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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-
19 pandemic. While the development of vaccines and the emergence of antiviral therapeutics is
promising, alternative strategies to combat COVID-19 (and potential future pandemics) remain
an unmet need. Coronaviruses feature a unique mechanism that may present opportunities for
therapeutic intervention: the RNA polymerase complex of coronaviruses is distinct in its ability to
proofread and remove mismatched nucleotides during genome replication and transcription. The
proofreading activity has been linked to the exonuclease (ExoN) activity of non-structural protein
14 (NSP14). Here, we review the role of NSP14, and other NSPs, in SARS-CoV-2 replication and
describe the assays that have been developed to assess the ExoN function. We also review the
nucleoside analogs and non-nucleoside inhibitors known to interfere with the proofreading activity
of NSP14. Although not yet validated, the potential use of non-nucleoside proofreading inhibitors in
combination with chain-terminating nucleosides may be a promising avenue for the development of
anti-CoV agents.

Keywords: coronavirus; SARS-CoV-2; polymerase; proofreading; NSP14; exonuclease; ExoN;
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1. Introduction

The respiratory infection COVID-19 is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is an enveloped, positive-sense, single-stranded
RNA virus that belongs to the β-coronavirus genus of the Coronaviridae family as part
of the Nidovirales order [1]. The RNA genome of SARS-CoV-2 is divided into multiple
open-reading frames, among which ORF1ab contains the nonstructural proteins (NSPs)
7 to 16 required for RNA replication and transcription, with the exception of NSP11. The
replication and transcription of CoV RNA requires a complex and multi-step coordination of
viral enzymatic functions encoded by NSPs (for a complete review, see [2]). NSP12 contains
the RNA-dependent-RNA polymerase (RdRp) activity responsible for RNA synthesis
and is considered a major target for antiviral agents [3,4]. NSP12 also encodes a second
enzymatic site referred to as the NiRAN (nidovirus RdRp-associated nucleotidyltransferase)
also responsible for UMPylation of the NSP9 [5]. The NiRAN domain of NSP12 is found
only in viruses belonging to the Nidovirales order and is an emerging target for antiviral
therapy development [6]. NSP13 encodes nucleoside triphosphatase and helicase functions
responsible for unwinding viral RNA. NSP15 encodes an endonuclease activity, and NSP16
is a 2′O-MTase; both enzymes are key to viral RNA maturation. NSP14 is a bifunctional
enzyme featuring exonuclease (ExoN) and guanine G7-methylransferase (MTase) activities
that plays a critical role in SARS-CoV-2 replication. While the G7-MTase role in RNA
capping and its relevance as a therapeutic target have been described elsewhere [7–11],
this review focuses on the function and potential therapeutic opportunity of the ExoN
proofreading activity of NSP14.
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2. NSP14 Is Essential to RNA Replication and Transcription

First identified in SARS-CoV, the ExoN activity of double-stranded RNA (dsRNA)
proceeds in a 3′ to 5′ direction [12]. Conserved amongst cellular exonucleases [13], the
ExoN domain features the critical Asp and Glu residues along with the two metal binding
sites that drive nucleotide excision, classifying NSP14 in the DEDDh superfamily [14,15],
which includes DNA proofreading enzymes. The identification of NSP14 catalytic residues
is further supported by structural studies [16] that also highlight the importance of two
zinc finger domains for ExoN activity [17]. A yeast two-hybrid screen revealed that
NSP14 interacts with NSP10 [18], an interaction that increased ExoN activity over 35-fold,
potentially through stabilization of the NSP14 ExoN active site [16,19].

The combination of biochemical and structural approaches has shed light on the role
of NSP14 in viral replication. Pull-down studies using recombinantly expressed proteins
in Escherichia coli confirmed that the NSP12-NSP7-NSP8 complex can interact with NSP14
with no loss of polymerase, ExoN, or G7-MTase activities [20]. The RdRp protein (NSP12)
interacts with the NSP14 ExoN and G7-MTase domains. Small-angle X-ray scattering stud-
ies revealed a hinge region that separates the ExoN and G7-MTase domains, suggesting a
molecular switch allowing different functions and activities with diverse substrates [21]
(reviewed in [22]). These data support a model in which RNA polymerization and proof-
reading occur in a single complex with a high degree of cooperativity so that nascent double
stranded RNA exiting the polymerase passes over the NSP14 ExoN and NSP15 endonucle-
ase sites before being unwound [23]. This process is further supported by recent crystal
structures highlighting the interaction between NSP14 and NSP10 along with cryo-EM
structures showing how NSP14-NSP10 facilitates proofreading of viral RNA in concert
with NSP12 [24–26].

The primary role of NSP14 ExoN in the replication complex is to ensure replica-
tion fidelity by removing mismatched nucleotides from the 3′ end of the growing RNA
strand [21,27]. In mouse hepatitis virus (MHV)-CoV, catalytically inactive (yet viable)
ExoN mutants generate significantly altered patterns of recombination and less frequent
recombination events than the wild type. Decreased subgenomic RNA populations and
increased defective viral genomes observed with these mutants support the importance of
proofreading by NSP14 ExoN in viral RNA synthesis and viral fitness [28]. Genetic studies
further support the proofreading mechanism of NSP14. Loss-of-function ExoN mutants
exhibit a 20-fold increase in mutation frequency during replication in cell culture [13,29].

In addition to its role in proofreading, the NSP14 ExoN activity has also been impli-
cated in the innate immune response. By digesting double-stranded RNA (dsRNA)—an
intermediate of viral replication that often triggers an immune response—NSP14 ExoN has
been proposed to shield the RNA from recognition by innate immune sensors [30]. This
mechanism, together with the function of the G7-MTase domain in mRNA cap formation
to mask viral RNA as “self”, contributes to further evade the host immune response [31].
NSP14 is highly conserved in α, β, and γ coronaviruses, which explains why these mecha-
nisms of immune response evasion are also shared by other coronaviruses [32–36]. Taken
together, these data support the potential of NSP14 as a therapeutic target for addressing
current and future coronavirus pandemics.

3. In Vitro Assays to Identify and Characterize NSP14 Proofreading Inhibitors

To date, drug discovery efforts focused on NSP14 have been limited. While there
are many established assay technologies well suited for measuring the methyltransferase
activity of NSP14, assays that measure the ExoN and proofreading activity are more chal-
lenging. Historically, nuclease activities are mainly characterized by gel electrophoresis,
which is useful for characterizing enzyme activities and simultaneously providing informa-
tion on the various enzymatic products, but the limited throughput is not conducive for
large-scale drug discovery efforts. Emerging data highlighting the therapeutic potential
of the NSP14 ExoN activity has motivated the development of high-throughput nuclease
assays to facilitate drug discovery. One example takes advantage of the small molecule
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intercalator RiboGreen that binds to dsRNA, the substrate for NSP14. Digestion of dsRNA
by NSP14 ExoN activity dissociates the RiboGreen from the dsRNA and leads to a loss
of fluorescence signal (Figure 1A) [37]. The RiboGreen format was used to screen 5000
small molecules against the NSP14-NSP10 complex to identify ExoN inhibitors. While
the assay performance was sufficiently robust (Z-factor = 0.72), the readout suffers from
two major limitations. Firstly, RiboGreen fluorescence decreases over time, which could
lead to false negative results if plates are not read in a timely manner. Secondly, this
assay is prone to high rates of false positives and false negatives, either due to compounds
that displace the RiboGreen from dsRNA independent of nuclease activity or through
intrinsic auto-fluorescence of small molecule compounds. These assay artifacts made it
difficult to distinguish true inhibition hits, motivating the development of a FRET-based
assay (Figure 1B) [37]. Utilizing a dsRNA sequence with a low melting temperature and
featuring a fluorescent emitter on one strand and a fluorescent quencher on the other,
ExoN activity releases the emitter generating a fluorescent signal. The FRET format is
straightforward and accessible but is still prone to false positive and false negative results
due to optical interference (auto-fluorescence or quenching) of small molecule library com-
pounds. To overcome optical interference, a label-free and high-throughput assay has been
described using a combination of self-assembled monolayers and matrix-assisted laser
desorption ionization (MALDI) mass spectrometry, a technique termed SAMDI (Figure 1C).
The SAMDI-MS assay offers several benefits, including a robust format (Z-factor = 0.85),
significant signal-to-background ratio (>200), and the ability to distinguish multiple reac-
tion products. The SAMDI-MS assay was used to screen 10,000 small molecules against
the NSP14-NSP10 complex focused on the ExoN activity [38]. ExoN inhibitor selectivity
was further evaluated against another RNA nuclease and in a thiazole orange assay to
rule out RNA intercalators, revealing single-digit micromolar inhibitors that remain under
investigation. This particular assay format is interesting given its multiplexing capabil-
ity [39]. In this format, one could envisage monitoring the polymerase activity of RdRp
and the proofreading activity of NSP14 ExoN to monitor the polymerase and proofreading
activities of the complex simultaneously, offering a powerful assay to discover antiviral
compounds against SARS-CoV-2 and other coronaviruses.
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Figure 1. High-throughput biochemical activity assays for NSP14 exonuclease activity. (A). Double-
stranded RNA is incubated with the non-specific intercalator RiboGreen. Upon nuclease activity, the
RiboGreen is released, corresponding to a loss of signal. (B). Traditional FRET assay using dsRNA
substrates featuring a fluorescent emitter, such as Cy3, and a fluorescent quencher. Upon NSP14
nuclease activity, the two strands dissociate, releasing the fluorescent emitter generating a fluorescent
signal. (C). A dsRNA substrate featuring a biotin on the 5′ end is digested by NSP14 exonuclease
activity. The biotinylated substrates and products are immobilized onto NeutrAvidin, presenting
self-assembled monolayers in a high-density biochip array format that are efficient substrates for
MALDI-ToF-MS, a technique termed SAMDI.

4. Known Small Molecules That Interfere with the Proofreading Activity of NSP14
4.1. Nucleosides Causing Delayed Chain Termination or Error Catastrophe

Until now, the main efforts to develop nucleoside analogs against SARS-CoV-2 have
focused on repurposing molecules already known to be effective against other RNA viruses.
However, obligate chain-terminating antiviral nucleosides are generally not effective
against SARS-CoV-2 because coronaviruses carry the NSP14-encoded ExoN proofreading
activity that removes incorporated nucleotide analogs from the 3′-end of nascent RNA (for
a review, see [40]). Sofosbuvir, an approved hepatitis C virus drug that acts as an immediate
chain terminator, was predicted in silico to be recognized in its nucleoside triphosphate
form (SOF-TP) by the polymerase complex of SARS-CoV-2 [41]. It was recently reported
that SOF-TP, once incorporated into viral RNA in its monophosphate form, is efficiently
excised by NSP14, thereby allowing RNA synthesis to resume [24]. However, SOF-TP
was also shown experimentally to be a poor substrate for viral RNA incorporation [42],
consistent with the lack of anti-CoV activity of sofosbuvir in cell culture [43,44]. For these
reasons, it remains unclear whether the lack of sofosbuvir activity against SARS-CoV-2 is
due to high discrimination by the viral polymerase or to excision by the viral proofreading
mechanism. In contrast, the nucleoside analog remdesivir efficiently inhibited SARS-CoV-2
in cell culture and in animal models [45–47]. Remdesivir was the first FDA-approved
drug for the treatment of patients with COVID-19 (Figure 2). Remdesivir might be able
to circumvent the ExoN excision/repair activity of NSP14 because its incorporation does
not immediately terminate elongation of the nascent RNA strand but instead stalls the
polymerase complex after the addition of three more nucleotides [42,48–51].
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Figure 2. Representative nucleoside analogs interfering with RNA proofreading.

The RNA proofreading activity of the NSP14 ExoN domain also protects coronaviruses
from ribavirin. Ribavirin is a triazole nucleoside that was discovered 50 years ago [52].
The mechanism of antiviral activity of ribavirin is believed to involve lethal mutagenesis
as a combined result of inosine monophosphate dehydrogenase inhibition resulting in
nucleotide pool imbalance, together with insertion into the nascent viral RNA [53,54].
Consequently, many unrelated RNA viruses are sensitive to ribavirin [55–57]. However,
ribavirin has no or limited antiviral activity against coronaviruses, including SARS [58–60].
The ExoN of CoV NSP14 was shown to excise ribavirin 5′-monophosphate after its incorpo-
ration into viral RNA, providing a potential explanation for its limited efficacy in vivo [21].
Consequently, both ribavirin and 5′-fluorouracil, another mutagenic agent, displayed in-
creased antiviral potency against an ExoN-defective CoV mutant [61]. Favipiravir, in its
ribosylated triphosphate form, is another mutagenic nucleoside that was also once con-
sidered a potential treatment for COVID-19. Favipiravir (T-705) is a purine-base analog
with broad-spectrum antiviral activity that is approved in Japan for the treatment of severe
influenza virus infection. The nucleoside triphosphate form of favipiravir is efficiently
recognized by the polymerase complex of SARS-CoV-2 [62]. The mutagenic antiviral effect
of favipiravir has also been reported in cell culture, but overall, its anti-CoV potency is
weak [46,62,63]. More studies are needed to determine if the ExoN activity of NSP14 is
responsible for the weak in vitro anti-CoV effect of favipiravir. In the clinic, treatment of
COVID-19 patients with favipiravir resulted in a modest to marginal benefit in terms of
viral clearance, clinical improvement, and mortality [64].

Molnupiravir is another broad-spectrum antiviral agent that acts as a mutagenic nu-
cleoside. Unlike ribavirin, molnupiravir is active against coronaviruses. Molnupiravir
(EIDD-2801, MK-4482) was first evaluated for the treatment of alphavirus infections, and it
recently received emergency use authorization by the FDA for the treatment of COVID-19
(for a review, see [65]). Molnupiravir is the valine ester orally bioavailable prodrug of
β-d-N4-Hydroxycytidine (NHC; EIDD-1931). NHC inhibits coronaviruses lacking ExoN
proofreading activity similarly to their wild-type counterparts, suggesting an ability to
evade the NSP14 ExoN activity [66]. In cell culture, NHC is >100-fold more potent than
ribavirin and favipiravir against SARS-CoV-2 [63]. Molnupiravir improved pulmonary
function and reduced virus titer and body weight loss in mice infected with SARS-CoV
or MERS-CoV [67]. The increased G>A and C>U transition mutation frequency in viral
genome caused by molnupiravir treatment suggested that the nucleoside was incorporated
into viral RNA by bypassing NSP14 ExoN. This was confirmed in two independent mech-
anistic studies using purified viral polymerase complexes [68–70]. The authors showed
that the active entity NHC 5′-triphosphate is an efficient substrate of SARS-CoV-2 RdRp
complex without causing inhibition of RNA synthesis. Once incorporated into viral RNA,
NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs
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with similar efficiencies. However, it should be noted that NHC also induced mutagenic
effects on host genes, indicating a lack of selectivity between viral and host polymerases
and suggesting potential safety liabilities [63].

4.2. Non-Nucleoside Inhibitors

A selection of non-nucleoside analog inhibitors of NSP14 ExoN has recently been
described (Figure 3). In one example using the FRET-based assay described above, two
compounds, patulin and aurintricarboxylic acid, were revealed as potential NSP14 ExoN
inhibitors. The two compounds appeared to inhibit NSP14-NSP10 ExoN activity with
selectivity over RNaseA and benzonase, and interestingly reduced viral proliferation in
VERO E6 cell-based assays. When combined with the nucleoside analog remdesivir, patulin
and aurintricarboxylic acid did not show synergistic effects. Since ExoN mutations have
been shown to have higher sensitivity to remdesivir treatment [71], these data suggest that
in cells the two compounds may operate through mechanisms other than targeting the
ExoN activity. Another study utilized the FRET-based assay to test compounds following
structural analysis [72]. Several compounds were identified with IC50 values around 20 µM
in biochemical assays that also exhibited synergistic activity with remdesivir in the viral
assay [72]. Similar synergistic results were recently obtained when combining nucleoside
analogs with HCV NS5A inhibitors also blocking SARS-CoV-2 NSP14 [73]. It is important to
note that the biological mechanism underlying the synergistic effect remains to be defined.
Future work combining pharmacologic and genetic approaches will shed light on whether
these compounds and others target the NSP14 ExoN activity and proofreading mechanism
as well as their therapeutic potential as antiviral agents.

Figure 3. Representative non-nucleoside NSP14 inhibitors. Compounds 102 (IC50: 19.4 µM), 96 (IC50:
17.4 µM), and 79 (IC50: 22.0 µM) described in [72], and patulin (IC50: 1.8 µM) and aurintricarboxylic
acid (IC50: 10.3 µM) described in [37].

The available structural data have motivated several researchers to focus on in silico
screening approaches to reveal potential inhibitors. In one study, a homology model of the
NSP14-NSP10 complex bound to RNA was used to virtually screen over 5000 compounds,
including FDA-approved drugs, natural products, and an antiviral library of approxi-
mately 300 compounds. The study revealed a number of potential binders, including the
RNA bases guanosine and inosine, the chemotherapeutic carfilzomib, and the antiviral
compound ritonavir. The predicted binding pocket of ritonavir overlaps with the RNA
binding pocket, suggesting that ritonavir may inhibit the ExoN activity [74]. The study
postulates several molecules with therapeutic potential, but future biochemical and cellular
assays are required to properly assess the activity of the compounds. The structural data
of NSP14 interacting partners, including NSP10 and other members of the replication
transcription complex, open avenues for in silico screening of compounds that may disrupt
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critical protein-protein interactions. A novel comprehensive in silico screening approach,
VirtualFlow [75], was recently used in a discovery program to identify small molecules
that may bind to various sites of SARS-CoV-2 proteins, including NSP14 [76]. The study
relied on the available structural data for 15 viral proteins and two human proteins. An
advantage of this particular approach was its ability to assess multiple potential binding
sites on each protein, allowing the identification of non-competitive binders that could be
used in combination for improved efficacy or to overcome future variants. For the NSP14
ExoN site, betamethasone was identified as a potential binder, suggesting it may have
therapeutic value beyond the anti-inflammatory effects in the host commonly seen with
corticosteroids, although this theory remains to be validated experimentally. While virtual
screens can potentially assess billions of compounds in weeks to months, there are several
challenges to consider. First, the success of the screen depends on the available structural
data, which may differ in the biochemical and cellular context. Second, the binding affini-
ties are calculated based on docking scores and the Gibbs’ equation and therefore should
be considered approximations rather than actual dissociation constants. Third, biochemical
and cell-based assays are still required to validate the predicted hits and demonstrate proof
of target engagement.

5. Conclusions: Is There a Case for NSP14 Proofreading Inhibitors?

The recent approval of the influenza polymerase cap-snatching inhibitor baloxavir
marboxil (Xofluza) provides the first proof of principle that viral nucleases are viable targets
for antiviral therapies. In contrast, there are very few reports of small molecules inhibiting
the ExoN activity of the CoV replication complex. Biochemical ExoN assays to support
compound screening and profiling have been described, but the biggest limitation seems
to be the ability to monitor the effect of ExoN inhibition in infected cells. As recently
described, it is likely that ExoN inhibitors might not have a direct antiviral effect on their
own, but would need to be combined with other modalities such as nucleoside analogs [72].
The ability to generate resistance mutations with this new class of anti-CoV agents would
also provide further evidence of target engagement in a cellular context. Finally, we
cannot neglect the theoretical concern of increased mutations leading to the emergence
of new variants as a result of inhibiting the proofreading function of the SARS-CoV-2
replication complex. Taken together, pursuing NSP14 proofreading inhibitors remains an
encouraging therapeutic avenue. New studies to further validate the target and characterize
the proofreading activity in a cellular context and in animals will be needed.
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