmethodB�3 kcal/mol and
that use of the smaller theophylline aptamer (higher e) yields a
higher maximum (Figure 6D). To evaluate the predicted
landscape, we designed new shRNA switches (S13–25) that
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include the smaller theophylline aptamer and display ranging
DG values, generated component transfer functions and
calculated Z. Plotting DGmethod against the measured value
of Z for all theophylline-regulated shRNA switches (S1–25;

Figure 6E) shows a maximum for switches containing the
smaller theophylline aptamer that is higher than that for the
switches containing the larger aptamer. Furthermore, both
maxima existed at DGmethodB�3 kcal/mol as predicted by the
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Figure 6 Extended model enables sequence-to-transfer function prediction and guides the forward design of optimized shRNA switches. (A) General process to
convert shRNA switch sequence information into a predicted transfer function. RNA secondary structure algorithms and the method displaying the highest correlation
strength (‘Stems’ method; Supplementary text 2 and Supplementary Figure S5) were used to calculate the free energy difference between active and inactive
conformations (DGmethod). This value is subsequently used to calculate Kcomp, which is inserted into the extended model to yield the predicted relationship between
ligand concentration and target gene expression levels. (B) Predicted relationship between basal expression levels and calculated free energy difference (DGmodel)
between active and inactive conformations. (C) Sequence–function relationship for shRNA switches under the ‘Stems’ method. This method links sequence information
to basal expression levels with the aid of RNA secondary structure prediction algorithms. DG was calculated (DGmethod) according to this method for shRNA switch
sequences S1–10 and plotted with the associated measured basal expression levels. The strength of the three-parameter curve fit was evaluated on the basis of the
coefficient of determination (R 2). Each data point represents one shRNA switch. (D) Extended model predictions for the relationship between DGmethod and dynamic
range (Z). Z is defined as the ratio of GFP (%) at high (3 mM) and low (1 mM) theophylline concentrations. Curves represent shRNA switches containing the smaller
theophylline aptamer (—; e¼0.94, Kapt¼0.015 mM�1) or the larger theophylline aptamer ( ; e¼0.85, Kapt¼0.016 mM�1), respectively. (E) Values of Z for shRNA
switches containing the larger theophylline aptamer (S1–10; J) or the smaller theophylline aptamer (S11–25; ) as a function of DGmethod. Each data point represents
one shRNA switch. S13 (the optimized shRNA switch) and S1 (the original shRNA switch) are marked. (F, G) Flow cytometry data for HEK293T tTA-d2EGFP cells
transfected with S1 (F) or S13 (G) in the presence ( ) or absence ( ) of 3 mM theophylline. Histograms are included for the untransfected population of each switch
in the absence of theophylline ( ) or cells transfected with the original shRNA targeting EGFP in the absence of theophylline (—).
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extended model supplemented with the empirical parameter
values, and the best switch (S13) was approximately equal to
the theoretical maximum of Z according to model predictions
(Zmax,theorB5). Flow cytometry data illustrate the improve-
ment in dynamic range (Supplementary Figure S7) for the best
shRNA switch (S13; Figure 6G) as compared to the original
shRNA switch (S1; Figure 6F).

To examine the generality of shRNA switch design and
functionality, we designed a set of shRNA switches targeting
the endogenous La protein. Following selection of an shRNA
sequence that yielded moderate knockdown of La as assayed
by qRT–PCR, six shRNA switches (L1–6) were constructed
with the smaller theophylline aptamer and various competing
strand sequences covering a range of DG values. Each shRNA
switch exhibited variable response to 1.5 mM theophylline
that was not observed for the base shRNA (Supplementary
Figure S8). As observed for the GFP-targeting shRNA switches,
use of the ‘Stems’ method provided a suitable correlation
between basal levels and DGmethod, whereas the MFE and PF
methods did not. Supplying the model with fit values for C1�3

yielded a predicted dynamic range trend that closely matched
the experimental data (Figure 7A and B). Interestingly, when
the values of fshRNA and e calculated from the La-targeting base
shRNA and an shRNA switch preferentially adopting the active
conformation (L6) were combined with the remaining para-
meter values from the GFP experiments, the resulting trend
predicted the same maximum dynamic range with a shifted
value of DGmethod corresponding to the maximum dynamic
range. The results suggest that the shRNA sequence affects
calculations with the ‘Stems’ method such that empirical
values are specific to individual sequences and experimental
conditions. However, the ‘Stems’ method produced a strong
correlation such that the model may be implemented in future
designs by generating a small set of shRNA switches covering
DGmethod values of approximately �5 to 0 kcal/mol and
measuring basal expression levels. Thus, shRNA switches
can be constructed to target different genes, and the model can
be used as a tool to guide the forward design of switches
displaying optimal behaviour.

Discussion

A comparison between the framework described here and a
recently described ligand-controlled shRNA system (An et al,
2006) highlights important design strategies to engineer
domain swapping and tuning of the transfer function into
synthetic riboswitch systems. In the previous design, ligand
control of RNAi was achieved through direct coupling of the
theophylline aptamer and an shRNA stem. This design
inherently limits aptamer swapping, as the aptamer must
perform ligand binding coordinated with modulation of Dicer
processing, and prevents tuning of the transfer function, as
sequence changes that modulate Dicer processing cannot be
implemented without a complete loss of ligand responsive-
ness. In contrast, we propose here a framework on the basis of
the coupling of three distinct domains that carry out separate
functions necessary to convert ligand binding into modulation
of RNAi activity. Our system requires that the aptamer
performs one function, ligand binding, and the modulation

of RNAi processing is performed by a separate domain, the
competing strand. The competing strand permits fine-tuning
of the transfer function and enables modular coupling of the
aptamer and shRNA stem domains, as confirmed by indepen-
dently replacing each domain and demonstrating preservation
of functionality.

We developed a model to enhance our understanding of
shRNA switch activity and identified five tuning strategies
reflected in three model parameters, Kcomp, Kapt, and e, that
map specifically to sequence changes in the competing strand
or aptamer domains. Our model also established important
shRNA switch design guidelines. The first is that basal
expression levels are determined by a collection of factors:
shRNA potency (fshRNA), shRNA switch processability (e) and
prevalence of the active conformation (Kcomp). To achieve a
desired basal expression level, all factors must be considered
in the switch design. Another guideline originates from the
observation that larger aptamers coincided with increased
basal expression levels, potentially due to sterically hindering
processing by the RNAi machinery. The specific contribution
of secondary or tertiary structure to the inhibitory effect is
unclear, although further understanding of how the RNAi
machinery specifically interacts with the shRNA through
crystallographic or mutational studies may shed light on this
dependence. Our results suggest that shRNA switch sequence
length has an upper limit before compromising activity, where
future engineering efforts may focus on alleviating or entirely
removing this limitation. Furthermore, if achieving low basal
expression levels is critical and a set of aptamers against the
same ligand are available, use of smaller aptamers may be
preferred even at a cost to aptamer affinity. Such a guideline
may even direct library design for the selection of new
aptamers by placing an upper limit on the length of the
randomized sequence.

We incorporated RNA folding algorithms into our model for
in silico prediction of shRNA switch behaviour in vivo. The
resulting model yielded a framework for the forward design of
shRNA switches with specified functional properties. This was
achieved by linking RNA secondary structure prediction
algorithms, which convert sequence information into ener-
getic values, to our model, which converts energetic values
into switch behaviour, to provide an empirical sequence–
function relationship. The specific method used to calculate
the free energy difference (DGmethod) between active
and inactive conformations deviated from commonly used
methods (MFE and PF calculations) on the basis of observa-
tions from the experimental tuning trends. Our alternative
method may provide a better correlation with experimental
results by focusing the prediction of Kcomp to the region of the
switch in which the competing strand binding events are
occurring, ignoring energetic contributions from other regions
of the switch molecule that may not be relevant to the in vivo
conformational switching process. Our analysis moves to-
wards direct sequence-to-function relationships and suggests
that commonly used methods for predicting RNA structure and
behaviour should be carefully evaluated when applied to
in vivo environments. RNA folding in vivo is a complex
process, and algorithms that account for folding kinetics
(Danilova et al, 2006) and ulterior structural formation
(Parisien and Major, 2008), such as pseudoknots or non-
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canonical base-pairing interactions, may increase the accuracy
of the model as well as provide insight into sequences that
deviate from model predictions (Figures 6E and 7B). For
practical application, newer algorithms will need to be more
fully developed to offer the same functionalities as existing
algorithms, such as the ability to rapidly scan suboptimal
structures, calculate the energetics of multiple RNA strands,
and perform a partition function calculation. Although the PF
method did not produce a strong correlation using existing
algorithms, non-canonical base-pairing interactions may have
been an important factor that will be accounted for with newer
algorithms.

On the basis of the demonstrated modularity and tunability
of our platform, shRNA switches can be implemented towards
various applications. The required dynamic regulatory range
of a given application will be one of the main considerations in
utilizing shRNA switches, as the switches are practically

limited to an B10-fold induction ratio on the basis of the
maximum achievable knockdown with an endogenously
expressed shRNA. However, many endogenous non-coding
RNAs, including miRNAs, exhibit similar restrictions on
dynamic regulatory range and have important functions in
diverse biological processes, suggesting that this limited
dynamic range is not absolutely restrictive to the utility of
shRNA switches as dynamic gene regulatory components.

As one potential application, shRNA switches can be applied
to disease therapy by sensing intracellular disease markers and
inducing apoptosis or cell cycle arrest only in the affected cells
as suggested previously (Rinaudo et al, 2007). When a context-
dependent concentration threshold divides diseased and
normal cells, tunability is essential to reduce the likelihood
of false positives or negatives. In addition, shRNA switches
can be integrated into synthetic genetic circuits to generate
advanced control schemes in biological systems. Such systems
often exhibit complex dependencies on the dynamics of
component interactions, and tuning of component behaviour
is often necessary to achieve optimal system performance.
Through the fine-tuning strategies and model-guided forward
design tools described here, shRNA switches may be used
to address challenges faced in biological network design
and serve as complex regulatory components in synthetic
biology (Endy, 2005; Keasling, 2008; Savage et al, 2008).

Materials and methods

Plasmid construction

All shRNAs were cloned into pSilencer 2.1-U6 puro (Ambion). The
original shRNA present in pSilencer was used as a scrambled shRNA
control. The pSilencer backbone was modified to co-express DsRed-
Express in 293Tcells by cloning the SV40 origin of replication, CMV IE
promoter, and DsRed-Express into the NsiI/MfeI restriction sites. The
original XhoI site present in the backbone was removed by XhoI
cleavage, extension with the large Klenow fragment (New England
Biolabs), and ligation. To clone the shRNA switches, the original
shRNA followed by a 6-nucleotide (nt) string of T’s was cloned into
BamHI/HindIII directly downstream of the U6 promoter. The original
shRNA was converted into an shRNA switch by cloning the remaining
sequence (Supplementary Table I) into XhoI/XbaI contained within
the shRNA loop region. This allowed cloning in parallel of multiple
shRNA switches that are comprised of the same shRNA region. All
cloning steps involved annealing of 50-phosphorylated synthetic
oligonucleotides (Integrated DNA Technologies) and ligation into the
backbone vector. All restriction enzymes and T4 DNA ligase were
purchased from NEB. All constructs were sequence-verified (Laragen
Inc.), where sequences are provided in Supplementary Table I.

Preparation of RNAs

S4t was transcribed in vitro from an annealed template containing the
T7 promoter (50-TTCTAATACGACTCACTATAGGG-30, where G is the
first transcribed nucleotide) using the Ampliscribe T7 transcription kit
(Epicentre) according to the manufacturer’s instructions. Following
transcription and DNase treatment, unincorporated NTPs were
removed using a NucAway clean-up column (Ambion). 50-phosphates
were subsequently removed using Antarctic phosphatase (NEB).
Dephosphorylated RNA was then gel-purified on a 6% denaturing
polyacrylamide gel and quantified using an ND-1000 spectrophot-
ometer (NanoDrop). RNAs were 50-radiolabeled using T4 PNK (NEB)
and [g-32P]-ATP, purified using a NucAway clean-up column, and gel-
extracted on a 6% denaturing polyacrylamide gel.
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Figure 7 Model application guides the forward design of shRNA switches
targeting an endogenous gene. (A) Extended model predictions for the
relationship between DGmethod under the ‘Stems’ method and dynamic range (Z)
using empirical parameter values determined from the GFP experiments and
experimental parameters determined from the La control experiments ( ;
fshRNA¼0.6, e¼0.72), or extrapolated empirical parameter values determined
from the La switch experiments (—) (Supplementary Figure S8). (B)
Relationship between DGmethod and experimental dynamic range (Z) for La-
targeting shRNA switches L1–6. Plasmids harbouring shRNA switches L1–6
displaying a range of DGmethod values were transiently transfected into HEK293T
tTA-d2EGFP cells in the presence or absence of 1.5 mM theophyline and La
mRNA levels were analysed by qRT–PCR (Supplementary Figure S8). Each
data point represents one shRNA switch. The dashed line represents the
apparent increase in La mRNA levels upon theophylline addition observed for the
original shRNA (shL).
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In-line probing

In-line probing was conducted as described previously (Soukup and
Breaker, 1999). After heating at 70 1C for 2 min followed by slow
cooling to room temperature, 50-radiolabeled RNAs (0.2 pmol) were
incubated for 40 h at 25 1C in varying amounts of theophylline with
50 mM Tris–HCl pH 8.5 and 20 mM MgCl2. Reactions were terminated
by adding an equal volume of loading buffer (10 M urea, 1.5 mM
EDTA). The alkaline hydrolysis ladder was generated by incubating
RNA in 50 mM NaHCO3/Na2Co3 pH 9.2 and 1 mM EDTA for 6 min at
95 1C. The G-specific cleavage ladder was generated by incubating
RNA in 1 U RNase T1 (Ambion) with 20 mM sodium citrate pH 5.0,
1 mM EDTA, 7 M urea, and 3 mg yeast RNA for 25 min at 25 1C. RNAs
were resolved on an 8% denaturing polyacrylamide gel, dried for
90 min at 70 1C, then visualized on an FX phosphorimager (Bio-Rad).
Band quantification was performed using the Quantity One software
package (Bio-Rad). To account for well-loading variability, quantified
band intensities were normalized to an adjacent band of similar
intensity showing negligible theophylline dependence.

Cell culture and transfection

All cells were maintained at 37 1C in a 5% CO2-humidified incubator.
HEK293T, HEK293, HeLa, and HEK293T tTA-d2EGFP cells were
maintained in minimal essential medium alpha media (Invitrogen)
supplemented with 10% fetal bovine serum (FBS) (Invitrogen),
whereas MDA-MB-231 cells were maintained in RPMI 1640 with
glutamine (Invitrogen) supplemented with 10% FBS. Cells were
transfected 1 day after seeding using Fugene 6 (Roche) according to the
manufacturer’s instructions, followed by the immediate addition
of ligand. HEK293T tTA-d2EGFP were transfected with shRNA vector
(250 ng), whereas cells lacking endogenous GFP were cotransfected
with shRNA vector (250 ng) and pcDNA3.1(þ ) (Invitrogen) harbour-
ing the d2EGFP gene (25 ng) (Clontech). One day post-transfection, the
media and ligand were replaced. Transfected cells were collected 3
days post-transfection for flow cytometry analysis.

Cell fluorescence analysis

Three days post-transfection, cells were trypsinized and subjected to
flow cytometry analysis using the Cell Lab Quanta SC MPL (Beckman
Coulter). Cells were first gated twice for (1) viability as assessed by
electronic volume versus side scatter and (2) green fluorescence above
autofluorescence to remove a non-fluorescent subpopulation. Cells
were then gated for either low or high DsRed-Express fluorescence,
representing untransfected or transfected cells, respectively. To
minimize well-to-well variability, the median green fluorescence value
of transfected cells were divided by that of untransfected cells in the
same well and reported as GFP (%). For cells cotransfected with
shRNA and GFP plasmids, GFP (%) is the relative GFP levels when
normalized to mean red fluorescence followed by normalization to
cells transfected with the scrambled shRNA. See Supplementary Figure
S9 for representative plots and the corresponding gates for transfected
and untransfected cells.

Modelling and RNA energetic calculations

Calculation of RNA free energy and partition functions were performed
using RNAStructure (Mathews et al, 2004). Kcomp and the energy
difference between inactive and active conformations are related by
the following expression:

DGmodel ¼ E

 !
� E

 !
¼ �NAkBT lnðKcompÞ ð3Þ

where NA is Avogadro’s number, kB is the Boltzmann constant, and T is
temperature (K). See Supplementary texts 1 and 2 for a full description
of the model derivation, methods for calculating folding energetics,
and prediction of the transfer function for a given shRNA switch
sequence. Equation fits to measure the correlation strength between
DGmethod and basal expression levels were performed by least-

squares analysis using the following expression that has the same
mathematical form as Equation (1):

ffit ¼ 1 � C1 C2 þ exp �DGmethod

kBNAT

� �� ��C3

ð4Þ

where C1–3 are the fit constants. Supplementary Table II contains
energetic values calculated under each method along with experimen-
tally determined expression levels.

To model the multi-input system attained by cotransfecting
equimolar concentrations of plasmids harbouring S4 and X1, the
knockdown achieved by the original shRNA was halved to reflect the
50% decrease in delivered plasmid DNA. The ligand-dependent
contributions to decreased expression levels were combined into a
single expression to reflect the additive nature of shRNA levels
mediating knockdown of the target gene:

f ¼ 1 � fshRNA

2

	 eS4

½1þKcomp;S4ð1þKapt;S4LthÞ�hS4
þ eX1

½1þKcomp;X1ð1þKapt;X1LxanÞ�hX1

" #

ð5Þ
where the subscripts S4 and X1 designate parameter values generated
by a fit to the corresponding individual component transfer functions,
and Lth and Lxan represent the exogenous theophylline or hypox-
anthine concentration, respectively.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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