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Abstract Theories of time perception typically assume that
some sort of memory represents time intervals. This
memory component is typically underdeveloped in theories
of time perception. Following earlier work that suggested
that representations of different time intervals contaminate
each other (Grondin, 2005; Jazayeri & Shadlen, 2010;
Jones & Wearden, 2004), an experiment was conducted in
which subjects had to alternate in reproducing two intervals. In
two conditions of the experiment, the duration of one of the
intervals changed over the experiment, forcing subjects to
adjust their representation of that interval, while keeping the
other constant. The results show that the adjustment of one
interval carried over to the other interval, indicating that
subjects were not able to completely separate the two
representations. We propose a temporal reference memory that
is based on existing memory models (Anderson, 1990). Our
model assumes that the representation of an interval is based
on a pool of recent experiences. In a series of simulations, we
show that our pool model fits the data, while two alternative
models that have previously been proposed do not.
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Although there are many theories and models of how
people estimate time intervals, they typically contain three
components: a clock component, a memory component,
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and a comparison component (e.g., Church, 1984; Gibbon &
Church, 1984; Michon, 1967; Treisman, 1963). A primary
topic of debate related to these theories is the nature of the
clock component. Some theories assume that the clock
represents time linearly, such as the scalar expectancy
theory (Gibbon, 1977, 1991), whereas others propose a
nonlinear representation (e.g., Staddon & Higa, 1999;
Taatgen, Van Rijn & Anderson 2007). Another controversy
related to the clock is whether attention is necessary for the
accurate performance of the clock: According to the
attentional-gate models (for a description, see Zakay &
Block, 1996), attention is necessary for the clock itself to
function, while other models explain the effects of divided
attention by other means (Lejeune, 1998; Taatgen et al.,
2007). Apart from these studies that have focused on the
separate components themselves, a large body of research
has been devoted to unraveling the boundaries and relations
between the different components. For example, although
imaging studies (e.g., Lewis & Miall, 2006) and also clinical
studies and pharmacological manipulations have shown that
the clock and memory components have independent
biological substrates (for a review, see Buhusi & Meck,
2005), many studies have shown that these systems are
intimately tied together to produce accurate time estimations.
In such studies, it is typically assumed that the memory
system contains information that reflects earlier temporal
experiences, which are then matched to the current state of
the clock. This memory system is therefore often referred to
as temporal reference memory. When the reference reflecting
a previous experience matches the current state, the system
knows that the same amount of time has passed.

The last years have seen an increased interest in the nature
of the memory component. One line of research that can be
identified is focused on the memory representations them-
selves. Two paradigms are used in this research: experiments in
which a presented interval has to be compared to an explicitly
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or implicitly learned standard, and experiments in which
subjects have to reproduce an earlier-presented duration.

Jones and colleagues used the first of these paradigms for
various purposes: to test whether multiple presentations of an
interval improve temporal reproduction (Jones & Wearden,
2003; Ogden & Jones, 2009), whether performance is
degraded when multiple durations have to be learned and
kept active simultaneously (Jones & Wearden, 2004),
whether memory traces are modality independent (Ogden
& Jones, 2009; Ogden, Wearden, & Jones, 2010), and
whether the temporal structure of the task itself influences
temporal judgments (Ogden, Wearden, & Jones, 2008). We
will discuss two of these studies in more detail below.

In the experiments reported in Jones and Wearden
(2003), subjects were presented with one, three, or five
examples of a standard duration and had to judge whether
later-presented stimuli were equal in duration to the
presented standard. The number of presentations of the
standard never affected performance, yielding the surpris-
ing conclusion that an increased number of presentations of
an item does not improve or affect later performance. Jones
and Wearden (2003) constructed a number of computational
models that varied in the ways the presented standards were
stored and retrieved. Based on these simulations, they
concluded that the best model was one in which a single
memory trace represents the standard. If, on later trials,
another estimation of the standard is obtained that deviates
more than a certain preset value, then there is a perturbation
of the trace, and this new estimation replaces the old.
Although this perturbation model explains the original data
quite well, the generality of this model can be questioned
because (1) it is difficult to generalize this model to other
phenomena related to temporal reference memory and (2)
this model assumes an atypical memory system.

One set of results that is difficult to explain with the
simplest form of the perturbation model is presented by Jones
and Wearden (2004) themselves. In their experiments,
subjects had to judge whether presented intervals were the
same as or different from a previously learned interval. The
subjects had to learn two intervals and were presented with a
test stimulus that they had to match up with one of the
intervals. The results, in particular those of Experiment 2,
showed that short intervals tended to be judged as longer on
average, and long intervals tended to be judged as shorter
(see Fig. 5 later in this article, where a model fit is compared
to the results of this experiment).

Grondin (2005) carried out a similar experiment, in
which subjects had to judge whether presented intervals
were longer or shorter than a previously learned interval. In
one condition of the experiment, subjects had to learn two
intervals, 250 and 750 ms, and were told before each trial
whether to base their judgment on the shorter or the longer
trial. The results indicated that the subjects tended to shift their

representations of the 250-ms and 750-ms intervals toward
each other, as if the representations contaminated—instead of
replaced—each other in memory (see Fig. 6 below).

In the second paradigm used to study memory in time
perception, subjects are asked to reproduce intervals
presented earlier. In an earlier study of our own in which
subjects learned and had to reproduce 2- and 3-s intervals,
we noticed that estimates of the 2-s interval tended to be
long, and estimates of the 3-s interval tended to be short
(Van Rijn & Taatgen, 2008). In a more recent study,
Jazayeri and Shadlen (2010) also used a temporal repro-
duction paradigm. In their experiment, subjects were
repeatedly presented with time intervals that they had to
reproduce immediately afterward. Depending on the condi-
tion, the presented intervals were drawn from a particular
range—for example, 671-1,023 ms. The results showed
that the reproduced intervals tended to regress to the
middle, so that the shorter intervals were reproduced as
longer and the longer intervals as shorter, again supporting
the idea that earlier experiences (or “context,” as Jazayeri
and Shadlen called it) affect the current representation.

All of these studies support a view of the temporal
reference memory system in which individual representations
are not completely separable. Here, it is important to note that
Jones and Wearden (2004) themselves argued that their
perturbation model, as sketched here and in their study, is
probably too simple, and that instead of completely replacing
the old value, a more gradual change might fit the data better.

The question is whether designing a temporal reference
memory system from scratch is to be preferred over using
existing memory models to explain memory phenomena in
time perception. A number of studies have provided evidence
that there is an intimate link between the temporal reference
memory system and more general memory phenomena such
as working memory. For example, Brown (1997) has shown
that if a secondary task is presented during temporal
reproductions, performance on the secondary task is nega-
tively affected if this task requires working memory. Fortin,
Champagne, and Poirier (2007) have shown that when a
concurrent memory task is performed during time estimation,
the temporal estimates are more strongly influenced if the
concurrent task requires order judgments. Similarly, Bau-
douin, Vanneste, Pouthas, and Isingrini (2006) have shown
in a study with older adults that temporal reproduction is
correlated to working memory capacity. These studies are
just examples of many that have shown evidence for the
notion that we cannot treat temporal reference memory as if
it were independent from other memory functions.

In our view, it is therefore desirable to use general
models of memory as the memory component for models of
time perception. This is what we proposed in our own
model of time perception (Taatgen et al., 2007): Instead of
using specialized mechanisms for attention, memory, and
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comparison, we used mechanisms from the more general
ACT-R cognitive architecture (Anderson, 2007). In the
experimental work that supported our model, memory failure
was one of the mechanisms to explain a breakdown of time
perception in complex situations. In the present article, we
further develop the memory component of time perception
by focusing on the issue of how representations of time
intervals are learned and represented, and, in the case of
multiple intervals, how representations influence each other.

Representations of time

In order to explain how representations of time intervals
affect each other, we have to ask ourselves the question of
how solid the memory representations of time intervals are.
One explanation is that over the course of an experiment
involving multiple intervals, solid representations of each
of the intervals are formed. In that explanation, the
formation of these representations can be influenced by
the fact that another interval has to be learned at the same
time, resulting in interference. Another explanation is that
solid memories never form." This distinction is analogous
to one in the discussion of memory theories, in which some
theories hold that each presentation is stored and retrieved
separately (e.g., Landauer, 1975), whereas others propose
that additional presentations strengthen a single, more
general memory trace, which will later be retrieved (e.g.,
Bower, 1961; Raaijmakers & Shiffrin, 1981).

The distinction between a solid memory representation
for both durations, on the one hand, and a “pool of
experiences,” on the other, does not need to be problematic
for the comparison process, if one assumes that both
approaches eventually result in the retrieval of a single
representation that can be compared to the current clock
value. This brings us to the question of how this single
retrieved representation is constructed.

One of the computational models explored by Jones and
Wearden (2003) is the sampling strategy (they abbreviated
it as SAM, but we will refer to this model as SAMP to
avoid confusion with the Raaijmakers & Shiffrin, 1981,
theory with the same name). The SAMP mechanism
assumes that all representations in memory are equally
likely to be retrieved, and that just one of these is sampled
and used in subsequent timing processes. However, as
Jones and Wearden (2003) themselves observed, this makes

! This could occur either because of the assumption that traces never
merge, or because of the assumption that they cannot merge, due to
the nonsymbolic nature of internal time. According to the latter
assumption, a particular time interval is represented on a continuous
scale (or, in a computationally implemented model, as a real number),
and each new temporal experience will be different from earlier
experiences.
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it difficult to account for the flexibility observed when
learners are confronted with a changed standard time.
Because, according to their theory, all representations are
defined as a constant value plus a Gaussian distributed
noise with a fixed standard deviation, and all representa-
tions have an equal chance of being retrieved, sampling a
single value from memory is very similar to just using the
last perceived value. On the basis of this reasoning, Jones
and Wearden (2003) proposed the perturbation model of
temporal reference memory. Although this perturbation
model can potentially account for a broad range of
phenomena (see also Ogden & Jones, 2009), it is difficult
to envision how the simpler version of this model could
explain the contamination phenomena discussed earlier.

The alternative strategy, referred to as the averaging
(AVE) strategy, presented by Jones and Wearden (2004), is
similar to a single, solid-memory-representation account.
AVE assumes that all previous experiences with a certain
duration are averaged to a single value that is used in
subsequent comparison processes. A difficulty of this
strategy is that a lot of parameters are underspecified. For
example, how many past experiences are involved in the
averaging process? It cannot be all experiences, since if one
assumes that al/l experiences with a certain interval are
averaged, it is again difficult to account for the flexibility
associated with sudden changes in standard times.

A different approach to modeling temporal representations
is the Bayesian modeling approach by Jazayeri and Shadlen
(2010). The assumption of their model is that humans take
two factors into account when estimating the duration of an
interval. One of these factors is the temporal context: What is
the range of possible durations for an interval? The second
factor is the (self-)knowledge about the imprecision involved
in estimating this interval. These two factors together can
explain the regression to the mean that Jazayeri and Shadlen
have found in their experiment. The drawback of this model
is that it does not update the temporal context during the
experiment, and is therefore not suitable to predict or explain
what happens if a temporal standard changes.

All three accounts assume a relatively perfect memory
system, in the sense that experiences that are stored are not
subjected to decay, or other influences that have been
identified in the memory literature. Thus, although the
SAMP, AVE, and perturbation models can probably be
extended to account for (some or most) new phenomena,
another approach would be to rely on well-established
memory concepts to explain temporal behavior. We propose
that the retrieved representation is constructed on the basis
of a pool of previous experiences (an idea that is central in
many fields of cognitive science; see, e.g., Pothos &
Chater, 2002; Tenenbaum & Griffiths, 2001), in which
recent experiences have a much stronger weight than older
experiences. This pool of experiences may be polluted by
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experiences with other intervals, creating the biases found
in experiments dealing with multiple intervals.

To test our hypothesis, we designed an experiment in
which subjects had to learn and reproduce two intervals.
While reproducing the intervals, they received accuracy
feedback. We used two methods to assess how the intervals
were represented. The first was to analyze the reproductions of
the two intervals on a trial-by-trial basis. This allowed us to
inspect the changes of temporal estimations in much more
detail than if one were just to compare average performance,
as had been done in earlier work. We also calculated a
regression equation to predict a duration for each reproduction
(?) on the basis of a fixed intercept, the durations of recent
reproductions (#-n), and feedback on those reproductions (f;,,).
If solid memories are formed, the durations and associated
feedback should only have a very limited influence on the
prediction of the next reproduction. Therefore, the regression
equation’s intercept should be close to the interval to be
estimated. However, if the reproduction is based on a pool of
experiences, we would expect the intercept to be rather small,
with larger influences for recent experiences.

For our second method to assess the nature of the
memories for time intervals, we introduced an experimental
manipulation that forced subjects to gradually change the
representation of one of the intervals (the longer interval, in
our experiment). Given that the feedback was given on the
basis of the changed duration, subjects would have to adjust
their internal representations to remain at a reasonable level
of performance. However, because the experimental manip-
ulations were only introduced after a number of trials in the
experiment, there was no reason why changing the baseline
of the long interval should influence the short interval, if
one assumes solid and independent representations for the
two intervals. On the other hand, if representations of time
intervals are more the result of a set of experiences, we
would expect that a change in one of the intervals would
spill over into the other interval, something that one would
not expect if the intervals were solidly represented.

In the rest of this article, we first elaborate on the
experiment and the analysis of the results of that experiment.
We then proceed with a model of these results that is based on
an implementation of the pool model in the declarative
memory theory of the ACT-R architecture (Anderson, 1990,
2007), with a modification that allows it to deal with real
values (Lebiere, Gonzalez, & Martin, 2007).

Method
Subjects

A total of 70 students from the university of Groningen
participated in this study for course credit. Of these

subjects, 12 were removed from the pool because more
than 3% of their responses were shorter than 1.25 s or
longer than 4.25 s. Of the remainder, 10 were not able to
distinguish between the two intervals after training, and
were therefore also removed from the data set. We will
reconsider these 10 subjects in the discussion. The remaining
48 subjects (16 per condition detailed below) were an average
age of 20.3 years and consisted of 10 men and 38 women. The
number of excluded subjects was fairly high, but this was
expected, given that experiments with multiple time intervals
often elicit fairly high error rates (e.g., Brown & West, 1990;
Meijering & Van Rijn, 2009; Wearden, 2002).

Design and procedure

In the experiment, subjects learned two intervals—a short
interval of 2 s and a long interval of 3.1 s—which they had
to reproduce repeatedly, always alternating between the
short and the long. Subjects were presented with two circles
on the screen, which were gray when they were not active.
The circle on the right of the screen was associated with the
2-s interval, while the circle on the left was associated with
the 3.1-s interval. During training, one of the circles would
change color (blue for the short interval and green for the
long interval) for a specific duration, and would then turn
back to gray. After each presentation of the standard
interval, the subjects had to reproduce this temporal
interval. The onset of the interval was randomly sampled
from a uniform distribution ranging from 500 to 1,000 ms
after presentation of the standard and was indicated by the
gray circle turning blue or green again. Subjects had to
press a key to indicate the end of the interval (“f” for the
long interval and “j” for the short interval). Subjects
received feedback on the accuracy of their produced
intervals (we will refer to these reproductions as estimates
from here on): “too short,” if they responded earlier than
87.5% of the interval; “too long,” if they responded later
than 112.5% of the interval; or “correct” otherwise.
Training consisted of 10 presentation—estimate—feedback
trials, alternating between the two durations.

The presentation phase was removed from each trial in
the experimental block, but all other aspects of the trial
were kept the same. Subjects received 15 warm-up trials of
each duration, alternating between the two durations,
followed by the experiment proper.

The main experimental manipulation was a shift in the
criterion for the long interval in two of the three between-
subjects conditions. In the FF (flat-flat) condition, the
criterion remained the same for the rest of the experiment
(185 estimates for each interval). In the DR (dike—river,
referred to as such because the graphical depiction of the
standard follows the typical outline of a dike next to a
riverbed; see the dotted lines in Fig. 1c) condition, the

@ Springer



1550

Mem Cogn (2011) 39:1546-1560

Flat-Flat Condition

o
S 4
< a
o
o _|
. o
v [s]
c
ke =
B 3
5 ®
©
8 8 |
5 g
B
w8
o
N
o
o _|
19}
- T T T T
0 100 200 300
Estimate number
Dike-River Condition
S |
o
Nl (o
o | el
o _|
. m
w [s2)
c
2 =
T 8 1
5 ®
©
g 8 |
[ [Te)
E [aV)
k7
w8 |
o
[aV)
o
o |
n

0 100 200 300

Estimate number

Fig. 1 (a—c) Mean estimates for the three conditions in the experiment.
The lower curve in each graph represents the estimates for the short
interval, while the upper curve represents the long interval. The dotted
lines indicate the criterion, which is always constant at 2 s for the short

criterion remained at 3.1 s for the first 25 estimates. After
that, the criterion was increased linearly to 3.6 s over 15
estimates. This meant that at some point subjects received
“too short” feedback for a duration that had previously been
correct. After the shift to 3.6 s, the criterion stayed at 3.6 s
for 25 estimates, then decreased back linearly to 3.1 s over
15 estimates, stayed there for another 25 estimates, then
decreased further to 2.6 s over 15 trials, stayed at 2.6 s for
25 trials, increased back to 3.1 s over 15 trials, and stayed
there for the remaining 25 estimates. Meanwhile, the
criterion for the short interval (remember that the short
and long intervals were alternated) remained constant at 2 s.
The RD (river—dike) condition was the exact opposite of
the DR condition: Instead of increasing the interval after 25
estimates, the criterion would first decrease to 2.6 s, leading
to this sequence: 25 trials at 3.1 s, 15 decreasing to 2.6 s, 25
at 2.6 s, 15 increasing to 3.1 s, 25 at 3.1 s, 15 increasing to
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interval, but which changes for the long interval in the river—dike and
dike-river conditions. (d) Mean durations for the short interval in the
parts of the experiment where the long interval does not change. Error
bars represent 1 standard error

3.6 s, 25 at 3.6 s, 15 decreasing to 3.1 s, 25 at 3.1 s. A
graphical depiction of all three conditions is presented with
the dotted lines in Figure la—c.

Results

Figure 1 shows the mean estimates over the course of the
experiment. Visual inspection of the results suggests,
indeed, that in the FF condition the short interval was
estimated as longer and the long interval as shorter,
consistent with earlier findings (e.g., Grondin, 2005), and
suggesting that both estimates influence each other. More
pronounced were the results in the other two conditions,
because the estimates of the short interval were influenced
by changes in the duration of the long interval, because the
short interval’s estimations resemble a dampened pattern of
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the long interval. Figure 1d shows this influence in more
detail.

An analysis of variance on the mean durations for the
short interval in the five estimate ranges in which the long
interval was not changing and in the FF condition (the
estimates plotted in Fig. 1d) showed a clear interaction
between condition and range, F(8, 179) = 4.95, p < .001,
with no main effect of range, ' < 1, and no main condition
effect, F(2, 44) =2.03, p = .14.

The overall accuracy (i.e., the proportion of estimates
within 12.5% of the target interval) was 55% for short
intervals and 63% for long intervals, with only small
differences between the conditions (for short, FF 52%, RD
59%, and DR 55%; for long, FF 63%, RD 66%, and DR
61%). Apparently, the criterion manipulation for the long
interval was slow enough not to affect accuracy.

In order to analyze the influence of one interval on the
other in more detail, we had to acknowledge that two
factors determined the next estimate that a subject would
make: the representation of that interval in memory, and the
feedback given by the experiment (too short, correct, or too
long). On top of that, both the representation and feedback
for the other interval could influence the estimate. Figure 2
illustrates these factors: At the right side of the figure, a
short interval had to be estimated by the subject, which
could be influenced by the previous estimates and previous
feedback of both intervals.

To assess all of these factors, we have fit linear mixed-
effect models to the each of the two interval durations
(Baayen, Davidson, & Bates, 2008). The estimations were
entered as the dependent variable, and previous (up to n —
10) estimates and feedback were entered as predictors, both
for the current duration and for the other durations, while
allowing a random effect for subjects. Linear mixed-effect
models provided information about the contributions of
individual factors to a dependent variable and about the
reliability of the estimates. We compared more complex

Fig. 2 Factors that might
impact on the estimation pro-
cess. In this example, estimation
of a short interval is shown. S
stands for “subject,” and the
gray areas indicate the intervals
in which the participant received
“correct” as feedback. The

— Feedback

shortn_2 Q

models (i.e., models including estimates or feedback of
trials longer ago) with simpler models (i.e., models with
fewer estimates/feedback) using the Akaike information
criterion (AIC; Akaike, 1974) and the maximum likelihood
criterion, as discussed in Burnham and Anderson (2002).
We first compared the contribution of the previous
estimations of the target interval, then the contribution of
feedback on these previous estimations of the target
interval, and then the estimations and feedback on previous
estimations of the other interval. The comparisons were
first performed on the RD data set, and then the same
models were fit to the DR and FF data sets. We report the
preferred models, meaning that increasing or decreasing the
number of predictors from the reported models resulted in
less optimal AIC/maximum likelihood criterion scores.

Table 1 shows the results for the short interval for the
best-fitting model. Let us examine the factors in the FF
condition to get an idea of what this analysis means. The
predicted response time for trial short, consists of a fixed
intercept of 1,217 ms. Added to this intercept are fractions
of the previous short intervals (the betas in Table 1), so 0.18
times the previous short estimate (of approximately 2 s, so
something on the order of 360 ms), and 0.079 times the
short estimate before that. The difference between these
fractions (0.18 and 0.079) indicates that the influence of the
n — 2 estimation contributes less to the current estimation.
Added to this is also a fraction of the previous long interval:
0.14 times the previous long interval. Note that the
estimation of the long, , interval is not incorporated in
the model because adding long, , did not result in an
improved RD (not FF) fit.

Previous feedback also modifies the interval: If the
feedback on the previous short interval was “too short,” the
estimate is increased by 92 ms, but when it was “too long,”
it is decreased the current estimate by 106 ms. Finally,
feedback on the previous long intervals also impacts the
predicted estimate on the short interval: 130 ms is
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Table 1 Results of fitting mixed-effect models to the estimates of the short interval in the three conditions

FF Condition RD Condition DR Condition
Factor Beta (SE) t Beta (SE) t Beta (SE) t
Intercept (ms) 1,217 (120) 10.17" 962 (93) 103" 826 (92) 9.0""
Impact of the previous short intervals on the current short interval
short,,_, 0.18 (0.031) 5.7 0.17 (0.03) 49" 0.28 (0.03) 8.6""
short,, » 0.079 (0.018) 43" 0.087 (0.018) 48" 0.11 (0.02) 63"
short-fb,,_; = “too long” (ms) ~106 (25.8) 4.1 -96.8 (22.9) 42" ~153 (23) 6.7
short-fb,_; = “too short” (ms) 92.0 (27.6) 33" 48.9 (22.7) 22" 68.2 (23.9) 29"
Impact of the previous long interval on the current short interval
long,_; 0.14 (0.03) 43" 0.21 (0.02) 1.0 0.15 (0.02) 8.0
long-fb,,_; = “too long” (ms) —130 (32) 4.0 —-97.5 (23.1) 42 -83.8 (22.1) 38"
long-fb,,_; = “too short” (ms) 39.1 (28.5) 1.4 67.2 (17.2) 3.9 69.1 (19.1) 3.6™"

FF, flat-flat; RD, river—dike; DR, dike-river. See the text for further details. * p <.05, - p <.01, - p <.001

subtracted if the feedback was “too long,” and 39 ms was
added if the feedback was “too short” (this last adjustment
is not significant in the FF condition, although it is in the
RD and DR conditions).

The results generally support the hypothesis that the
representation of an interval is the result of a pool of recent
experiences and not of a single representation. This is
indicated by the relatively small intercepts of the regression
formula and the susceptibility of the estimates to changes in
the other interval. It is also interesting to see that the
different factors are roughly the same between the three
conditions, indicating that the same underlying processes
might affect all of them.

Table 2 shows the analysis for the long interval. The
results are similar to those for the short interval. We can see
that both the estimate of the previous short interval and the
feedback on that interval have an impact on the estimates of
the long interval. Here, the factors differ a bit more between
the conditions. The long,_; and long,, , factors are larger in

the RD and DR conditions because they are needed to track
the changing interval criterion.

Cognitive model

Although the results support the idea that the representation
of time intervals involves a pool of experiences, they do not
show that such an account can actually produce the
behavior found in the experiment. This is why we
developed a computational model, referred to as the pool
model. This pool model should also show that all of the
factors identified in the statistical analysis can be attributed
to the properties of a single memory system. As indicated in
the introduction, we will base our model on the declarative
memory system of the ACT-R architecture (Anderson,
1990, 2007), which has proved accurate in modeling many
different aspects of human cognition. Instead of using the
full ACT-R architecture, we have used only the time

Table 2 Results of fitting mixed-effect models to the estimates of the long interval in the three conditions

FF Condition

RD Condition DR Condition

Factor Beta (SE) t
Intercept (ms) 1,245 (131) 9.5
Impact of the previous long intervals on the current long interval
long,_; 0.28 (0.03) 84"
long,,_» 0.12 (0.02) 65"
long-fb,, ;| = “too long” (ms) —108 (35) 31"
long-fb,._; = “too short” (ms) 114 (30) 3.8
Impact of the previous short interval on the current long interval
short, | 0.25 (0.03) 7.7
short-fb,_; = “too long” (ms) -87.2 (27) 32"
short-fb,_; = “too short” (ms) 136.3 (29.1) 47"

Beta (SE) t Beta (SE) t
568 (98) 587" 906 (107) 8.5
0.50 (0.02) 215" 0.46 (0.02) 19.2°"
0.17 (0.02) 10.0" 0.17 (0.02) 9.4

—237 (26) 92" ~170 (26) 6.6
267 (19) 13.8"" 220 (22.3) 9.8
0.16 (0.04) 43" 0.10 (0.04) 26"

—56.9 (25.3) 22" —74.8 (26.6) 28"
80.9 (25.2) 32" 38.0 (27.8) 1.4

“p<.05 " p<.01," p<.001
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Table 3 Example of how the model calculates the number of pulses

Experience Pulses t(s) A; P; PV; Feedback t FB A; FB P; FB P;V; FB Grand Sum
long,,_; 28 4.5 -1.67 0.029 0.8 -2 (late) 0.7 -0.74 0.37 -0.75

short,,_; 22 7.5 -1.01 0.797 17.5 0 (correct) 3.7 —0.65 0.58 0

long,, > 27 11.1 -2.12 0.003 0.08 +2 (early) 7.3 -1.91 0.001 0.002

short,, , 20 13.8 -1.31 0.171 343 +2 (early) 10 -L.15 0.05 0.10

Sum 21.8 —0.65 21.15

estimation and declarative memory theories of ACT-R, thus
simplifying both the model and the necessary explanation.

Time estimation

The time perception component is a classical pacemaker—
accumulator system, in which a pacemaker generates pulses
that are counted by an accumulator (Taatgen et al., 2007). The
system can be given a start signal that resets the accumulator
and starts the pacemaker. The accumulator therefore repre-
sents the amount of time that has passed since the start signal.
Time is measured in units that start at 100 ms but become
gradually longer, creating a nonlinear representation of time.
For the purposes of the present model, this nonlinearity is not
very important, and qualitatively similar results could be
obtained with a linear clock, such as that found in scalar
expectancy theory (Gibbon, 1977, 1991). Indeed, even the
pacemaker—accumulator setup is not critical to the model’s
performance, and could probably be replaced by other
systems, as long as they produce some sort of representation
of the passage of time (e.g., a measurement of memory decay,
in the case of Staddon & Higa’s, 1999, model). The temporal
module can be given a start signal, which resets the clock,
after which an accumulator starts collecting pulses. The short
interval of 2 s corresponds to approximately 17 pulses, and
the long interval of 3.1 s to approximately 26 pulses. Noise is
added to each pulse, which means that estimates are always
approximate. For the purposes of the model, the important
aspect of the time estimation module is that it can estimate a
particular time interval by translating it into a number of
pulses and that it can reproduce a time interval by waiting
until a particular number of pulses has been accumulated. The
noise produces variability in the estimates that corresponds to
the variability in human time estimation.

Table 4 Free parameters in the pool model

Parameter

Noise parameter ¢ 0.2
Mismatch penalty between short and long 0.92
Feedback shift: How many pulses to add or 1.8

subtract on the basis of feedback

Declarative memory

The assumption of the model is that when a particular time
interval has to be produced, the number of pulses
representing that interval is retrieved from memory. There
is no single representation of a particular interval in
memory, but rather a pool or collection of past experiences.
Each past experience is represented by a memory chunk,
which contains the type of interval (long or short) and a
number of pulses. When an interval is retrieved from
memory at time 7, each chunk receives an activation value
on the basis of its age (how old is the experience?) and
whether it matches the current request:

(1)

In this equation, Z. caton 1S the time when the chunk is
created, so the activation of a chunk decreases with time.
The mismatchpenalty of a chunk is 0 if the request matches
the chunk (e.g., we are retrieving a short interval and the
chunk represents the short interval), but a negative value in
the case of a mismatch (e.g., we try to retrieve a short
interval but the chunk represents a long interval).

In default ACT-R, the activation determines the proba-
bility of retrieval of that chunk. This means that, if one
assumes that each trial is reflected in a separate chunk in

A() = 108(f — fereation) * + mismatchpenalty.
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Fig. 4 Model predictions for
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memory, more recent experiences that match the request
have the highest probability to be retrieved. This also
effectively implements a mechanism for forgetting: Even
though memory traces are technically not removed, their
influence can become so small over time that they are, for
all practical purposes, forgotten. The following equation
estimates these probabilities (where ¢ is a noise parameter
and the summation is over all candidate chunks):

Ai

Pi: el (2)

With the blending mechanism (Lebiere et al., 2007),
however, a weighted average of all candidate chunks is
retrieved. If we try to retrieve the duration of the short
interval, the results will be a blend of all intervals in the
memory pool, with the more recent intervals having a
higher impact and the intervals that match the request
(short) having a higher impact than the mismatching long

Estimate number

intervals. The resulting value can simply be calculated by
multiplying the number of pulses in a chunk (V;) by the
probability of retrieval:

Result value = ZPJV, (3)
J

The consequence of this memory model is that it does not
make much of a difference whether the memory is based on one
or a great number of experiences, even though the latter model
might be slightly more accurate. This fits well with Jones and
Wearden’s (2003) finding that the number of presentations of
a standard does not impact performance strongly.

In order to determine how many pulses to wait for an
interval, the model not only retrieves the representation of
the interval, but also the feedback received for that interval.
For this process, we use exactly the same mechanism as for
the retrieval of the interval. Whenever feedback is received,
the model stores this in memory. If the feedback was
“correct,” it stores the value of 0; if the feedback was “too

Table 5 Results of comparing the factors of mixed-effect models fitted to the data and of the cognitive model to estimates of the short interval in

the three conditions

FF Condition

RD Condition DR Condition

Beta, Data Beta, Pool Model
1,217 1,296
Impact of the previous short intervals on the current short interval

Factor

Intercept (ms)

short,,_, 0.18 0.27
short,, _» 0.079 0.024
short-fb,, ; = “too long” (ms) —-106 —148
short-fb,_; = “too short” (ms) 92.0 138
Impact of the previous long interval on the current short interval
long,, 0.14 0.06
long-fb,, | = “too long” (ms) -130 -116
long-fb,,_; = “too short” (ms) 39.1 120

Beta, Data Beta, Pool Model Beta, Data Beta, Pool Model
962 992 826 1,000
0.17 0.30 0.28 0.30
0.087 0.043 0.11 0.037
-96.8 -156 —-153 —150
48.9 131 68.2 132
0.21 0.14 0.15 0.13
-97.5 —-131 -83.8 —123
67.2 156 69.1 157
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Table 6 Results of comparing the factors of mixed-effect models fitted to the data and of the cognitive model to estimates of the long interval in

the three conditions

FF Condition

RD Condition DR Condition

Factor Beta, Data Beta, Pool Model
Intercept (ms) 1,245 2,290
Impact of the previous long intervals on the current long interval
long,, 0.28 0.14
long,, » 0.12 0.003
long—fb,, ; = “too long” (ms) —108 271

long—fb,,_; = “too short” (ms) 114 153
Impact of the previous short interval on the current long interval

short,, 0.25 0.13
short—fb,; = “too long” (ms) —87.2 -127
short—fb,_; = “too short” (ms) 136.3 8.9

Beta, Data Beta, Pool Model Beta, Data Beta, Pool Model
568 657 906 675
0.50 0.50 0.46 0.51
0.17 0.12 0.17 0.11
-237 461 -170 439
267 315 220 309
0.16 0.18 0.10 0.18
-56.9 -117 -74.8 —-113
80.9 46.5 38.0 17.9

long,” it stores a negative value; and if the feedback was
“too short,” it stores a positive value (this value is referred
to as the feedbackshift, which is a free parameter in the
model). Retrieval of the feedback is performed in the same
way as the retrieval of the interval itself. This means that
the feedback of the previous trial for the same duration has
the highest impact, but that earlier feedback and feedback
for the other duration can also weigh in.

Table 3 shows an example in the hypothetical case in
which the number of pulses for the next short interval is
calculated on the basis of the last four experiences (the
actual pool model uses all previous experiences, but older
experiences have less impact due to decay). Each line in the
table shows an experience in memory, starting with the type
(long or short), how many pulses were used as estimate in
that experience, and how long ago the experience was. On
that basis, using Eq. 1, an activation is calculated, in which
the long experiences are penalized because they do not
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match the current request (i.e., a short interval). Equation 2
is then used to calculate the probability of retrieval of that
experience, which, multiplied by the number of pulses,
gives the contribution of that experience to the blend in the
sixth column of the table. These contributions are added up
(Eq. 3) to produce the result of the blended retrieval, 21.8.
This process is repeated for the feedback (summarized in
the next five columns), leading to a contribution of —0.65.
The sum of the two retrievals is 21.15, which, rounded
down to 21, means that the estimate for the next short
interval will be slightly shorter than the previous one, even
though it received positive feedback.

To summarize: If the pool model has to produce a certain
interval, it determines the number of pulses by retrieving a
blend of memory representations for that interval. It then
retrieves previous feedback for that interval, which is also a
blend of earlier feedback. It adds the two together and waits
for that many pulses to produce the interval.
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Fig. 5 (a) Results from Experiment 2 of Jones and Wearden (2004), and (b) the model fit to these data
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Fig. 6 (a) Results from the
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The pool model’s behavior is partly determined by a
number of parameters, some of which are derived from
earlier work, whereas others are new. The time estimation
module parameters were left at the values from Van Rijn and
Taatgen (2008; 7o = 100 ms, @ = 1.02, b = 0.015). ACT-R’s
memory decay parameter d was also left at its default value
of 0.5. We used the remaining three parameters, listed in
Table 4, to produce a good fit between the model and the
data in the DR (dike-river) condition.”

Figure 3 depicts the results of the model and shows how
they fit the data. In the model results, there is an impact of
the long on the short interval that is similar to what was
seen in the data, and otherwise it tracks the estimates of the
subjects rather well, with the exception of the “river” part
of the long interval, where its estimates are slightly shorter
than the subjects’. Although Figure 3 is useful for
evaluating the qualitative aspects of the fit, it is only an
approximate source of support for the memory model used
to produce it. In order to have a better assessment of the
model, we applied two strategies: We used the model to
predict the outcomes of the other two conditions, and we
used the same mixed-model analysis that we had used to
analyze the data to check whether the same factors that
drove the estimates in the data also do so in the model.

Figure 4 shows the model predictions for the FF and RD
conditions. The FF condition shows that the model also
predicts a shortening of the long interval and a lengthening
of the short interval. The RD condition produces a
surprisingly good fit that surpasses the quality of the fit in
the DR condition.

To better assess the quantitative aspects of the fit, we
applied the same regression analysis to the model outcomes
that we had used to analyze the data. In doing so, we could
check whether the same factors that played a role in
producing the estimates for the subjects played the same

2 The fit was published in Taatgen and Van Rijn (2010), before the
data from the other two conditions were analyzed and modeled.
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role in the model’s estimates. Tables 5 and 6 show this
comparison for the short and long intervals, respectively.

The tables do not provide us with a neat summarizing
number that tells us the quality of the fit, but for process
models like ACT-R, as opposed to more mathematical
models, there is no easy way to balance the number of free
parameters with the measure of fit (for discussion on this
topic, see Navarro, Pitt, & Myung, 2004; Roberts &
Pashler, 2000; Schunn & Wallach, 2001). The tables do
show that the same factors that were important in predicting
the estimates in the data play similar roles in the estimates
made by the model. In many, but not all, cases, the model
betas are very close to the values found in analysis of the
data. Only in the fit of the long estimates do the model’s
predictions diverge from the data, because the model’s
intercept is higher and the factors for long,_; and long, »
smaller, indicating that the computational model (still) has
too stable a representation of the long interval. This
problem might also be due to the fact that there seems to
be a gradual overall drift in the estimates in the data. This is
visible in the FF condition in Figure 4, where we can see
that the estimates for both intervals tend to increase. We do
not have a clear explanation for this drift.

Can the model fit other data?

As we indicated in the introduction, time perception is
typically studied with either a production or a comparison
paradigm. To show that the model can also fit data from
comparison experiments, we fitted data from both the Jones
and Wearden (2004) and Grondin (2005) experiments.

In the double condition of Experiment 2 of Jones and
Wearden (2004), subjects were presented with three
examples each of a tone of short duration (drawn from
300-500 ms) and a tone of long duration (drawn from 600—
1,000 ms). Subjects were then presented with a series of
tones of which they had to judge whether their duration was
different from or equal to the standard tone that had the
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Fig. 7 Alternative model fits for the RD condition. (a) Solid-representation model. (b) Perturbation model

same frequency. Thus, if the short tone had a low frequency
and the long tone a high frequency, a subsequent low-
frequency tone had to be compared with the short tone. The
comparison tones had a duration of 0.5, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, or 1.5 times the standard tone. Figure Sa
shows the results. Clearly, subjects judged an interval to be
the same as the standard more as it became closer to the
standard. However, there was a bias, in that intervals that
were slightly longer than the short standard were judged as
the same more often, while the reverse was true for the long
standard (the two curves would be on top of each other,
otherwise).

To model this, we used the same pool memory principle
as with the main experiment. The six examples would all be
entered into the memory pool at the appropriate moment of
learning. If the model subsequently had to judge whether a
newly presented interval was of the same duration as the
indicated standard, it would retrieve that standard from
memory and compare it to the presented interval. If the
difference in pulses between the two was small enough, the
model would judge the intervals to be the same, and
otherwise to be different.® Figure 5b shows the fit of the
model, which exhibits a bias in judging short intervals as
longer and long intervals as shorter that is similar to the one
found in the data.

In a comparable experiment by Grondin (2005, Exp. 1),
subjects had to judge whether newly presented intervals
were longer or shorter than one of two standards (250 and

3 Because the intervals in this experiment were so short, a 7, of 100 ms
was too coarse. We therefore used parameters from the Taatgen et al.
(2007) article to fit these data: t, = 11 ms, @ = 1.1, b = 0.015.
Furthermore, two intervals were judged to be the same if they differed
by less than 1.8 pulses, and the mismatch penalty between short and
long was set to 0.4. The other parameters were left the same.

750 ms). In the single condition, they based their decisions
on only a single standard, but in the double condition, they
had to make comparisons with both standards. Figure 6a
shows the results for the “single” and the “two base
durations mixed” conditions from Grondin’s Experiment 1
(the other conditions explored input modality, which is of
no particular concern here).

In the dual condition, there is a clear tendency to judge
the intervals that are longer than the short standard as long
less often, while judging the intervals shorter than the long
standard as long more often, indicating that the two
representations contaminate each other.

What is different between this experiment and the Jones
and Wearden (2004) experiment is that subjects were never
explicitly presented with the standard, but instead received
examples that they had to judge as longer or shorter than
the standard. After their judgment, they received feedback
on their correctness, allowing them to construct a represen-
tation of the standard on that basis. We modeled this
procedure by entering every experience with feedback into
the memory pool. When the model then had to judge
whether a new interval was long or short, it would retrieve
two representations from memory: one for long and one for
short. It then decided for the category that was closest to the
new interval. The results (Fig. 6b) show that the represen-
tations in the dual condition indeed influence each other in
the same way as in the data.* Summarizing, these fits show
that the here-presented model can qualitatively and quan-
titatively account for a series of experiments in which
temporal reference memory drives temporal performance.

* The parameters we used in this model were the same as those for the
Jones and Wearden (2004) model, except that the mismatch penalty
between long and short was 0.8.
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Table 7 Comparison between

the data and the three models Factor Beta, Beta, Pool  Beta, Solid- Beta,

for the short interval in the Data Model Representation Model ~ Perturbation Model

“river—dike” condition
Intercept (ms) 962 992 1,851 1,551
short, ; 0.17 0.30 0.079 0.21
short,, » 0.087 0.043 0.057 0.009
short-fb,, ; = “too long” (ms) -96.8 -156 -252 -138
short-fb,,_; = “too short” (ms) 48.9 131 250 134
long, 0.21 0.14 0.01 0.00
long-fb,_; = “too long” (ms) -97.5 —-131 -0.5 7.4
long-fb,_; = “too short” (ms) 67.2 156 32 -5.9

General discussion

Our experiment shows explicitly that representations of
both temporal intervals in memory influence each other,
supplementing findings by, for example, Jones and Wearden
(2004), Grondin (2005), Van Rijn and Taatgen (2008), and
Jazayeri and Shadlen (2010). The results not only show that
the representations of two intervals tend to shift toward each
other, but also that a change in the duration of one interval
not only affects the representation of that interval, but also
the representation of the unchanged interval. These findings
support a model in which the representation of a time
interval is not a single memory trace, but a pool of
experiences in which recency and match to the current
request determine the impact of single experiences.

The basis of our cognitive model is a simple memory model
that is based on Anderson’s (1990) rational analysis theory,
which has been used to model many memory phenomena
(see, e.g., Anderson & Matessa, 1997; Anderson & Reder,
1999; Taatgen & Wallach, 2002; for a more extensive list, see
http://act-r.psy.cmu.edu/publications/index.php?topic=2). This
model, when combined with a pacemaker—accumulator time
perception model, is sufficient to explain the phenomena
found in this experiment. The main specific choice we made
in this model was to treat every experience with each of the
intervals as a separate memory trace. The retrieval process
produces a mix of these memory traces through a blending
mechanism (Lebiere et al., 2007).

In the introduction, we discussed several alternative
memory models for representing time intervals. In a first
alternative, solid representations of an interval are formed
and strengthened by experience. This alternative, which is
mixture of the SAMP and AVE models (Jones & Wearden,
2003), retrieves a single past experience (using Eq. 2) and
uses that for the next estimate. If it receives positive
feedback, it strengthens this experience. On negative
feedback, it creates a new memory trace that incorporates
the feedback. This alternative can account for the impact of
one interval on the other because of the possibility that the
model may retrieve a wrong interval (e.g., a short interval
while a long interval was requested). This alternative

@ Springer

model, however, is not able to fit the data, because the
model quickly establishes a strong representation of each
interval (as the reinforcement results in a “the winner take
all” situation), making this model too sluggish to track
changes in the long interval, because the new memory trace
with the correct new value cannot compete with the
established representation. The model also, therefore,
cannot explain how such changes impact the short interval.

The second alternative, the perturbation model of Jones
and Wearden (2003), is also not able to account for the data,
because the instantiation of this model lacks the ability to
incorporate the influence of other intervals. However, our
pool model has an important property in common with the
perturbation model, in that it is mainly driven by recent
experiences, but our model takes into account more of the
recent past than the perturbation model.

To demonstrate these differences, we implemented
versions of both the solid-representation and perturbation
models. The resulting estimates for the RD condition are
shown in Figure 7. The solid-representation model is able
to capture some of the general contamination of the two
intervals, because it overestimates short intervals and
underestimates long intervals. However, it is not able to
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Fig. 8 Comparison between the model with a reduced mismatch
penalty and the results of the 10 subjects who were removed from the
original analysis
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follow the changes in the long interval very well. The
perturbation model follows those changes very well (too
well), but it is not able to capture the contamination of the two
intervals. A comparison of the factors in the regressions
confirms these observations: Table 7 shows the factors for the
short interval in the RD condition. The table shows that both
alternative models capture most of the factors that refer to
earlier experiences with the short interval, but not with the
long interval. Moreover, both alternative models have a
much too high intercept, indicating that previous experiences
have less impact than is observed in the data.

Of course, the perturbation model could be extended to
account for many of the phenomena discussed here. For
example, as Jones and Wearden (2003) argued, instead of
replacing the old value with the new value, a more gradual
change could be proposed. However, we could not come up
with a modification of the perturbation system that could
(1) produce relatively stable performance for both dura-
tions, (2) adjust itself to changes in the standard, and (3)
show influences of the changed long interval on the short
interval. That is, changes necessary to account for these
phenomena would make the perturbation model very
similar to the pool model of temporal reference memory.

Even though the memory model we propose is fairly
successful in explaining the memory phenomena associated
with time perception, we do not claim that it is the only possible
model. Indeed, several other memory models share character-
istics with it, and might therefore produce similar results. For
example, the SIMPLE model (Brown, Neath, & Chater, 2007)
also has an exemplar-based approach that mainly differs in that
there is no explicit decay, but instead a temporal ratio between
experiences. The blending mechanism, however, effectively
implements something that is very close to a temporal ratio.
Similarly, the temporal-context model of Howard and Kahana
(2002) has characteristics that would make it potentially
suitable to model the memory aspect of time perception.

The advantage of a representation of time intervals based
on a pool of experiences is that it is very flexible (note that
this is also true for the perturbation model). A representa-
tion can be adapted quickly to changing circumstances. A
more practical example of such an adaptation is multitask-
ing during driving. When a driver wants to operate some
device in the car, he or she has to look away from the road
for as long as this is safe. This interval is subject to
changing circumstances, because one can look away much
longer from a quiet straight road than from a busy curved
road. In an experiment in which addresses have to be typed
into a navigation device while driving in a simulator,
Salvucci, Taatgen, and Kushleyeva (2006) found that
subjects adapted the time interval they spent on the
navigation device to the difficulty of the driving task. Such
an adaptation would be harder to accomplish if intervals
were represented as single, solid representations.

One of the problems with our experiment, and with other
experiments involving multiple time intervals, is that many
subjects had to be removed from the data set because they
could not keep the representations for the two intervals
separate. Indeed, Whitaker, Lowe, and Wearden (2003)
found that rats can only separate two intervals if they are in
a ratio of at least 1:4. The mechanism that keeps the model
from mixing up two intervals is the mismatch penalty in
Eq. 1, so lowering the penalty would cause the model to
mix up the two intervals. Figure 8 shows a comparison
between a model in which the mismatch penalty is lowered
to 0.3 and the 10 subjects who were rejected because they
mixed up the intervals. Even though this is only an
approximate comparison (the simulation is of the FF
condition, even though subjects are from all three), and
the data are very noisy, it still shows that the model can
offer an explanation for this group.

An important issue is the generality of the proposed
models. For the model fits presented in this article, the main
mechanism is retrieval from a pool of previous encounters
that is driven by well-tested memory mechanisms. However,
ACT-R’s declarative memory model is probably not the only
paradigm that could model these data. As we discussed, a
model with characteristics similar to those of the pool model
might also serve the same role. As already mentioned in the
introduction, the fit to the data does not hinge on the linear or
nonlinear representation of time in the clock component—as
long as a clock component produces temporal information,
the pool model would be able to produce new temporal
estimates. Despite that, we have shown that a combination of
a memory system and a time estimation system can explain
the data discussed in this study, despite the fact that neither
system was specifically designed for these experiments.

Author note We thank Stefan Wierda for collecting the data and the
members of the cognitive modeling group for their useful comments.
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