

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

tert-Butyl *N*-{3-[(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino]propyl}-carbamate

Jackson A. L. C. Resende* and Javier A. Gomez

Departmento de Química Inorgânica, Universiade Federal Fluminense, Niterói, CEP 24-020-140, Rio de Janeiro, Brazil Correspondence e-mail: jresende@id.uff.br

Received 29 May 2012; accepted 29 June 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.096; data-to-parameter ratio = 13.8.

In the title compound, $C_{18}H_{21}ClN_2O_4$, the molecular sytructure is stabilized by two intramolecular N-H···O hydrogen bonds. In the crystal, molecules are linked by pairs of C-H···O hydrogen bonds, forming inversion dimers with graphset motif $R_2^2(10)$. N-H···O hydrogen bonds further link the dimers into C(10) chains along [010].

Related literature

For biological applications of 2-amino-1,4-naphthoquinones, see: Kapadia *et al.* (2001); Brun *et al.* (2005); Hallak *et al.* (2009); Bolognesi *et al.* (2008). For a similar hydrogen-bonding pattern in a related compound, see: Lynch & McClenaghan (2003). For graph-set notation see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $C_{18}H_{21}CIN_2O_4$ $M_r = 364.82$ Monoclinic, $P2_1/n$ a = 5.5172 (2) Å b = 16.6134 (6) Å c = 19.6758 (6) Å $\beta = 95.709$ (3)°

$V = 1794.53 (11) \text{ Å}^3$
Z = 4
Cu Ka radiation
$\mu = 2.10 \text{ mm}^{-1}$
T = 150 K
0.2 \times 0.15 \times 0.02 mm

9109 measured reflections

 $R_{\rm int} = 0.040$

3149 independent reflections

2620 reflections with $I > 2\sigma(I)$

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer Absorption correction: multi-scan

(CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.551, T_{\max} = 1$

Refinement

Т

$R[F^2 > 2\sigma(F^2)] = 0.037$	229 parameters
$vR(F^2) = 0.096$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
3149 reflections	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

able 1		

Hydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1−H1···O4	0.85	2.53	3.191 (2)	135
$N1 - H1 \cdots O1$	0.85	2.1	2.576 (2)	115
$N2 - H2 \cdot \cdot \cdot O2^{i}$	0.86	2.22	2.873 (2)	132
$C8 - H8 \cdots O1^{ii}$	0.95	2.33	3.200 (2)	153

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, -y + 1, -z.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the Brazilian agencies Proppi-UFF, FAPERJ and CAPES. The authors thank the X-ray diffraction laboratory LabCri-UFMG for the data collection and the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Crystallographic Database (CSD).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2415).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bolognesi, M. L., Calonghi, N., Mangano, C., Masotti, L. & Melchiorre, C. (2008). J. Med. Chem. 51, 5463–6467.
- Brun, M. P., Braud, E., Angotti, D., Mondésert, O., Quaranta, M., Montes, M., Miteva, M., Gresh, N., Ducommunb, B. & Garbay, C. (2005). *Bioorg. Med. Chem.* 13, 4871–4879.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hallak, M., Win, T., Shpilberg, O., Bittner, S., Granot, Y., Levy, I. & Nathan, I. (2009). Br. J. Haematol. **147**, 459–470.
- Kapadia, G. J., Azuine, M., Balasubramanian, V. & Sridhar, R. (2001). *Pharmacol. Res.* 43, 363–367.
- Lynch, D. E. & McClenaghan, I. (2003). Acta Cryst. E59, o1427-o1428.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o2361 [doi:10.1107/S1600536812029674]

tert-Butyl *N*-{3-[(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino]propyl}-carbamate

Jackson A. L. C. Resende and Javier A. Gomez

Comment

Compounds with the fragment 2-amino-1,4-naphtoquinones shows a variety of uses including antimalarial activity (Kapadia *et al.*, 2001), CDC25 phosphatase inhibitory activity (Brun *et al.*, 2005), antileukemic activity (Hallak *et al.*, 2009), and anticancer potential (Bolognesi *et al.*, 2008). The title compound (I) is the product of the reaction of 2,3dicloro-1,4-naphtoquionone with *tert*-butyl-3-aminopropylcarbamate. The molecular sytructure is stablibized by a bifurcated hydrogen bond between N atom of one amine group and two O atoms of carbonyl groups N1—H1···O4, N1— H1···O1, like as observed in 2-Chloro-3-(3-dimethylaminopropylamino)-1,4-naphthoquinone (Lynch & McClenaghan, 2003). In the crystal structure the molecules are linked by C—H···O and N—H···O hydrogen bond interactions forming centrosymmetric dimer and chains (along [010]) with graph-set notation $R_2^2(10)$ and C(10) respectively (Bernstein, *et al.*, 1995) Table 1, Fig.2

Experimental

2,3-dichloro-[1,4]-naphthoquinone (2.35 g, 10.34 mmol) was dissolved in acetonitrile (20 ml). Then it was added potassium carbonate (1.43 g, 10.34 mmol) followed by *tert*-butyl-3-aminopropylcarbamate (1.50 g, 8.62 mmol) dissolved in acetonitrile (10 ml). The reaction mixture was refluxed for 5 h and concentrated under reduced pressure. The solution was diluted with ethyl acetate, and washed with saturated sodium carbonate. The organic layer was dried (Na₂SO₄) and the solvent was evaporated in vacuum. The residue was purified by column chromatography (silica gel, Hexane/EtOAc, 20:1) to yield *tert*-butyl 3-(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-ylamino)propylcarbamate 2.81 g, 89%), mp. 123 – 125 °C. The red crystal compound title were obtained from a solvent mixture (Hexane/EtOAc) *via* slow evaporation. 1H NMR in CDCl3: δ 1.45 (s, 9H, H14), 1.85 (q, J = 6.5 Hz, 2H, H12), 3.25 (q, J = 6.5, 2H, H13), 3.89 (q, J = 6.5 Hz, 2H, H11), 7.61 (td, J = 1.2, 7.6 Hz, 1H, H6/H7), 7.71 (td, J = 1.2, 7.6 Hz, 1H, H6/H7), 8.03 (dd, J = 0.9, 7.6 Hz, 1H, H5/H8), 8.13 (dd, J = 0.9, 7.6 Hz, 1H, H5/H8).

Refinement

All C-bound H atoms were placed into the calculated idealized positions. The N-bound H atoms were placed at Fourier Maps. All H atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2Ueq \text{ and } U_{iso}(H) = 1.5Ueq(methyl)]$ using a riding model.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and Mercury

CI O(2) C(12) C(11) C(3) C(4) C(13) C(10) N(1) C(5) C(2) N(2) C(15) O(3) C(6) C(1) C(9) 0 O(4) C(7 O(1) C(16) C(8) C(19) C(17) C(18)

(Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figure 1

ORTEP representation (Farrugia, 1997) of the molecular structure of compound I with the numbering and displacement ellipsoids at 30% probability level. Hydrogen-bonds are shown by dashed lines.

Figure 2

Packing diagram of (I), showing the formation of dimer and chains along [010]. Hydrogen-bonds are shown by dashed lines. "

tert-Butyl N-{3-[(3-chloro-1,4-dioxo-1,4- dihydronaphthalen-2-yl)amino]propyl}carbamate

Crystal data	
$C_{18}H_{21}ClN_2O_4$	$V = 1794.53 (11) \text{ Å}^3$
$M_r = 364.82$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 768
Hall symbol: -P 2yn	$D_{\rm x} = 1.35 {\rm ~Mg} {\rm ~m}^{-3}$
a = 5.5172 (2) Å	Cu <i>K</i> α radiation, $\lambda = 1.5418$ Å
b = 16.6134 (6) Å	Cell parameters from 3882 reflections
c = 19.6758 (6) Å	$\theta = 3.5 - 66.1^{\circ}$
$\beta = 95.709 \ (3)^{\circ}$	$\mu = 2.10 \text{ mm}^{-1}$

T = 150 KPlate, red

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer	9109 measured reflections 3149 independent reflections
Graphite monochromator	2620 reflections with $I > 2\sigma(I)$
Detector resolution: 10.4186 pixels mm ⁻¹	$R_{\rm int} = 0.040$
ω scans	$\theta_{\max} = 66.3^\circ, \theta_{\min} = 3.5^\circ$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(CrysAlis PRO; Agilent, 2011)	$k = -19 \rightarrow 13$
$T_{\min} = 0.551, \ T_{\max} = 1$	<i>l</i> = −23→22
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
S = 1.07	H-atom parameters constrained
3149 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0487P)^2 + 0.2773P]$
229 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.21 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min}$ = -0.27 e Å ⁻³

Special details

Experimental. CrysAlisPro (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 $0.2 \times 0.15 \times 0.02 \text{ mm}$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl	0.06795 (8)	0.53090 (3)	0.20487 (2)	0.02752 (14)	
O2	0.2272 (2)	0.68717 (8)	0.16913 (7)	0.0334 (3)	
01	0.7377 (2)	0.46056 (8)	0.05404 (7)	0.0309 (3)	
C3	0.2965 (3)	0.54959 (11)	0.15192 (8)	0.0213 (4)	
C2	0.4262 (3)	0.48957 (10)	0.12418 (8)	0.0195 (4)	
C9	0.6701 (3)	0.59958 (11)	0.06765 (8)	0.0215 (4)	
C10	0.5346 (3)	0.65804 (11)	0.09762 (8)	0.0225 (4)	
C5	0.5789 (3)	0.73898 (12)	0.08553 (9)	0.0289 (4)	
H5	0.4862	0.7793	0.1053	0.035*	
C8	0.8508 (3)	0.62166 (12)	0.02638 (9)	0.0254 (4)	
H8	0.9433	0.5815	0.0062	0.03*	
C11	0.2428 (3)	0.35866 (11)	0.16149 (9)	0.0249 (4)	
H11A	0.2312	0.3057	0.1384	0.03*	

H11B	0.079	0.3836	0.156	0.03*
C4	0.3413 (3)	0.63466 (11)	0.14204 (9)	0.0234 (4)
C13	0.5714 (4)	0.30943 (12)	0.25169 (10)	0.0295 (4)
H13A	0.689	0.3429	0.2293	0.035*
H13B	0.6191	0.3112	0.3015	0.035*
C1	0.6246 (3)	0.51367 (11)	0.07960 (9)	0.0220 (4)
C7	0.8947 (3)	0.70260 (12)	0.01492 (9)	0.0292 (4)
H7	1.0174	0.7181	-0.0131	0.035*
C12	0.3190 (3)	0.34600 (12)	0.23726 (9)	0.0283 (4)
H12A	0.3156	0.3985	0.261	0.034*
H12B	0.1991	0.3103	0.2563	0.034*
C6	0.7587 (4)	0.76064 (12)	0.04458 (10)	0.0321 (5)
H6	0.7891	0.816	0.0367	0.039*
O4	0.7482 (2)	0.25328 (8)	0.12831 (7)	0.0324 (3)
N2	0.5892 (3)	0.22688 (9)	0.22833 (8)	0.0296 (4)
H2	0.541	0.189	0.2536	0.036*
C15	0.6766 (3)	0.20650 (11)	0.16955 (10)	0.0251 (4)
O3	0.6717 (2)	0.12504 (8)	0.16315 (7)	0.0310 (3)
C16	0.8079 (3)	0.08385 (12)	0.11316 (10)	0.0299 (4)
C17	0.6995 (4)	0.10180 (14)	0.04103 (11)	0.0413 (5)
H17A	0.5265	0.0873	0.0362	0.062*
H17B	0.7852	0.0704	0.0087	0.062*
H17C	0.7167	0.1593	0.0316	0.062*
C18	1.0756 (4)	0.10683 (15)	0.12453 (13)	0.0450 (6)
H18A	1.0957	0.1629	0.1108	0.067*
H18B	1.1704	0.0717	0.0971	0.067*
H18C	1.1332	0.1006	0.173	0.067*
C19	0.7714 (5)	-0.00400 (13)	0.13100 (13)	0.0472 (6)
H19A	0.8367	-0.0137	0.1785	0.071*
H19B	0.857	-0.0382	0.1006	0.071*
H19C	0.5972	-0.0168	0.1255	0.071*
N1	0.4113 (3)	0.40938 (9)	0.12852 (7)	0.0242 (3)
H1	0.524	0.3858	0.1098	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Cl	0.0286 (2)	0.0288 (3)	0.0266 (2)	0.00320 (18)	0.01000 (17)	0.00058 (18)
O2	0.0422 (8)	0.0250 (7)	0.0349 (7)	0.0059 (6)	0.0136 (6)	-0.0064 (6)
01	0.0360 (7)	0.0243 (7)	0.0349 (7)	0.0038 (6)	0.0156 (6)	-0.0027 (6)
C3	0.0228 (8)	0.0245 (9)	0.0168 (8)	0.0012 (7)	0.0032 (7)	-0.0004 (7)
C2	0.0218 (8)	0.0215 (9)	0.0147 (8)	-0.0003 (7)	-0.0014 (7)	-0.0004 (7)
C9	0.0232 (8)	0.0233 (9)	0.0173 (8)	0.0001 (7)	-0.0018 (7)	0.0001 (7)
C10	0.0262 (9)	0.0238 (9)	0.0166 (8)	0.0007 (8)	-0.0024 (7)	-0.0016 (7)
C5	0.0349 (10)	0.0229 (10)	0.0280 (10)	0.0024 (8)	-0.0004 (8)	-0.0005 (8)
C8	0.0266 (9)	0.0287 (10)	0.0208 (9)	-0.0012 (8)	0.0023 (7)	0.0002 (8)
C11	0.0250 (9)	0.0222 (9)	0.0272 (10)	-0.0039 (7)	0.0017 (8)	0.0005 (8)
C4	0.0270 (9)	0.0248 (9)	0.0179 (9)	0.0015 (8)	0.0005 (7)	-0.0022 (7)
C13	0.0364 (10)	0.0259 (10)	0.0256 (10)	-0.0009 (8)	0.0006 (8)	0.0013 (8)
C1	0.0242 (8)	0.0227 (9)	0.0186 (8)	0.0017 (7)	-0.0002 (7)	-0.0009 (7)

supplementary materials

C7	0.0313 (9)	0.0337 (11)	0.0224 (9)	-0.0064 (8)	0.0010 (8)	0.0049 (8)
C12	0.0340 (10)	0.0252 (10)	0.0264 (10)	-0.0005 (8)	0.0068 (8)	0.0020 (8)
C6	0.0416 (11)	0.0235 (10)	0.0305 (10)	-0.0047 (9)	-0.0006 (9)	0.0044 (8)
O4	0.0372 (7)	0.0274 (7)	0.0341 (7)	-0.0043 (6)	0.0112 (6)	0.0053 (6)
N2	0.0356 (8)	0.0220 (8)	0.0328 (9)	0.0004 (7)	0.0110 (7)	0.0067 (7)
C15	0.0204 (8)	0.0221 (9)	0.0327 (10)	-0.0019 (7)	0.0025 (8)	0.0039 (8)
O3	0.0333 (7)	0.0228 (7)	0.0387 (8)	-0.0013 (6)	0.0131 (6)	0.0023 (6)
C16	0.0260 (9)	0.0262 (10)	0.0380 (11)	0.0019 (8)	0.0061 (8)	0.0010 (9)
C17	0.0432 (12)	0.0420 (13)	0.0382 (12)	-0.0032 (10)	0.0027 (10)	-0.0047 (10)
C18	0.0251 (10)	0.0480 (14)	0.0619 (15)	0.0053 (10)	0.0045 (10)	0.0020 (12)
C19	0.0519 (13)	0.0284 (12)	0.0632 (16)	0.0071 (10)	0.0158 (12)	0.0029 (11)
N1	0.0282 (8)	0.0212 (8)	0.0238 (8)	0.0012 (6)	0.0061 (6)	-0.0006 (6)

Geometric parameters (Å, °)

Cl—C3	1.7418 (18)	С7—С6	1.386 (3)
O2—C4	1.228 (2)	С7—Н7	0.95
01—C1	1.218 (2)	C12—H12A	0.99
C3—C2	1.372 (2)	C12—H12B	0.99
C3—C4	1.451 (3)	С6—Н6	0.95
C2—N1	1.338 (2)	O4—C15	1.218 (2)
C2—C1	1.523 (2)	N2—C15	1.340 (2)
C9—C10	1.392 (2)	N2—H2	0.86
С9—С8	1.396 (3)	C15—O3	1.359 (2)
C9—C1	1.472 (3)	O3—C16	1.465 (2)
С10—С5	1.391 (3)	C16—C17	1.514 (3)
C10—C4	1.496 (3)	C16—C19	1.519 (3)
C5—C6	1.386 (3)	C16—C18	1.520 (3)
С5—Н5	0.95	C17—H17A	0.98
C8—C7	1.389 (3)	C17—H17B	0.98
С8—Н8	0.95	C17—H17C	0.98
C11—N1	1.454 (2)	C18—H18A	0.98
C11—C12	1.523 (3)	C18—H18B	0.98
C11—H11A	0.99	C18—H18C	0.98
C11—H11B	0.99	C19—H19A	0.98
C13—N2	1.453 (2)	C19—H19B	0.98
C13—C12	1.520 (3)	C19—H19C	0.98
C13—H13A	0.99	N1—H1	0.8486
С13—Н13В	0.99		
C2—C3—C4	123.52 (16)	C11—C12—H12A	108.9
C2—C3—C1	123.08 (14)	C13—C12—H12B	108.9
C4—C3—C1	113.37 (13)	C11—C12—H12B	108.9
N1—C2—C3	131.33 (17)	H12A—C12—H12B	107.7
N1-C2-C1	110.55 (15)	C7—C6—C5	120.86 (18)
C3—C2—C1	118.12 (15)	С7—С6—Н6	119.6
С10—С9—С8	120.52 (17)	С5—С6—Н6	119.6
С10—С9—С1	120.11 (16)	C15—N2—C13	123.56 (16)
C8—C9—C1	119.37 (17)	C15—N2—H2	118.2
С5—С10—С9	119.41 (17)	C13—N2—H2	118.2

C5—C10—C4	119.90 (17)	O4—C15—N2	125.63 (17)
C9—C10—C4	120.70 (16)	O4—C15—O3	125.34 (18)
C6—C5—C10	119.88 (19)	N2—C15—O3	109.03 (16)
С6—С5—Н5	120.1	C15—O3—C16	121.37 (15)
С10—С5—Н5	120.1	O3—C16—C17	110.87 (16)
C7—C8—C9	119.66 (18)	O3—C16—C19	101.83 (16)
С7—С8—Н8	120.2	C17—C16—C19	110.91 (18)
С9—С8—Н8	120.2	O3—C16—C18	109.84 (16)
N1—C11—C12	112.97 (14)	C17—C16—C18	112.07 (18)
N1-C11-H11A	109	C19—C16—C18	110.86 (18)
C12—C11—H11A	109	C16—C17—H17A	109.5
N1—C11—H11B	109	C16—C17—H17B	109.5
C12—C11—H11B	109	H17A—C17—H17B	109.5
H11A—C11—H11B	107.8	C16—C17—H17C	109.5
02	122.17 (16)	H17A—C17—H17C	109.5
02 - C4 - C10	119 68 (16)	H17B— $C17$ — $H17C$	109.5
C_{3} C_{4} C_{10}	118 15 (16)	C16-C18-H18A	109.5
$N_2 - C_{13} - C_{12}$	114.05 (16)	C_{16} C_{18} H_{18B}	109.5
N2H13A	108 7	H18A - C18 - H18B	109.5
C_{12} C_{13} H_{13A}	108.7	C16-C18-H18C	109.5
N2_C13_H13B	108.7	H18A - C18 - H18C	109.5
112 - 013 - 1113B	108.7	H18R C18 H18C	109.5
$H_{12} - C_{13} - H_{13} - H$	107.6	$C_{16} = C_{10} = H_{10A}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0	C_{10} C_{19} H_{10P}	109.5
01 - 01 - 02	122.29(10) 118 31 (16)	H10A C10 H10P	109.5
01 - 01 - 02	110.31(10) 110.28(15)	ПІ9А—С19—ПІ9В С16—С10—Ц10С	109.5
$C_{9} = C_{1} = C_{2}$	119.58 (15)	Шод С10 ШоС	109.5
$C_0 - C_7 - C_8$	119.07 (18)	ніяд—Сія—ніяс ніяр — Сія — ніяс	109.5
$C_0 - C_7 - H_7$	120.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{0} - C_{1} - H_{1}$	120.2	$C_2 = N_1 = U_1$	130.03 (10)
C13 - C12 - C11	115.57 (10)	C2—NI—HI	112.5
C13—C12—H12A	108.9	CII—NI—HI	11/
C4—C3—C2—N1	179.24 (17)	C10—C9—C1—C2	0.8 (2)
Cl—C3—C2—N1	1.4 (3)	C8—C9—C1—C2	-179.55 (15)
C4—C3—C2—C1	-1.2 (2)	N1-C2-C1-O1	0.8 (2)
Cl—C3—C2—C1	-178.99 (12)	C3—C2—C1—O1	-178.91 (15)
C8—C9—C10—C5	0.7 (2)	N1-C2-C1-C9	179.53 (14)
C1—C9—C10—C5	-179.67 (15)	C3—C2—C1—C9	-0.2 (2)
C8—C9—C10—C4	-179.81 (15)	C9—C8—C7—C6	0.0 (3)
C1—C9—C10—C4	-0.2 (2)	N2-C13-C12-C11	-67.5 (2)
C9—C10—C5—C6	-0.7 (3)	N1-C11-C12-C13	-57.5 (2)
C4—C10—C5—C6	179.74 (16)	C8—C7—C6—C5	-0.1 (3)
C10—C9—C8—C7	-0.3 (2)	C10—C5—C6—C7	0.4 (3)
C1—C9—C8—C7	-179.97 (15)	C12—C13—N2—C15	98.8 (2)
C2—C3—C4—O2	-177.80 (16)	C13—N2—C15—O4	-1.0 (3)
Cl—C3—C4—O2	0.2 (2)	C13—N2—C15—O3	179.19 (15)
C2—C3—C4—C10	1.8 (2)	O4—C15—O3—C16	15.1 (3)
Cl—C3—C4—C10	179.81 (12)	N2-C15-O3-C16	-165.12 (15)
C5-C10-C4-O2	-2.0 (2)	C15—O3—C16—C17	-68.5 (2)

C9—C10—C4—O2	178.51 (15)	C15—O3—C16—C19	173.46 (16)
C5-C10-C4-C3	178.43 (15)	C15—O3—C16—C18	55.9 (2)
C9—C10—C4—C3	-1.1 (2)	C3-C2-N1-C11	3.6 (3)
C10-C9-C1-O1	179.49 (16)	C1-C2-N1-C11	-175.99 (15)
C8—C9—C1—O1	-0.9 (2)	C12—C11—N1—C2	-84.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O4	0.85	2.53	3.191 (2)	135
N1—H1…O1	0.85	2.1	2.576 (2)	115
N2—H2···O2 ⁱ	0.86	2.22	2.873 (2)	132
C8—H8…O1 ⁱⁱ	0.95	2.33	3.200 (2)	153

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+2, -y+1, -z.