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Growing evidence suggests that the superiority of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) could act as
biomarkers for cancer prognosis. However, the prognostic marker for hepatocellular carcinoma with high accuracy and sensitivity
is still lacking. In this research, a retrospective, cohort-based study of genome-wide RNA-seq data of patients with hepatocellular
carcinoma was carried out, and two protein-coding genes (GTPBP4, TREM-1) and one lncRNA (LINC00426) were sorted out to
construct an integrative signature to predict the prognosis of patients. The results show that both the AUC and the C-index of this
model perform well in TCGA validation dataset, cross-platform GEO validation dataset, and different subsets divided by gender,
stage, and grade. The expression pattern and functional analysis show that all three genes contained in the model are associated
with immune infiltration, cell proliferation, invasion, and metastasis, providing further confirmation of this model. In summary,
the proposed model can effectively distinguish the high- and low-risk groups of hepatocellular carcinoma patients and is
expected to shed light on the treatment of hepatocellular carcinoma and greatly improve the patients’ prognosis.

1. Introduction

Liver cancer is one of the dangerous diseases threatening
human health [1]. It remains to be the second leading cause
of mortality in males and sixth in females. Meanwhile, the
prevalence of liver cancer was about 780000 per year, while
the deaths were 745500 per year. Hepatocellular carcinoma
(HCC) is the primary histopathological type, accounting for
90% of the liver cancer cases. It is characterized by high
malignancy, rapid progression, and proneness to metastasis
and relapse [2, 3]. The recurrence rate of the HCC following
surgery was as high as 60-70%, with a 5-year overall survival
of only 4%, showing a great risk for human health [4–6].

Despite the existence of multiple therapeutic strategies
for HCC treatment, efficacy displays remarkable divergence
among individual patients [7]. Surgical resection and liver
transplantation remain the main cure measures for the
HCC, and the 5-year survival in few patients could be
improved to 40-70% following surgery or liver transplanta-
tion, whereas relapse or metastasis following surgery occurs

in about 80% of patients [8–10]. Patients who underwent
ablation have fewer complications and quick recovery, while
efficacy largely depends on the tumor size and metastatic
status, showing no superiority over surgery in disease-free
survival [11–13]. Due to this scenario, most HCC patients
have a poor prognosis. Thus, the establishment of an effective
risk stratification method is essential to improve the progno-
sis of the HCC patients [14–16].

Growing evidence suggests that the superiority of long
noncoding RNAs and messenger RNAs could act as bio-
markers for diagnosis, prognosis, and treatment [17]. For
example, several studies have shown the potential impor-
tance of lncRNA and mRNA signatures as biomarkers for
predicting the prognosis of non-small-cell lung cancer [18],
breast cancer [19], colon cancer [20], and bladder cancer
[21]. At present, some genes have already been reported to
be the prognostic markers for the HCC [22–26]; for example,
GSTM1 and GSTT1 gene polymorphisms are closely associ-
ated with familial inheritance of the HCC [27]. Zhang et al.
reported chromosome 1p36.22 as the region of the HCC
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susceptibility gene [6]. Eun et al. analyzed the data of 377
tumor specimens and 21 normal tissues from TCGA data-
base and uncovered the significant correlation of the NOX
gene family with the patient’s survival time and tumor metas-
tasis [28]. Results revealed that FGFR4, IGF1R, and NEK2
are associated with the risk of HCC, as potential prognostic
molecular markers [29–31]. Nevertheless, most of the men-
tioned genes performed poor accuracy and stability.

In this research, we contributed a three-gene model to
distinguish the risk stratification of HCC patients based on
TCGA database. The model shows good stability and high
accuracy in both TCGA and GEO datasets and thus is
expected to give the medical staff some ideas to improve the
treatment effect of the HCC.

2. Materials and Methods

2.1. Data Source. Clinical information of HCC patients and
the gene expression level (generated by RNA-seq) were
downloaded from TCGA database (TCGA-LIHC) [32] and
NCBI-GEO database (GSE14520). TCGA-LIHC dataset con-
sists of 377 HCC specimens, among which 1 specimen had
no survival information and 6 had no RNA expression data.
The GSE14520 dataset contains 488 specimens. After remov-
ing 241 nontumor and 5 survival time-missing samples, the
remaining 370 specimens in TCGA and 242 specimens in
GSE14520 were used in this study. To avoid overfitting, 370

specimens in TCGA dataset were randomly allocated into
the training dataset (187 specimens) and the validation
dataset (TCGA validation dataset, 183 specimens). The age,
gender, clinical stage, and tumor grade of the patients were
also collected. Clinical stages were classified into stages I to
IV based on the AJCC staging system, and the tumor grade
was classified into G1 to G4 based on histologic character-
istics [33] (Table 1, Supplementary Table 1). Moreover,
the 242 specimens from GSE14520 were used to further
evaluation.

2.2. Statistical Analysis. Cox proportional-hazards regression
model [34] was used to analyze the correlation between
survival time and genes. The Kaplan-Meier method [35],
log-rank test [36], AUC [37], and C-index were employed
to verify the performance of a classifier model. In order
to determine the optimal prognosis model construction
scheme, the lasso, random forest, relative expression order-
ing (REO), and mRMR methods [38] were used to screen
the features and the corresponding classification models
were then constructed by multivariate Cox regression.
Finally, the analysis scheme combining traversal and Cox
regression with the best performance in the risk stratifica-
tion of HCC patients was chosen. Additionally, in this
study, the expression of RNA-seq was normalized by log2
(FPKM-UQ+1), of which FPKM-UQ [39, 40] is a modified
version of the FPKM [41, 42] (the values of FPKM-UQ
were provided by TCGA database).

Table 1: Summary of HCC patients’ clinicopathological characteristics from TCGA database.

Characteristics
Patient

Training set Validation set Sum
Amount % Amount % Amount %

Age at diagnosis

≥60 98 52.40 103 56.28 201 54.32

<60 89 47.60 80 43.72 169 45.68

Gender

Male 133 71.12 116 63.39 249 67.30

Female 54 28.88 67 36.61 121 32.70

Clinical stage

Stage I 76 40.64 95 51.91 171 46.22

Stage II 45 24.07 40 21.85 85 22.97

Stage III 47 25.13 38 20.77 85 22.97

Stage IV 4 2.14 1 0.55 5 1.35

Others/unknown 15 8.02 9 4.92 24 6.49

Tumor grade

G1 26 13.90 29 15.85 55 14.87

G2 91 48.66 86 47.00 177 47.84

G3 63 33.69 58 31.67 121 32.70

G4 6 3.21 6 3.28 12 3.24

Others/unknown 1 0.54 4 2.20 5 1.35

Survival status

Survive 133 71.12 107 58.47 240 64.87

Death 54 28.88 76 41.53 130 35.13
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2.3. Calculation Method. All Cox regression, KM, and con-
cordance index analyses were performed using R and Perl
scripts. ROC analysis involves traversing all possible combi-
nations and calculating the area under the receiver operating
characteristic curve (AUC). Because of the large number of
combinations, it is time-consuming to calculate AUC with
the R package. Therefore, a new parallel Perl script which
was a lot more efficient was developed to complete this step
(Supplementary Source code). Furthermore, the correlation
between gene expression and immune infiltration was carried
out by using TIMER, and the functional enrichment analysis
was carried out by DAVID.

3. Results

3.1. Construction of the RNA Prognostic Biomarker Model. In
order to find biomarkers universally applicable for most
patients, the treated FPKM-UQ value of each retained RNA
must not be zero in at least half of the HCC specimens and
so 26880 RNA data were recruited. Subsequently, the univar-
iate Cox regression was recruited to analyze the survival time
of the patients with the expression levels of 26880 individual
RNAs. Results revealed 415 RNAs as candidates for the next-
step model establishment, which were screened by the Wald
test with P values less than 0.001, representing a significant
correlation with the survival time.

After 415 candidates were selected out, the models were
first constructed by multivariate Cox regression in the
training dataset and then the model with the highest
AUC from all of the possible combinations of one to three
genes was chosen as the final prognostic biomarker model,
enclosing 3 RNAs (ENSG00000238121, ENSG00000107937,
and ENSG00000124731). The calculation equation was as
follows:

Risk score = −0:2466 ∗ EENSG00000238121ð Þ
+ 0:7675 ∗ EENSG00000107937ð Þ
+ 0:1726 ∗ EENSG00000124731ð Þ:

ð1Þ

EENSG00000238121, EENSG00000107937, and EENSG00000124731 were
accordingly referred to the RNA levels of ENSG00000238121,
ENSG00000107937, and ENSG00000124731. The gene infor-
mation are listed in Table 2.

3.2. Property Evaluation of the Model Enclosed in TCGA
Training and Validation Datasets. Patients were evenly sepa-
rated into two groups based on their risk scores. In both the

training and validation datasets, the mean survival time of
the low-risk group was higher (847 vs. 597 days, 1015 vs.
747 days). The KM analysis and log-rank test results also
showed the significant differences between the two groups
(P ≤ 0:001) (Figures 1(a) and 2(a)). Meanwhile, the AUC
values were 0.819 (95% CI of 0.730-0.908, P < 0:001) and
0.778 (95% CI of 0.694-0.861, P < 0:001) in the training
(Figure 1(b)) and validation (Figure 2(b)) datasets, and the
concordance index (C-index) values in those two datasets
were 0.760 (95% CI of 0.692-0.828, P < 0:001) and 0.685
(95% CI of 0.622-0.749, P < 0:001), reflecting the high accu-
racy of the RNA prognostic model.

3.3. Identifying the Prognostic Performance of the Model in
Divergent Groups of Clinical Characteristics. Patients’ gender,
clinical stage, and tumor grade can be considered prognostic
factors, which affected the initiation and development of can-
cers at certain stages. According to these 3 clinical character-
istics, 370 HCC patients were reallocated from the groups to
further validate the high feasibility of the RNA prognostic
biomarker model. Firstly, patients were regrouped by gender,
and results showed that the survival duration was signifi-
cantly (P < 0:001, P = 0:038) different in two risk groups in
both the gender groups (Figures 3(a) and 3(b)). The AUC
values were 0.802 and 0.754, and the C-index values were
0.733 and 0.646, respectively, for the male and female groups
(Figures 3(c) and 3(d)). Then, the validation model was
eligible for HCC patients in divergent clinical stages and
tumor grades. As shown in Supplementary Figure 1,
Supplementary Figure 2, and Supplementary Table 2,
except for stage II, the RNA prognostic biomarker model
was eligible for all other groups for predicting the patient
survival status, with high prediction accuracy.

3.4. Property Evaluation in the Cross-Platform GEO
Validation Dataset. To further access the applicability of
our model, a cross-platform dataset (GSE14520) from the
GEO dataset was recruited. The Kaplan-Meier analysis in
this dataset also proved that the survival time of the low-
risk group is significantly longer (P = 0:009). The AUC was
0.641 (95% CI of 0.561-0.721, P = 0:003) (Supplementary
Figure 3), and the C-index was 0.592 (95% CI of 0.538-
0.647, P < 0:001). These results suggested that our model is
efficient in predicting the survival of patients.

3.5. Analysis of the Expression Pattern of RNA Prognostic
Biomarkers. We analyzed the expression pattern of these 3
RNAs contained in our model to find their function in the
occurrence and development of the HCC. One notices

Table 2: Information of the 3 RNAs in the optimal prognostic biomarker model obtained via multivariate Cox regression.

Ensembl ID Gene symbol Chr Coordinate Coefficienta P valueb

ENSG00000107937 GTPBP4 Chr10 988409-1017771 0.7675 8:8 e − 04
ENSG00000124731 TREM-1 Chr6 41267385-41286745 0.1726 4:0 e − 04
ENSG00000238121 LINC00426 Chr13 30340266-30373914 -0.2466 1:2 e − 04
Notes: athe coefficient value of the gene in the prognostic model of 3 RNAs derived from the multivariate Cox proportional-hazards regression analysis; bthe
Wald test P value in the multivariate Cox proportional-hazards regression analysis.
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significant differences in the expression levels of the 3 RNA
prognostic biomarkers between the cancerous and paracan-
cerous tissues, with P < 0:001 for all the 3 biomarkers
(Figure 4) which suggested that the 3 RNAs might be crucial
in the development of HCC.

Meanwhile, differential RNA expression analysis was con-
ducted in different clinical stages (Supplementary Figure 4).

The expression levels of the 3 RNAs showed a clearly
ascending or descending trend along with the rise of clinical
stages under most of the conditions.

3.6. The Correlation of the Prognostic Biomarker Expression
and Immune Infiltration Level. The infiltration level of
tumor-infiltrating immune cells has an important influence

Overall survival time

High-risk
Low-risk

Censored data

40003000200010000

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
su

rv
iv

in
g

Kaplan-Meier estimates
for validation dataset

Log-rank test: P = 0.001

(a)

0.0
0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0
1-specificity

Se
ns

iti
vi

ty

ROC curve for validation dataset
AUROC = 0.778
95% CI = 0.694-0.861

(b)

Figure 2: Kaplan-Meier analysis for TCGA validation dataset. It showed the significant differences between the two curves (P = 0:001) (a).
ROC curve of survival prediction. The AUC was 0.778 (95% CI = 0:694-0.861) (b).

0 1000 2000
Overall survival time

Log-rank test: P < 0.001

Low-risk
High-risk
Censored data

3000 4000

Kaplan-Meier estimates
for training dataset

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n 

su
rv

iv
in

g

(a)

0.0
0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0
1-specificity

Se
ns

iti
vi

ty

ROC curve for training dataset
AUROC = 0.819
95% CI = 0.730-0.908

(b)

Figure 1: Kaplan-Meier analysis for TCGA training dataset. It showed the significant differences between the two curves (P < 0:001) (a). ROC
curve of survival prediction. The AUC was 0.819 (95% CI = 0:730-0.908) (b).
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on cancer treatment efficacy and patient prognosis. The
results showed that the expression level of GTPBP4 was sig-
nificantly correlated with the infiltration level of B-cells and
macrophages (correlation coefficient > 0:2, P < 1:0e − 04);
the expressions of TREM-1 and LINC00426 were signifi-
cantly correlated with all these kinds of cells (correlation
coefficient > 0:2, P < 1:0e − 04) (Figure 5, Supplementary
Figure 5). These results suggested that the 3 RNA prognostic
biomarkers may be linked to tumor immunity.

3.7. The RNA Expressions of Prognostic Biomarkers in Cancer
Cell Lines. The expression pattern of the three biomarkers in
all types of cancer cell lines in the Cancer Cell Line Encyclo-
pedia (CCLE) database was also studied. In total, 1457 cell
lines from 40 different types were included. The results

showed that three prognostic biomarkers had relatively high
expression levels in immune-related cell lines (Figure 6).

3.8. The Subcellular Localization. The subcellular localization
of RNA is critical to understanding the regulation and func-
tion of RNA. RNALocate [43], iLoc-lncRNA [44], and iLoc-
mRNA [45] were used to retrieve and predict the subcellular
localization of the 3 prognostic markers in this study. The
results showed that all three markers can be localized in exo-
somes, which were widely distributed in various body fluids,
affecting the physiological state of cells, and were closely
related to the occurrence and progression of various diseases
(Supplementary Table 3).

3.9. Gene Pathway Analysis. The pathway analysis of related
genes may reveal the biological processes known to be
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Figure 3: Kaplan-Meier analysis in different gender groups. It showed the significant differences between the two curves in different gender
groups (P = 0:038, P < 0:001) (a, b). ROC curve of survival prediction in different gender groups. The AUCwere 0.754 (95%CI = 0:645-0.863)
and 0.802 (95% CI = 0:726-0.877) (c, d).
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involved in cancer. Here, we first calculated the Pearson cor-
relation coefficient (PCC) between the expression levels of all
RNAs and that of the 3 RNAs in our model. After that, 98
genes, which were significantly correlated with the 3 RNA
biomarkers in the model (P < 0:01 and PCC > 0:6), were
chosen for further analysis. Then, the functional enrichment
analysis of these 98 genes was carried out by DAVID [46, 47],
yielding that these genes were primarily enriched in 17 path-
ways (Figure 7, Supplementary Table 4), most of which were
relevant to the antigen-specific immunity. Nevertheless,
immunity is closely related to tumor therapy efficacy.
According to the physiological processes of recognizing and
killing tumor cells by the immune system, the immunity
relevant pathways were categorized as follows.

The first type of pathways was tumor recognition rele-
vant in the immune system. In these pathways, a large
number of cytokines played an essential role in recognizing
the tumor that bridges antigen-presenting cells (APCs) and
immune effector cells, such as the cell adhesion mole-
cules (CAMs), cytotoxic T-cell surface molecules, cytokine-
cytokine receptor interaction, and NO2-dependent IL-12
pathway in natural killer (NK) cells.

The second type of pathways was immune cell differenti-
ation relevant. In these pathways, the immune cells, upon
stimulation by cytokines, ultimately differentiate into effector
cells and kill tumor cells, such as the hematopoietic cell line-
age, chemokine signaling pathway, IL-17 signaling pathways,
and IL-12 and STAT4-dependent signaling pathway in Th1
cell development.

The third type of pathways was immune cell activation
and cytotoxicity relevant. The immune cell activation is a
critical phase for immunological cytotoxicity towards tumor
cells. The enrichment analysis displayed a large number
of genes enriched in the T-cell activation pathways. Since

T-cell is the primary cell involved in the tumor-specific
immune response, it implied the reliability of our data.
These pathways encompassed the T-cell receptor signaling
pathway, Lck and Fyn tyrosine kinases in the initiation of
TCR activation, activation of Csk by cAMP-dependent
protein kinase inhibiting signaling through the T-cell recep-
tor, T-cell receptor signaling pathway, T helper (Th) cell
surface molecules, and costimulatory signal during T-cell
activation. In addition, NK cells and B-cells, in this study,
participated in tumor cytotoxicity induced by the immune
cells during the effect phase, such as NK cell-mediated cyto-
toxicity and FcγR-mediated phagocytosis.

The last type of pathways was immune suppression rele-
vant. Primary immunodeficiency, as shown in enrichment
analysis, belongs to these pathways closely related to tumor
immune tolerance.

3.10. Superiority of the RNA Prognostic Biomarker Model.
Some prognostic biomarkers for the HCC have also been
reported. To validate the prediction superiority of the combi-
nation obtained by RNA prognostic biomarkers, molecular
prognostic biomarkers from the references were chosen to
compare with our RNA prognostic biomarkers, followed by
the comparison of prediction accuracy via the ROC curve
and the C-index in TCGA dataset (Figure 8, Supplementary
Table 5).

Meanwhile, 50% of the samples were randomly taken for
1000 times to construct serial validation datasets for testing
all the models (Supplementary Table 5). The AUC of all
other prognostic biomarkers was significantly (P < 0:001, by
t-test) lower than that of the RNA prognostic biomarker
model (0.793, 95% CI of 0.728-0.858). These results
suggested that the average AUC of our model was
significantly higher than that of the others, indicating good
robustness. On the other hand, the C-index of our model
was also significantly superior to 20 of the other 23 markers
in the references (P < 0:05, by t-test, Supplementary
Table 5), and 2 of the remaining 3 markers have a lower
C-index than our model. Only the C-index value of hsa-
mir-3660 was higher than our RNA prognostic biomarker
model, but the Kaplan-Meier analysis showed that hsa-
mir-3660 cannot distinguish significantly between the
high- and low-risk groups (P = 0:307).

In conclusion, the results demonstrated the superiority of
the RNA prognostic biomarker model over other prognostic
biomarkers or their combinations in accurately predicting
the survival of patients.

4. Discussion

Drug therapy is a relatively important part of the HCC treat-
ment strategy, but adverse reactions often occur. For exam-
ple, sorafenib is a successful drug used for HCC treatment.
It works through the inhibition of angiogenesis to suppress
tumor progression, which remarkably declines the HCC
recurrence, and thus improves the HCC prognosis. However,
recent studies on sorafenib have reported elevated risks for
cardiovascular and thrombotic diseases [11]. Hence, it is
expected that the prognostic biomarker model proposed in
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this study could reduce the abuse of anticancer drugs and in
turn improve the quality of treatment.

Three genes consisted in themodel are ENSG00000238121,
ENSG00000107937, and ENSG00000124731, respectively.
GTPBP4, also termed as ENSG00000107937, is a member of
the G protein family [52]. In the case of mutation, its function
is deactivated, giving rise to the constantly activated state of
the RAS protein that promotes tumor initiation and develop-
ment. For example, Nissan et al. demonstrated that the
GTPBP4 mutation enhances the proliferation of melanoma
cells, while the introduction of the wild-type counterpart sup-
presses the same [53]. Furthermore, breast cancer patients
with a high expression of GTPBP4 exhibited a short survival
time [54]. Shen et al. proposed that the GTPBP4 expression
levels are associated with clinical stages, tumor metastasis,
and postoperative survival time in patients with bladder
urothelial carcinoma [55]. Moreover, the low expression of
genes encoding the GTP-binding proteins was correlated with
tumor stages and distal organ metastasis in patients with gas-
tric cancer [56].

TREM-1, also known as ENSG00000124731 (the trigger-
ing receptor expressed on myeloid cells-1), was initially iden-
tified by Bouchon et al. It is an activated receptor of the
TREM family, primarily expressed on the surface of neutro-
phils and CD14+ monocyte/macrophage [57]. Other studies
demonstrated that a high expression of TREM-1 is closely
associated with tumorigenesis. It mediates cell hyperplasia,
thus enhancing mutation probability and ultimately giving
rise to the tumor [58]. Also, its expression level was corre-
lated with lymph node metastasis, tumor size, and vascular

invasion potential [59]. Moreover, TREM-1 could impact
various cytokines, such as IL-8, MCP-1, and TNF-α, in the
tumor microenvironment. These are also involved in tumor-
igenesis, invasion, and metastasis via the mechanisms of
impairment and repair suppression, thereby affecting patient
prognosis. For example, Ho et al. deduced that the upregula-
tion of TREM-1 expression in cultured lung cancer cells
enhances the tumor cell invasion potential via mediating
the bulky expressions of NF-κB and TNF-α, and the expres-
sion inhibition of TREM-1 by shRNA evidently reduced the
cell invasion ability of the tumors [60].

LINC00426, also known as ENSG00000238121, is a long
intergenic non-protein-coding RNA, located in the critical
region of the 13q12.3 microdeletion syndrome [61]. Unfortu-
nately, the study on LINC00426 was limited. The Expression
Atlas database (http://www.ebi.ac.uk/gxa) [62] has shown a
differential expression of LINC00426 in multiple cancers.
For example, LINC00426 was found to be upregulated
in TNBC, non-TNBC, and HER2-positive breast cancer
patients [63] and downregulated in patients with colorectal
carcinoma, non-small-cell lung carcinoma [64], and lung
squamous cell carcinoma [65]. Notably, LINC00426 showed
to be downregulated in hepatocellular carcinoma in this
database, which was consistent with our findings. However,
the function of this lncRNA is unknown. Thus, the
ENSG00000238121 gene may play a role in the occurrence
and development of cancer, but its specific function in cancer
remains to be discovered by further research.

The process of immune cells from the blood into the
tumor tissue to perform functions has been termed tumor
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immune cell infiltration. The immune infiltration level was
reported to be very important for the growth and develop-
ment of tumors [66] and represented a strong positive corre-

lation with the expression level of three biomarkers in this
study. This suggested that the individual differences in the
expression level of these three genes may be caused by the
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Figure 6: The box plots of the expression level of 3 prognostic biomarkers in the CCLE database. The X-coordinate and Y-coordinate stand
for the name of the cell line and the expression level of the gene, respectively. In total, 1457 cell lines from 40 different types were included.
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characteristic immune infiltration level in each patient. How-
ever, the uniqueness of this thesis has yet to be further stud-
ied. Furthermore, the functional enrichment analysis showed
that the related genes were enriched in multiple pathways
related to antigen-specific immunity, suggesting that these
genes may be involved in the physiological processes of rec-
ognizing and killing tumor cells of the immune system.

The concentration of immune cells of different kinds in
the tumor was also closely associated with patient prognosis.
In this study, it was found that the infiltration level was
positively correlated with all three markers. However, the
expression level of only two of these markers was positively
correlated with patient risk, while the remaining one shows
the opposite relationship. There are two possible reasons
for this paradox. The one is that immune infiltration may
not be the only factor affecting the expression level of these
three genes. The other one is that the relationship between
immune infiltration and prognosis in HCC patients may be
anfractuous. This complexity has already been suggested in
other studies. For example, macrophage infiltration leads to
poor outcomes in thyroid and breast cancers but improves
the survival time in colorectal cancer patients. In renal can-
cer, neutrophil infiltration is a high-risk indicator, while the
large number of the emergence of CD4+ T-cells is a low-

risk signature. Notably, it has been suggested that neutrophil
infiltration is detrimental to prognosis in colorectal cancer,
but the opposite conclusion has been proposed in another
research. In hepatocellular carcinoma, more research is
needed to determine the specific mechanism of immune cell
infiltration affecting prognosis, and the three genes proposed
in this research may provide some insights into this area.

5. Conclusions

In this study, multivariate Cox regression was used to
construct a prognostic biomarker model of hepatocellular
carcinoma consisting of two protein-coding genes (GTPBP4,
TREM-1) and one lncRNA (LINC00426). The AUC values of
the model were 0.819 (95% CI of 0.730-0.908, P < 0:001) and
0.778 (95% CI of 0.694-0.861, P < 0:001) in TCGA training
and validation datasets, while the C-index values in those
two datasets were 0.760 (95% CI of 0.692-0.828, P < 0:001)
and 0.685 (95% CI of 0.622-0.749, P < 0:001). In the GEO
validation dataset, we only found the expression of two
markers in the combination, but the AUC value was 0.641
(95% CI of 0.561-0.721, P = 0:003), and the C-index was
0.592 (95% CI of 0.538-0.647, P < 0:001). Meanwhile, the
model also performed well in different subsets divided by
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Figure 7: Seventeen enriched pathways related to genes that were coexpressed with 3 biomarkers from RNA prognostic biomarker
combination for hepatocellular carcinoma. The X-coordinate and Y-coordinate stand for the fold enrichment and the name of the
pathway, respectively.
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gender, stage, and grade. It can be concluded that this model
has good prediction performance and can effectively distin-
guish the high-risk and low-risk patients of hepatocellular
carcinoma. Additionally, prognostic biomarkers were associ-
ated with immune infiltration, cell proliferation, invasion,
and metastasis. It is expected that the model may provide a
certain reference for the treatment of cancer.
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