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Abstract: Particulate matters (PMs) such as PM10 and PM2.5 were collected at a bus stop and were
analyzed using pyrolysis-gas chromatography/mass spectrometry to identify organic polymeric
materials in them. The major pyrolysis products of the PM samples were isoprene, toluene, styrene,
dipentene, and 1-alkenes. The pyrolysis products generated from the PM samples were identified
using reference polymeric samples such as common rubbers (natural rubber, butadiene rubber,
and styrene-butadiene rubber), common plastics (polyethylene, polypropylene, polystyrene, and
poly(ethylene terephthalate)), plant-related components (bark, wood, and leaf), and bitumen. The
major sources of the principal polymeric materials in the PM samples were found to be the abrasion
of the tire tread and asphalt pavement, plant-related components, and lint from polyester fabric.
The particles produced by the abrasion of the tire tread and asphalt pavement on the road were
non-exhaustive sources, while the plant-related components and lint from polyester fabric were
inflowed from the outside.

Keywords: particulate matter; organic polymeric component; pyrolysis-gas chromatography/mass
spectrometry; tire tread wear; asphalt pavement wear

1. Introduction

Particulate matter (PM) is caused by emitting directly into the atmosphere and by
converting from gaseous substances to particles by reaction with other substances in the
air [1]. Primary emission sources can be divided into natural sources and anthropogenic
sources. PM is generated mainly by anthropogenic factors such as vehicle emissions,
industrial fuel combustion, domestic fuel burning, cooking, and biomass combustion [1,2].
PM2.5 and PM10 refer to particles with an aerodynamic diameter smaller than 2.5 and
10 µm, respectively.

According to a study on PM2.5 sources produced for 1990–2014, on average globally,
25% was transportation, 15% was industrial activity, 20% was combustion of household
fuel, 22% was unspecified sources of human origin, and 18% was natural dust and sea
salt [3]. Research on PM sources from 15 different sampling regions in the Republic of
Korea for 2000–2017 reported that motor vehicles, secondary aerosol, combustion and
industry, natural source, soil dust, biomass and field burning, and other PM sources were
at 28, 34, 14, 2, 7, 11, and 4%, respectively [4].

It is known that PM in the atmosphere is composed of three major components, which
are water-soluble ions (SO4

2−, NO3
−, NH4

+, and alkalis and alkaline earth metal cations),
carbon (organic carbon and elemental carbon), and heavy metals [1,5]. The water-soluble
ions are analyzed by mainly using ion exchange chromatography (IEC) [6–9]. The carbon
components can be divided into organic carbon (OC) and elemental carbon (EC), and
thermal methods are used to estimate OC and EC [10–12]. Trace metals have been analyzed
using X-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, and
inductively coupled plasma-mass spectrometry [5,12–14].
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Besides the ionic species, OC/EC, and trace metals, PM can also contain various
organic components. There can be organic materials such as polyaromatic hydrocarbons
(PAHs) and microplastics in PM. PAHs have been analyzed using liquid chromatography
and gas chromatography [9,15]. The analysis of microplastics in PM has been primarily fo-
cused on classification by color or shape using stereomicroscopy [16–20]. There are various
suspended atmospheric microplastics: poly(ethylene terephthalate) (PET), polyethylene
(PE), polyamide (PA), polystyrene (PS), polypropylene (PP), and so on. PET- and PA-type
plastics are widely used in the textile industry, while PP can be derived from industrial
products such as textiles, car fenders, and bottle caps. Plastic products can decompose
when they are exposed to sunlight, and their tiny particles may be released into the air.

Tire tread wear particles (TWPs) are generated by friction between the tire tread and
road surface. In general, TWPs exist as tire-road wear particles (TRWPs) in the form of
TWP encrusted with various mineral particles [2]. Pyrolysis-gas chromatography/mass
spectrometry (Py-GC/MS) has been widely used for the analysis of TRWPs [2,21–23]. The
contribution levels of TRWPs to PM10 collected in France, USA, and Japan were assessed
using Py-GC/MS, and it was reported that there were TRWPs of 0.14–2.80% in the PM10
samples [22]. PM2.5 samples collected near houses, parks, schools, and businesses in Europe
(London), Japan (Tokyo), and US (Los Angeles) were also analyzed using Py-GC/MS, and
it was reported that TRWP contents in the PM2.5 samples were 0.11–0.49%, 0.10–0.33%, and
0.10–0.68% in London, Tokyo, and Los Angeles, respectively [2].

Component analysis via pyrolytic technique has been primarily focused on microplas-
tic analysis in environmental samples such as sediment and soil rather than atmospheric
samples [24–28]. In this study, PM samples were collected at a bus stop, the organic poly-
meric components in them were analyzed using Py-GC/MS, and the kinds of polymeric
components were determined using the pyrolysis products. Various polymer reference
samples such as rubbers, plastics, plant matter, and bitumen were employed to identify
the polymeric components in the PM samples. The kinds of polymeric materials in the PM
samples were determined by comparing their principal pyrolysis products with those of
the references. The sources of the polymeric components in the PM samples were investi-
gated. Py-GC/MS is a useful method for the identification of polymeric materials via the
interpretation of the pyrolysis products [29,30], and it is suitable for the analysis of trace
organic compound analysis because it can be conducted with a very small sample size.

2. Materials and Methods
2.1. Materials
2.1.1. Environmental Sample

PM10 and PM2.5 were collected at a bus stop near Sejong University, Republic of Korea
(37◦32′58.8′′ N 127◦04′32.3′′ E). The PM10 sample was collected in October 2020 (for 12 h),
and the PM2.5 samples were collected in November 2020 (PM2.5(1), for 14 h), February 2021
(PM2.5(2), for 24 h), May 2021 (PM2.5(3), for 24 h), and August 2021 (PM2.5(4), for 24 h). The
PM sampling was carried out using a low volume particulate sampler of KMS-4200 (Kemik
Co., Seoul, Korea) and a filter with a diameter of 47 mm.

Road dust that accumulated between the curb and road at the bus stop was collected.
It was collected by sweeping with a broom and was separated by size using a sieve shaker
from Octagon 200 (Endecotts Co., London, UK). TRWP and asphalt wear particles (AWP)
were selected using an image analyzer (EGVM 35B, EG Tech. Co., Seoul, Korea).

2.1.2. Reference Samples

SMR CV60, BR01, and SBR1502 were used for NR, BR, and SBR as the reference rubber
samples, respectively. Oak tree components of bark, wood, and leaf were employed as
the reference plant-related component (PRC) samples. The PRC samples were obtained
in Achasan, located in Gwangjin-gu (Korea), where there is no contamination by anthro-
pogenic factors. PE, PP, PS, and PET were used as the reference plastic samples, and they
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were purchased from Sigma-Aldrich Co. (St. Louis, MI, USA). Bitumen, used as a binder of
asphalt pavement, was also employed as the reference sample.

2.2. Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS)

Py-GC/MS analysis was carried out using a JCI-55 Curie-point pyrolyzer (Japan
Analytical Industry Co., Tokyo, Japan) coupled to an Agilent 6890 gas chromatograph
equipped with a 5973 mass spectrometer (Agilent Techonology Inc., Santa Clara, CA, USA).
All samples were pyrolyzed using a pyrofoil of 590 ◦C Curie temperature for 10 s under
Helium (He) atmosphere. The pyrolysis products were separated through GC, and each
separated peak was identified by interpreting its mass spectrum. A DB-5MS capillary
column (30 m × 0.32 mm, 0.25 µm film thickness, Agilent Technology Inc., Santa Clara, CA,
USA) was used. The injector temperature was 250 ◦C. Two GC oven temperature programs
were used as follows: (1) 30 ◦C (held for 3 min) to 160 ◦C (held for 1 min) at 8 ◦C/min, then
to 250 ◦C (held for 3 min) at 10 ◦C/min; and (2) 30 ◦C (held for 3 min) to 50 ◦C (held for
3 min) at 10 ◦C/min, then to 180 ◦C (held for 1 min) at 10 ◦C/min and raised up to 250 ◦C
(held for 3 min) at 10 ◦C/min again. The interface temperature of GC to MS was 250 ◦C.
The electron ionization (70 eV) was used to ionize the pyrolysis products. The MS source
temperature was 230 ◦C.

3. Results and Discussion
3.1. Py-GC/MS Analysis of the PM Samples

Figures 1 and 2 show Py-GC/MS chromatograms of the PM10 and PM2.5 samples,
respectively. Their major pyrolysis products are summarized in Tables 1 and 2, respectively.
The common pyrolysis products detected from the five PM samples were isoprene, toluene,
styrene, dipentene, and 1-alkenes. Compared to the PM10 sample, there were some different
pyrolysis products such as furfural, acetophenone, 4-methylphenol, and benzoic acid in the
PM2.5 sample. The kinds and abundances of pyrolysis products of the four PM2.5 samples
were different from each other. The major pyrolysis products of the PM2.5(1) sample were
nearly the same as those of the PM10 sample, whereas the other PM2.5 samples showed
some different pyrolysis products, as listed in Table 2. Furfural was detected in the PM2.5(2)
and PM2.5(3) samples. Acetophenone and benzoic acid were not observed in the PM2.5(1)
sample. The composition of the PM sample should be dependent on the sampling time and
weather. The kinds of polymeric materials to generate the principal pyrolysis products were
analyzed in comparison with the reference samples of rubbers, plastics, PRCs, and bitumen.
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Figure 1. Py-GC/MS chromatogram of the PM10 sample. 
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Figure 2. Py-GC/MS chromatograms of the PM2.5(1), PM2.5(2), PM2.5(3), and PM2.5(4) samples. 

Table 1. Peak areas and relative intensity ratios (the reference: 1-undecene) of the major pyrolysis 

products detected in the PM10 sample. 

Peak No. Product Peak Area (103) (Intensity Ratio) 

1 isoprene 668 (1.70) 

2 1-hexene 526 (1.33) 

3 benzene 1339 (3.40) 

4 1-heptene 511 (1.30) 

5 toluene 520 (1.32) 

6 1-octene 316 (0.80) 

7 styrene 614 (1.56) 

8 1-nonene 606 (1.54) 

Figure 1. Py-GC/MS chromatogram of the PM10 sample.
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Figure 2. Py-GC/MS chromatograms of the PM2.5(1), PM2.5(2), PM2.5(3), and PM2.5(4) samples. 

Table 1. Peak areas and relative intensity ratios (the reference: 1-undecene) of the major pyrolysis 

products detected in the PM10 sample. 
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1 isoprene 668 (1.70) 
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3 benzene 1339 (3.40) 

4 1-heptene 511 (1.30) 
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8 1-nonene 606 (1.54) 

Figure 2. Py-GC/MS chromatograms of the PM2.5(1), PM2.5(2), PM2.5(3), and PM2.5(4) samples.

Table 1. Peak areas and relative intensity ratios (the reference: 1-undecene) of the major pyrolysis
products detected in the PM10 sample.

Peak No. Product Peak Area (103) (Intensity Ratio)

1 isoprene 668 (1.70)
2 1-hexene 526 (1.33)
3 benzene 1339 (3.40)
4 1-heptene 511 (1.30)
5 toluene 520 (1.32)
6 1-octene 316 (0.80)
7 styrene 614 (1.56)
8 1-nonene 606 (1.54)
9 1-decene 440 (1.12)
10 dipentene 746 (1.89)
11 1-undecene 394 (1.00)
12 1-dodecene 287 (0.73)

Table 2. Peak areas and relative intensity ratios (the reference: 1-undecene) of the major pyrolysis
products detected in the PM2.5 samples.

Peak No. Pyrolysis Product
Peak Area (103) (Intensity Ratio)

PM2.5(1) PM2.5(2) PM2.5(3) PM2.5(4)

1 isoprene 697 (0.83) 339 (1.09) 438 (1.08) 602 (0.76)
2 1-hexene 591 (0.70) trace 413 (1.01) 531 (0.67)
3 benzene 4121 (4.92) 1395 (4.47) 762 (1.87) 595 (0.75)
4 1-heptene 734 (0.88) 167 (0.53) 273 (0.67) 1065 (1.34)
5 toluene 664 (0.79) 548 (1.76) 737 (1.81) 498 (0.63)
6 1-octene 551 (0.66) 188 (0.60) 288 (0.71) 457 (0.58)
7 furfural — 196 (0.63) 46 (0.11) —
8 styrene 1381 (1.65) 1540 (4.94) 1768 (4.34) 792 (1.00)
9 1-nonene 846 (1.01) 224 (0.72) 394 (0.97) 515 (0.65)
10 1-decene 873 (1.04) 254 (0.82) 444 (1.09) 742 (0.94)
11 dipentene 1479 (1.76) 529 (1.70) 880 (2.16) 1991 (2.51)
12 acetophenone — 316 (1.01) 51 (0.13) trace
13 4-methylphenol — 263 (0.84) 92 (0.23) 136 (0.17)
14 1-undecene 838 (1.00) 312 (1.00) 407 (1.00) 792 (1.00)
15 benzoic acid — 561 (1.80) 506 (1.24) 174 (0.22)
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3.2. Py-GC/MS Analysis of the Reference Samples

In order to identify the kinds of polymeric materials in the PM samples, principal
pyrolysis products of the reference samples such as NR, BR, SBR, PE, PP, PS, PET, bitumen,
and PRCs (bark, wood, and leaf) were analyzed. They were pyrolyzed under the same
conditions as the PM samples, and their major pyrolysis products were assigned. The
principal pyrolysis products of the rubbers (NR, BR, and SBR), plastics (PE, PP, PS, and
PET), and bitumen are listed in Table 3, while those of the PRCs are summarized in Table 4.

Table 3. Principal pyrolysis products of the reference organic polymeric samples.

Polymer Principal Pyrolysis Products

NR isoprene, dipentene
BR 1,3-butadiene, 4-vinylcyclohexene (VCH)

SBR 1,3-butadiene, VCH, styrene, 2-phenylpropene (2-PP),
3-phenylcyclopentene (3-PCH), 4-phenylcyclohexene (4-PCH)

PE alkanes, 1-alkenes, alkadienes
PP 2-methyl-1-pentene, 2,4-dimethyl-1-heptene, 2,4,6-trimethyl-1-nonene
PS styrene, 2-PP, biphenyl

PET benzene, acetophenone, vinyl benzoate, benzoic acid, 4-methylbenzoic acid

Bitumen 1,3-butadiene, styrene, phenol, 1-ethenyl-4-methylbenzene, indene,
1-undecene, 1-dodecene, 4-(1-methylethyl)-phenol

Table 4. Relative intensity ratios (the reference: 2-methoxy-4-methylphenol) of principal pyrolysis
products produced from the oak tree components.

Pyrolysis Product Bark Wood Leaf-1 Leaf-2

furfural 0.27 1.30 0.80 0.94
styrene 0.14 0.03 0.25 0.12

1-decene 0.09 — — —
2,2-diethyl-3-methyl-oxazolidine 0.12 1.64 0.49 0.87

dipentene 0.07 0.16 0.22 0.11
4-methylphenol 0.31 0.13 0.73 0.35

2-methoxyphenol 0.69 0.88 0.72 0.62
1-undecene 0.08 — — —

maltol — 0.17 0.17 0.19
2-methoxy-4-methylphenol 1.00 1.00 1.00 1.00

1-dodecene 0.09 — — —

The principal pyrolysis products of NR were isoprene and dipentene, corresponding to
the monomer and dimer of the repeat unit (isoprene), respectively, because NR is a polymer
of isoprene, and the key pyrolysis products of isoprene and dipentene are the monomer
and dimer of the repeat unit [31–33]. The isoprene and dipentene were detected as main
pyrolysis products in the PM samples. This implies that there was an NR component in
the PM samples. NR should originate from tire tread wear particles. In general, bus tire
treads are mainly made of NR [34–38]. Hence, the source of the NR should be bus tire tread
wear. Abrasion of tire tread occurs mainly during the start and stop of a vehicle rather
than during stable driving. The principal pyrolysis products of BR are 1,3-butadiene and 4-
vinylcyclohexene (VCH, dimer of 1,3-butadiene), but there was no VCH in the PM samples.
This indicates that there was no BR component in the PM samples. There are various
principal pyrolysis products of SBR, such as 1,3-butadiene, VCH, styrene, 2-phenylpropene
(2-PP), 3-phenylcyclopentene (3-PCP), and 4-phenylcyclohexene (4-PCH) [39–42]. If there
were SBR components in the PM samples, some of them must have been detected. Styrene
was clearly observed in the Py-GC/MS chromatograms of the PM samples, but most of
the others were not detected. This implies that there was no SBR component in the PM
samples and that the source of the styrene was not SBR.
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It is well known that the principal pyrolysis products of PE are alkanes, 1-alkenes, and
alkadienes [26]. In Py-GC/MS chromatograms of the PM samples, 1-alkenes were clearly
detected, but alkanes and alkadienes were rarely observed. Hence, the source of 1-alkenes
detected in the PM samples was not PE. 2-Methyl-1-pentene, 2,4-dimethyl-1-heptene, and
2,4,6-trimethyl-1-nonene are typical pyrolysis products of PP, but they were not detected
in the PM samples. This indicates that there was no PP component in the PM samples.
Styrene is one of the major pyrolysis products of PS, and it was observed in the PM samples,
but 2-PP and biphenyl, as the major pyrolysis products of PS, were not detected in the PM
samples. Thus, PS was not the source of styrene in the PM samples. Acetophenone and
benzoic acid were observed in the PM2.5(2) and PM2.5(3) samples, and they are principal
pyrolysis products of PET [43,44]. This implies that there was a PET component in the
PM2.5(2) and PM2.5(3) samples.

Bitumen is widely used as a binder of asphalt pavement. The vomponents of bitumen
vary widely, and they are different according to the suppliers. The principal pyrolysis
products of bitumen were 1,3-butadiene, styrene, phenol, 1-ethenyl-4-methylbenzene,
indene, 1-undecene, 1-dodecene, and 4-(1-methylethyl)-phenol, as listed in Table 3. Among
them, the pyrolysis products that matched with the PM samples were styrene and 1-alkenes
such as 1-undecene and 1-dodecene. Hence, it can be concluded that one of the styrene
sources should be bitumen and that one of the 1-alkene sources should also be bitumen.

The principal pyrolysis products of the PRCs varied according to the kinds of compo-
nents, such as bark, wood, and leaf, as listed in Table 4. The kinds of principal pyrolysis
products of the two leaf samples were nearly the same, but the relative abundances were dif-
ferent from each other. One of the key pyrolysis products of PRCs is furfural produced from
cellulose [45,46]. Furfural was abundantly observed in all the PRC samples. 1-Alkenes such
as 1-undecene and 1-dodecene were also detected in the PRC samples. 1-Alkenes should
be pyrolysis products of waxes, and it is known that there is plant epicuticular wax in the
surface layer [47,48]. 1-Alkenes were observed in all the Py-GC/MS chromatograms of the
PM samples, and furfural was detected in those of the PM2.5(2) and PM2.5(3) ones. Since
furfural is the pyrolysis product of the wood component, the analytical results indicate that
the PM2.5(2) and PM2.5(3) samples contained the wood component. The PM samples might
contain some bark or leaf component because plant epicuticular wax generally exists in the
surface layer of bark and leaf.

3.3. Py-GC/MS Analysis of the TRWP and AWP Collected near the Bus Stop

Single TRWP and AWP collected near the bus stop were pyrolyzed, and their Py-
GC/MS chromatograms are shown in Figures 3 and 4, respectively. The TRWP chro-
matogram clearly showed the key pyrolysis products of NR (isoprene and dipentene), and
styrene was also observed, but VCH was not detected. If the TRWP was a debris of an SBR
or NR/BR compound, the chromatogram must show VCH as one of the major pyrolysis
products because VCH is the key pyrolysis product of BR and SBR. Hence, the TRWP was
a particle of an NR compound, and it should come from the abrasion of bus tire tread
composed of NR. Thus, it can be concluded that the isoprene and dipentene detected in the
PM samples originated from abrasion of bus tire tread.

The Py-GC/MS chromatogram of the AWP showed various pyrolysis products (Figure 4).
The major pyrolysis products were 1-alkenes, toluene, and styrene. The 1-alkenes detected
in the PM samples should come from the AWPs. Since styrene was also one of the major
pyrolysis products of the AWP, its detection in the TRWP should come from the AWP. During
the abrasion process of the bus tire tread, friction between the tire tread and asphalt pavement
occurs, and a few small AWPs can be attached to the TWP surface.
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3.4. Sources of the Organic Polymeric Components in the PM Samples

The sources of the organic polymeric components in the PM10 sample are summarized
in Figure 5. Isoprene and dipentene are the key pyrolysis products of NR, which is the main
component of bus tire tread compounds. Hence, isoprene and dipentene originated from
TWPs of buses. PRCs could also produce isoprene and dipentene as pyrolysis products,
but their abundances were very small, so the contribution level of the PRCs in producing
isoprene and dipentene could be negligible. Styrene was one of the major pyrolysis
products formed from AWP, and it was also one of the main pyrolysis products of PS and
SBR. However, styrene dimer and trimer and VCH were not detected in the PM samples.
Thus, styrene should originate from AWP. 1-Alkenes are key pyrolysis products of wax and
one of the major pyrolysis products of bitumen. PRCs also have epicuticular wax. Hence,
the sources of 1-alkenes should be PRCs and AWP.
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Figure 5. Sources of the principal pyrolysis products obtained from the PM10 sample.

The sources of the organic polymeric components in the PM2.5 samples are described
in Figure 6. The PM2.5 samples also showed isoprene, dipentene, styrene, and 1-alkenes as
the pyrolysis products. Hence, like the PM10 sample, the PM2.5 samples contained TWPs,
AWPs, and PRCs. Additionally, furfural, acetophenone, and benzoic acid were observed
in the PM2.5 samples. Acetophenone and benzoic acid are major pyrolysis products of
PET, which can originate from the lint of polyester (PET) fabric/clothes. The detection of
furfural can provide evidence that the sample contains a wood component.
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Figure 6. Sources of the principal pyrolysis products obtained from the PM2.5 samples.

Figure 7 shows the kinds of organic polymeric materials in the PM samples collected
at the bus stop, and the key pyrolysis products for identifying the kinds of polymeric
materials by using Py-GC/MS. In summary, there are TRWPs, AWPs, PRCs, and polyester
fabric (lint of clothes) as PM near bus stops on asphalt pavement roads. The kinds and
abundances of polymeric components in the PM samples can be dependent on the sampling
site, time, road conditions, and traffic volumes.
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4. Conclusions

The kinds of polymeric components in PM samples were identified by interpreting
their pyrolysis products. In order to clearly identify the kinds of polymeric materials in the
PM samples, reference samples such as NR, BR, SBR, PE, PP, PS, PET, bitumen, and PRCs
(bark, wood, and leaf) were employed, and their pyrolysis products were analyzed. The
major pyrolysis products generated from the PM samples were isoprene, toluene, styrene,
dipentene, and 1-alkenes. The main polymeric components found in the PM samples were
wear particles of tire tread and asphalt pavement, plant-related components, and the lint
of polyester fabric. Compared to the PM10 sample, there were some different pyrolysis
products such as furfural, acetophenone, 4-methylphenol, and benzoic acid in the PM2.5
samples. Furfural is one of the major pyrolysis products of plant-related components,
while acetophenone and benzoic acid are the principal pyrolysis products of PET. The
kinds and abundances of polymeric components in PM samples can be dependent on the
sampling site, time, road conditions, and traffic volumes. The analysis of various polymeric
components in PM samples can be useful for understanding various sources of PM.

Author Contributions: E.C.: sample preparation, formal analysis, data curation, visualization,
writing—first draft. S.-S.C.: resources, supervision, writing—original draft & editing. All authors
have read and agreed to the published version of the manuscript.
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of Trade, Industry and Energy, Republic of Korea (Project Number 20003587).
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Data Availability Statement: The data presented in this study are available on request from the
corresponding author.
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