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Most people who tune pianos do not have perfect pitch. In the days before electronic tuners,

they would accomplish this feat with amazing precision by listening for the rate at which two

notes, struck simultaneously, would “beat” against each other. The contrast of two tones can

allow interval tuning with a pitch error well under 0.1%. Throughout the sciences, methods

that contrast two signals have provided massive improvements in precision. The interferome-

ter in its various forms has allowed comparison of two signals to achieve precise measurement

of the speed of light, the existence of gravitational waves, and quantum entanglement. In func-

tional genomics, one of the most precise ways to compare gene expression levels is to contrast

the expression of the two alleles in heterozygotes using an approach called allele-specific

expression (ASE). By quantifying the relative counts of a cell’s transcripts from two alleles that

differ by single nucleotide polymorphisms (SNPs), ASE has been used to contrast cis- versus

trans-regulation of genes [1] and to examine genomic imprinting [2] and escape from X chro-

mosome inactivation [3]. In this issue, we see another excellent application of this approach to

explore differences in spatial patterns of expression in the early Drosophila embryo.

Advances in expression profiling in the Drosophila embryo

The Drosophila embryo provides a classic model for pattern formation during development.

Much progress has been made in mapping the spatial and temporal gene regulatory circuits

that pattern cell fate in the embryo. Spatial gradients of gene expression are strictly controlled

along the anterior-posterior and dorso-ventral axes. This is mediated by cis-regulatory mod-

ules (CRMs) that respond to maternal and zygotic trans-acting factors that are differentially

distributed along the axes [4]. Early methods of analysis relied on beautiful immunofluores-

cence-tagged images of fly embryos, probing one or a few genes at a time. Now, modern geno-

mic approaches allow whole-genome gene expression measurements that enable construction

of 3D gene expression maps of organisms, as done recently using single-cell RNA sequencing

in late-stage fly embryos [5]. Similar attempts to enhance spatial resolution have been done by

cell-specific barcoding and fluorescence activated cell sorting (FACS) of specific neurons in

Caenorhabditis elegans [6] and 2D-arrayed bar-coded primers for RNA sequencing of tissue

sections [7]. Concurrently, efforts have been done to more precisely delineate temporal tran-

scriptional differences in the maternal-zygotic transition in Drosophila [8] and across tissues

[9] and developmental stages in C. elegans [10]. Because these organisms have two copies of

the genome, CRMs can differ between alleles of each copy. Thus, quantification of ASE can

augment these studies by allowing us to ask which sequences on the same allele (in cis) are

important in orchestrating gene expression during development.
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Spatially resolved ASE in F1 hybrid embryos

Combs and Fraser [11] extend these methods by applying spatially resolved genome-wide ASE

analysis to Drosophila embryos, to identify candidate genes involved in cis-regulatory diver-

gence. Earlier studies often measured ASE in whole organisms, averaging transcription factor

activity across tissues and cell types [12]. This can lead to an underestimation of ASE signals.

To overcome this limitation, Combs and Fraser measured transcript profiles in 14-μm–thick

cryo-sections that were made along the anterior-posterior axis of F1 hybrid embryos of D. mel-
anogaster and its sister species D. simulans (Fig 1). This approach identified 66 genes whose

patterns of ASE varied along the embryo. One of these genes, hunchback, encodes a transcrip-

tion factor that is expressed anteriorly during Drosophila development and is required for for-

mation of the fly’s anterior segments [13]. Anterior hunchback expression is higher in the

melanogaster embryo compared to the simulans embryo, and this same melanogaster bias per-

sists in ASE in the hybrid embryo, suggesting that the difference is cis based. Combs and Fraser

then focused tightly on hunchback, seeking to identify binding site differences in the melanoga-
ster and simulans CRMs that might explain the observed ASE bias.

A single SNP drives species-specific spatial hunchback

expression

Using a modeling approach [14], the authors narrowed down the transcription factor binding

motifs in the hunchback CRMs with the largest effects on hunchback expression. The model

singled out the canonical CRM (most proximal to the promoter), which has five Bicoid bind-

ing sites in melanogaster. In simulans, there is a sixth Bicoid binding site that also shows weak

binding for the transcription factor Huckebein, which could act as a repressor. To functionally

confirm that these differences in the canonical CRM are responsible for ASE of hunchback,

Combs and Fraser edited the endogenous locus in melanogaster using CRISPR to have a simu-
lans-like canonical CRM, with an extra Bicoid and Huckebein binding site. The edited line

was crossed to a simulans line whose canonical CRM contains polymorphisms that make it

more similar to melanogaster’s. In the resulting F1 hybrid, there was no longer an expression

bias of the melanogaster allele when controlled by the simulans CRM, thus providing evidence

that the simulans CRM reduces expression of whichever coding allele it controls. Whether this

is directly due to the binding of Huckebein remains to be determined.

Implications for the evolution of development

Because ASE is the read-out of differential cis- and trans-regulation, the molecular mecha-

nisms that drive ASE can only be elucidated if comprehensive information regarding the pres-

ence of cis-regulatory regions, transcription factor binding motifs, and epigenetic

modifications is known across tissues, cell types, timing in development, and disease states.

Such work is ongoing in model organisms, using modeling in silico and using large-scale func-

tional assays, including chromatin immunoprecipitation (ChIP) sequencing and fluorescent

reporters [15, 16]. However, in the meantime, ASE in hybrids between model organisms and

closely related sister species can help answer important questions related to the evolution of

cis-regulation.

In dissecting one instance of species-specific spatially localized ASE, Combs and Fraser

confirmed CRM divergence for hunchback that results in spatially distinct expression patterns

between melanogaster and simulans embryos, despite the fact that these species are virtually

indistinguishable in body plan. This observation is consistent with earlier studies that found

abundant differences between melanogaster and simulans in both cis- and trans-regulation,
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despite the endpoint having minimal phenotypic divergence [17]. Across embryos of multiple

fly species, mRNA levels are much more highly conserved than individual transcription factor

binding events, consistent with the existence of compensatory cis and trans changes [18]. Such

compensatory cis and/or trans variation might be neutral but could be selectively favored

under certain conditions [19]. In this regard, ASE analysis is a powerful tool in genome-wide

studies to dissect the adaptive nature of changes in gene regulation and how those changes

impact development, behavior, and disease [20]. This new study adds a spatial dimension to

the analysis of ASE and opens the door for many novel applications for dissecting cis- and

trans-regulation of gene expression.
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