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Abstract

We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolu-

tion (VDSR) method with an unsharp masking reconstruction algorithm (DE–VM–VDSR) that

uses projection data to improve the nodule contrast and reduce ripple artifacts during chest

digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multi-

scale VM images from the projection space, the DE–VM–VDSR algorithm employs a training

network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid

super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-

variation (TV) first-iterative shrinkage–thresholding algorithm (FISTA); SART–TV–FISTA] that

involves subjective reconstruction with bilateral filtering (BF) [DE–VM–VDSR with BF]. DE-DT

imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV,

37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40˚ swing

angle. This was followed by comparison of images obtained employing the conventional poly-

chromatic filtered backprojection (FBP), SART, SART–TV–FISTA, and DE–VM–SART–TV–

FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were com-

pared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest var-

iations, radial modulation transfer function (radial MTF) for a chest phantom with simulated

ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water

phantom. The novel DE–VM–VDSR with BF improved the overall performance in terms of

SDNR (DE–VM–VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645;

SART–TV–FISTA: 0.0984; and DE–VM–SART–TV–FISTA: 0.1004), obtained a Gumbel dis-

tribution that yielded good images showing the type of simulated GGO nodules used in the

chest phantom, and reduced the ripple artifacts. The NPS of DE–VM–VDSR with BF showed

the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE–VM–

VDSR without BF yielded an improved resolution relative to that of the conventional recon-

struction algorithms for radial MTF analysis (0.2–0.3 cycles/mm). Finally, based on the overall

image quality, DE–VM–VDSR with BF improved the contrast and reduced the high-frequency

ripple artifacts and noise.
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Introduction

Lung cancer is the leading cause of cancer deaths, and its incidence has considerably increased

globally [1–6]. Although conventional helical computed tomography (CT) is accepted as the

gold standard because of its high level of sensitivity for detecting lung cancer, early-stage lung

cancer can be detected via low-dose helical CT, helping to reduce morbidity. However, CT has

certain drawbacks compared with chest radiography, including elevated cost and radiation

dose. The advantages of chest radiography over CT are that examinations are much shorter

and easily obtained; however, the former suffers from lower specificity and sensitivity. In chest

X-ray radiography, a three-dimensional structure of the chest is projected as a two-dimen-

sional image. Thus, overlapping anatomical structures can occasionally obscure the features

necessary for diagnosis based on chest X-ray images.

Pulmonary-nodule detection and characterization based on chest imaging are difficult tasks.

High-resolution CT (HR-CT) reveals the comprehensive organization of local and diffuse sub-

stantive aberrations and enables detection of their anatomical distribution that has considerably

improved the ability to evaluate nodules [4, 7, 8]. Digital tomosynthesis (DT) provides many of

the advantages associated with digital imaging, including low-dose short-duration examina-

tions, partial volume effect (PVE)-free longitudinal-direction images, and low-cost availability

[9–12]. DT enhances the ability to detect abnormalities by removing the overlapping anatomical

structures and refining the clarity and sharpness of the in-plane structures in images [13].

The dual-energy subtraction (DES) technology can be used in DT chest imaging to enhance

detection relative to that of conventional polychromatic imaging [14, 15]. Although DES can

produce various images of soft tissue and bone, it increases noise [12, 14]. However, DES-DT

generates a great “rippled” artifact on any visible pulmonary nodules because of the intrinsic

misalignment of low- and high-kVp images [14, 16]. In chest DT (CDT), reconstruction from

a limited arc angle has been reported to cause ripples, increasing the difficulty of precise diag-

nosis [14, 16]. Because of this rippled pattern, we anticipate that these pulmonary nodules may

not be noticed and that detection of the pulmonary nodules can be improved if this rippled

pattern can be avoided.

Earlier reports indicated the use of DE-CT material decomposition and virtual monochro-

matic (VM) imaging (projection-space approach and image-space approach) to enhance nod-

ule detection [17–20]. Particularly, enhancements in nodule detection were obtained via

reconstruction of projection data decomposed using the materials in projection space [20, 21].

Low- and high-energy types of weighted blending methods [22, 23] are involved in the two-

material decomposition-based DE technique. Depending on the selected blending ratio, the

noise or contrast may be compromised in this technique. Therefore, a blended image with

reduced noise but lower contrast and spatial-resolution information is obtained by changing

the blending ratio. Nevertheless, these inherent problems potentially can be resolved at a high

level by combining the DE technique with three-material decomposition.

Although filtered backprojection (FBP) [13] has excellent high-frequency detection sensi-

tivity, the enhanced noise and ripple artifacts are concerning. In contrast, a simultaneous alge-

braic reconstruction technique (SART) [24] is expected to be effective at suppressing noise in

iterative reconstruction (IR) and has been useful in various fields [25–28]. The usefulness of

combining the first-iterative shrinkage–thresholding algorithm (FISTA) and IR–total variation

(TV) was recently reported [29, 30]. Integrated and improved images may be generated

through the combination of FISTA, IR-TV, and deep learning. Therefore, we adopted a com-

bined reconfiguration, i.e., SART–TV–FISTA, for this study.

Deep learning methodologies have been successfully instituted in pattern recognition and

processing of images, including denoising [31–33] and generation of super-resolution (SR)
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[34–38] images. For example, a convolutional neural network (CNN) has been applied to

enhance the detection of pulmonary nodules in medical imaging by removing residual errors

[39–43]. A CNN-based modification (very-deep SR [VDSR]) was presented by Kim et al. [44].

The main feature of VDSR includes the reconstruction progress associated with the learning

algorithms. The very-deep architecture combined with regularization procedures increase the

contrast and resolution of the image. The reference and residual images used in the training

workflow for VDSR are essential for improving the contrast and resolution of the nodule.

In DT, nodule detection can be enhanced by improving the clarity and sharpness of the

DE–VM projection images. Therefore, we recommend applying CNN-based deep-learning

processing to the DE–VM projection images for improving their resolution (so-called SR).

Enhancing the image resolution by SR is useful for more accurate detection of nodules. SR is a

method for generating high-resolution (HR) and low-resolution (LR) images. Single-image SR

is difficult because high-frequency image content cannot be obtained from an LR image. The

HR image quality is limited in the absence of high-frequency information. VDSR is a CNN

architecture developed to perform single-image SR processing [44]. The VDSR network learns

the mapping between LR and HR images. These images differ mainly in terms of the high-fre-

quency details even though they have similar image content, making this mapping possible.

Digital enlargement (zoom in) of a poor image results in image blurring and poor image qual-

ity because the conventional interpolation or enlargement algorithm is insufficient. However,

a high-quality HR image can be generated from an LR image via VDSR.

DE–VM spectral imaging can potentially improve nodule detection [17–20]. We postulate

that DE–VM will enhance the nodule contrast and improve nodule detection. We anticipate

an increase in nodule contrast and resolution after reconstruction when VDSR processing is

used to conduct residual learning at the projection-data level. To support this proposition,

VDSR, which constitutes a built-in deep feedforward CNN, is employed to produce an SR

image from the residual image. However, because VDSR uses a residual learning method, it is

also feasible to train the VDSR network architecture for increasing the nodule contrast and

resolution. Furthermore, the nodule contrast may be augmented through reconstruction in

which the decomposed projection data from every material (e.g., nodule, soft tissue, vessel,

and bone) processing are considered. In case of DE, an increase in ripple artifacts with noise

(especially high frequency) because of the influence of VM processing is concerning. In addi-

tion, detection by VDSR is expected to be difficult for ground-glass opacity (GGO) nodules

associated with low X-ray absorption. As a countermeasure, we proposed correcting VDSR

with unsharp masking (UM [45]) for the projection space (preprocessing) and the recon-

structed image (postprocessing) with bilateral filtering (BF) [26]. We believe that VDSR with

UM and BF is useful for contrast enhancement and reducing ripple artifacts because it can

reduce high-frequency noise while preserving the edge information of soft tissues and nodules.

The aim of this study was to describe a newly developed projection-space hybrid recon-

struction procedure by employing DE–VM with VDSR to increase the nodule contrast and

reduce ripple artifacts [DE–VM with VDSR (DE–VM–VDSR with BF)] from CDT.

Materials and methods

Overview of DE–VM–VDSR with BF

The novel DE–VM–VDSR with BF algorithm was implemented in case of projection-space

data to increase the nodule contrast while reducing ripple artifacts during CDT. This method

is based on a training network (mini-batch gradient-descent algorithm with momentum

[SGDM]) with UM to estimate the residual image from HR and multiscale VM images in a

projection space involving hybrid and subjectively reconstructed SR images (SART–TV–
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FISTA) and BF (Fig 1). The flowchart shows the interrelations of VDSR with UM, SART–TV–

FISTA, and BF, which form the core of DE–VM–VDSR with BF (Fig 2).

Phantom specifications

The Chest Phantom N1 (Kyoto Kagaku Co., Tokyo, Japan) used in this study comprised soft

tissue and vessels made of polyurethane resin and artificial material made of epoxy resin and

CaCO3. The simulated pulmonary nodules used in this study were the GGO type (−630

Hounsfield units, 5 mm in diameter, urethane foam) when considering a homogenous compo-

sition. They were arranged in the right-middle-lobe region. The simulated nodules placed

close to the edges of the lungs or combined with the blood vessels were evaluated.

DE-DT system

The DE-DT system (SonialVision Safire II; Shimadzu Co., Kyoto, Japan) comprised an X-ray

tube (anode, made of tungsten, rhenium, and molybdenum; real filter: inherent; aluminum

[1.1 mm], additional; aluminum [0.9 mm] and copper [0.1 mm]) with a 0.4-mm focal spot and

an amorphous selenium (1720 × 1720 pixels) digital flat-panel detector (detector element,

0.15 × 0.15 mm). The source-to-isocenter distance was 924 mm, whereas the source-to-detec-

tor distance was 1100 mm (antiscatter grid, focused type; grid ratio, 12:1). The selected kV val-

ues (low, 60 kV; high, 120 kV) [14] were optimal for testing the simulated nodule contrast

because they inherently offered optimal tissue decomposition.

Fig 1. Flowchart of the Dual-Energy (DE) Virtual Monochromatic (VM) with Very-Deep Super-Resolution

(VDSR) reconstruction algorithm (DE–VM–VDSR) and Bilateral Filtering (BF). DE–VM–VDSR with BF is

implemented by combining preprocessing [VM and VDSR with unsharp masking (UM)] and postprocessing (BF).

https://doi.org/10.1371/journal.pone.0244745.g001
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Thirty-seven low- and high-voltage projection images (1024 × 1024 pixels) were obtained at

voltages when considering a swing angle of 40˚, a total acquisition time of 6.4 s, and linear sys-

tem movement during a single tomographic pass. In DE-DT imaging, exposures with pulsed

X-rays were employed with fast interchanges between low and high energies even though high

voltages are normally used for clinical applications [12, 15]. Using low-voltage X-rays, projec-

tion images were obtained at 280 mA with an exposure time of 27 ms, whereas images were

obtained using high-voltage X-rays at 416 mA with an exposure time of 2.5 ms (default DE

acquisition parameters on the DT device). We used 1024 × 1024 pixels with 32 bits (single-pre-

cision floating number) per reconstruction image (pixel size, 0.252 mm/pixel; thickness and

increments, 1 mm) to recreate the tomograms in the needed longitudinal direction.

DE–VM–VDSR

Generation of the DE–VM projection images. In this study, we predicted that the gener-

ation of VM images via three-material decomposition [46] from DE acquisition could result in

the accurate extraction of nodules, especially those of the GGO type. We performed DE–VM

processing at the projection-data level to improve contrast, thereby increasing the nodule

detection accuracy.

In this study, we used projection-space (pre-reconstruction) decomposition to evaluate the

material fractions Fn of the artificial bone (CaCO3 + C15H16O2, Fc, local density; 1.3098 g/

cm3), soft tissue (O4N2H2, Fp, local density; 1.0600 g/cm3), and a simulated GGO nodule

(C3H8N2O, Fu, local density; 0.3500 g/cm3) in the phantom.

The linear attenuation coefficient μ(E) could be calculated for any photon energy E based

on the density corresponding to each of the three basic experimental material-containing

areas. The theoretical linear attenuation coefficient curve was determined by employing the

local and area densities (g/cm2) and mass attenuation coefficient of each material (Fig 3). They

are obtained using the XCOM program designed by Berger and Hubbell [47]. Finally, for the

projection space, we employed the decomposition approach to produce decomposition images

Fig 2. Overview and interrelation of each algorithm. The relation between very-deep super-resolution (VDSR) with

unsharp masking (UM), the simultaneous algebraic reconstruction technique total-variation first-iterative shrinkage–

thresholding algorithm (SART–TV–FISTA), and bilateral filtering (BF), which are the cores of the reconstruction

process.

https://doi.org/10.1371/journal.pone.0244745.g002
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for materials, including urethane foam, polyurethane, and artificial bone. The material frac-

tions Fn were derived from the inverse of the matrix with the attenuation intensities of three

materials at two energy levels. The inverse of this matrix [the “inv” function from MATLAB

(MathWorks, Natick, MA)] was used. Material fractions were obtained using the above func-

tion, which limits the possible fraction to 0 and 1 while imposing a sum of 1. Thus, from the

processing pipeline, three-material fractions related to the artificial bone, soft tissue, and simu-

lated GGO nodules can be obtained. DE–VM processing is performed as follows:

V ¼ Fu �
m

r

� �

u

ðEÞ þ Fp �
m

r

� �

p

ðEÞ þ Fc �
m

r

� �

c

ðEÞ; ð1Þ

Fu þ Fp þ Fc ¼ 1:0;

where V is the DE–VM projection image and (μ/ρ)u(E), (μ/ρ)p(E), and (μ/ρ)c(E) are the corre-

sponding mass attenuation coefficients of each material. We have evaluated the optimal DE–

VM energy (keV) in the “Optimization parameters” section.

VDSR. VDSR exhibits a CNN architecture designed to perform SR processing with resid-

ual learning [44]. The VDSR network learns the mapping between LR and HR images. This

mapping is possible because LR and HR images have similar image contents and differ primar-

ily in the finer high-frequency components.

Architecture. There are 20 weight layers in the network, which are identical, except for

the first and last layers. The network comprises 20 conventional layers, each with 64 3 × 3 fil-

ters, followed by a rectified linear unit (ReLu) [48]. The desired residual image is reconstructed

Fig 3. Linear and mass attenuation coefficients for each energy. The linear attenuation coefficients of a simulated ground-glass

opacity (GGO) nodule, a soft tissue, and an artificial bone with respect to the photon energy.

https://doi.org/10.1371/journal.pone.0244745.g003
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in the final layer with a 3 × 3 × 64 filter [44]. Subsequently, this final residual image can be

merged with the LR input to obtain the resulting SR output (Fig 4).

Multiscale. After the VDSR network learns to assess the residual image, it can recreate

HR images by combining the assessed residual image with the upscaled LR image. The HR

images were downscaled to produce the corresponding LR images. In this study, scale factors

of 2, 3, or 4 were used for training, and the highest contrast was obtained for each scale factor

during testing [44]. After downscaling, they were then upscaled to their previous resolution,

resulting in a suitably distorted LR image dataset. Data augmentation (rotating to an arbitrarily

small angle, shifting an arbitrarily small distance) was applied during training to alter the train-

ing data essentially to increase the volume of available training data (by randomly selecting a

scale factor as a form of data augmentation). The training model extracted randomized patches

from the upscaled and residual images.

Training dataset. Thirty-seven reference images [comprising down- and upscaled LR

images (bicubic interpolation; scale factors: 2, 3, and 4 [44]) and the corresponding residual

images form original projection] related to the revised input image pairs were randomly

selected as the training set from the generated VM projection data (total training data set: 74).

The original projection images (1024 × 1024) were downsized using different scale factors (2,

3, and 4) [44] to create sample LR images; then, the LR images were resized to their original

size via bicubic interpolation. Subsequently, the difference between the original and resized

images was determined. The network inputs were LR images upscaled by bicubic

interpolation.

Residual learning. In this study, we applied UM [45] to the image (original VM image: V)

before the interpolated LR image (H) was processed. The parameter (standard deviation) of

UM processing was set to 2.5 to maintain a balance between high-frequency noise and edge

preservation. The visibility of the simulated GGO nodule in the projection image was

improved by performing UM (Fig 5).

Interpolated LR images are generated as follows:

H ¼ D#½k � ðV � Vg lowpassÞ þ V� ð2Þ

D#: Downscaling interpolation operator

k: Scaling contrast

Vg_lowpass: Gaussian low-pass filtered image

(V−Vg_lowpass)+V: UM

Fig 4. Network architectures. Convolutional neural network for super-resolution chest digital tomosynthesis.

https://doi.org/10.1371/journal.pone.0244745.g004
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In a learning-based context, the training dataset fGt;Htg
o

t¼1
is used for learning mapping

from the LR images H to the HR images GðG 2 <GÞ, resulting in the following equation:

Ĝ ¼ argminGkH � ZGk2
ð3Þ

Z 2 <G�O; ðG ¼ OÞ

Given a set of HR images GtðG 2 <
G
Þ and their corresponding LR images HtðH 2 <

O
Þ with ω

samples, the restoration operator f can be estimated as follows:

f̂ ¼ arg minf

Xo

t¼1

1

2
Gt � f ðS"Ht; dÞ
�
�

�
�2

ð4Þ

S": Upscaling interpolation operator

δ: Trainable parameter

The network learns the residual errors between the output (HR image) and input (LR

image) instead of the HR output.

The VDSR training workflow can be understood through the mini-batch SGDM method

[49]. The hyperparameters of δ showed that the contrast of the resulting images may be

affected by the mini-batch, epochs, and initial learning rate [44]. We determined the optimal

parameters and applied them in the “Optimization parameters” section below.

f is the mapping from the interpolated LR image to the HR image. VDSR with UM is used

for estimating high-frequency components from the LR to HR and for estimating the map-

ping, also called as residual r, between HR and LR; r = G−(S"H). This method can be modeled

through a skip connection in the network. Based on residual-based modeling, r is assumed to

be a function of S"H. The final SR can be then obtained as follows:

G ¼ S"H þ f ðS"HÞ; ð5Þ

Fig 5. Differences in simulated GGO nodule detection on polychromatic and Virtual Monochromatic (VM)

projection-based images. The visibility of the simulated GGO nodule in the projection image is improved by

performing UM. The upper row shows the projection image (with/without UM), whereas the lower row shows the

global image threshold using Otsu’s method.

https://doi.org/10.1371/journal.pone.0244745.g005
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where f can be determined as follows:

f̂ ¼ arg minf

Xo

t¼1

ðGt � ðS
"HÞ

t
Þ � f ðS"HÞ

t

�
�

�
�

2

ð6Þ

First-Iterative Shrinkage–Thresholding Algorithm (FISTA). SART–TV–FISTA algo-

rithm consists of three steps: 1) SART update; 2) TV minimization; and 3) FISTA acceleration

technique. The reconstruction process of SART can be given as follows:

sðkþ1Þ

j ¼ skj þ l �

X

gi2Gy

gi �
XN

n¼1
bin

Z k

n
s

XN

n¼1
bin

� bij
X

gi2Gy
bij

; ð7Þ

where sj refers to a voxel in the object function s, g represents a single pixel in the DE–VM–SR

projection data G, θ is the projection angle of view, bij is an element in the matrix B (discrete

line integral of the system), k is the iteration index, and λ is the relaxation factor. TV minimiza-

tion is the optimization problem motivated by the compressed sensing (CS) theory [50]. This

technique has been applied to tomography [51] and can be given as follows:

s�
!

¼ argminkskTV ; ð8Þ

jB � s�
!

� hrj < d; ð9Þ

kskTV ¼
X

i;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsi;j;k � si� 1;j;kÞ
2
þ ðsi;j;k � si;j� 1;kÞ

2
þ ðsi;j;k � si;j;k� 1Þ

2

q

; ð10Þ

where s�
!

is the volume image to be recreated, δ relates to the level of data inconsistency toler-

ance, and kskTV is the l1−norm of the image gradient magnitude used as the cost function. si,j,k
is the value of the voxel with index (i,j,k). The standard steepest descent technique was

employed to solve Eq (8). The steepest gradient method based on an iterative scheme can be

used to minimize the TV objective function. In this method, the image is updated at each itera-

tion n (n = 1 to 20) as follows:

sðnþ1Þ ¼ sðnÞ � b � dp �
dsn

jdsnj
ð11Þ

dp ¼ js � s0j

dsn ¼ rskskTV�

The value of dp can be initially computed and is observed to be dependent on the values of s0
and s corresponding to the image values before and after the SART update step, respectively.

r represents the gradient operator, and β is a parameter used to control the effect of regulari-

zation. The regularization parameter β was set to 1e-7 for maximizing the simulated nodule

contrast. The FISTA acceleration step is used for convergence and can be given as follows:

sðmþ1Þ ¼ sm þ
tm � 1

tðmþ1Þ

� �

sm � sðm� 1Þð Þ; ð12Þ
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where the parameter t is updated during each iteration as follows:

tðmþ1Þ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ðtmÞ2
q

2
ð13Þ

t = 1 is the initial given value, and m is the index of the global iteration step.

Bilateral Filtering (BF). BF performs smoothing while preserving edges, such as con-

tours, and is applied to enhance image quality by reducing the noise in medical images [26].

The objective of using BF in this algorithm was to suppress and adjust the increase in high-fre-

quency components (especially noise) after reconstruction. The BF of the identified in-focus

plane image can be defined as follows:

bf ði; jÞ ¼

XZ

g¼� Z

XZ

ε¼� Z

sðiþ ε; jþ gÞexp �
ε2 þ g2

2sd
2

� �

exp �
ðsði; jÞ � sðiþ ε; jþ gÞÞ2

2sR
2

� �

XZ

g¼� Z

XZ

ε¼� Z

exp �
ε2 þ g2

2sd
2

� �

exp �
ðsði; jÞ � sðiþ ε; jþ gÞÞ2

2sR
2

� � ; ð14Þ

where η is a set of neighborhood points around the pixel, σd is the standard deviation of the

domain filter, σR is the standard deviation of the range filter, and bfis applied in VDSR of the

final DE–VM–VDSR image. The parameters are a set of η [η = 2�(2�σd)+1: σd = 1; 5, σd = 2; 9,

and σd = 3; 13] and σR (σR = 0.01 [0, 1.0]2
img_scale_diff, [, ]img_scale_diff; scale range of image, σR =

0.01). σd is the parameter that must be considered when studying the effect of BF on contrast.

We assessed the optimal parameter σd and applied the parameters in the “Optimization param-

eters” section.

Evaluation

Optimization parameters of VM energy, initial learning rate, mini-batch

size, epochs, number of iterations (k, m) for IR, and standard deviation of

domain filter (σd)

As in previous chest DT studies, the FBP (kernel: Ramachandran–Laksminarayanan) and

SART (polychromatic 120kV acquisition) were used [27]. The number of iterations must be

optimized because the characteristics of the IR image are dependent on the number of itera-

tions. First, the iteration number is optimized in polychromatic SART and SART–TV–FISTA

using the root-mean square error (RMSE). The RMSE of the identified in-focus plane image

(cross-sectional image of the center of rotation) can be given as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

tB

Xt� 1

i¼0

XB� 1

j¼0

Kref ði; jÞ � Vobjði; jÞ
� �

2
v
u
u
t ; ð15Þ

where Kref(i,j) is the (i, j)th entry of the current iteration image and Vobj(i,j) is the (i, j)th entry

of the previous iteration image of each algorithm.

Then, the optimal iteration number of the polychromatic (120 kV) SART–TV–FISTA

image was applied to monochromatic SART–TV–FISTA (DE–VM–SART–TV–FISTA) and

DE–VM–VDSR. The optimizations of DE–VM energy, initial learning rate, mini-batch size,

epochs, and standard deviation of the domain filter were evaluated based on the signal-differ-

ence-to-noise ratio (SDNR) in case of the in-focus plane image. The SDNR of the identified
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in-focus plane image can be given as follows:

SDNR ¼
jLGGO � LBGj

sBG
; ð16Þ

whereLGGO and LBG are the mean pixel intensities inside the simulated GGO nodule and back-

ground (BG) fields, respectively, and σBG is the standard deviation of multiple regions of inter-

est (ROIs) (radius: 9 pixels) in the BG field. The background signal were represented by the

multiple circular ROIs inside the lung field (Fig 6A). The DT system-derived real projection

data were used to achieve reconstruction. MATLAB (MathWorks, Natick, MA) was used for

reconstructing and processing images. Optimization was evaluated based on the RMSE and

SDNR. The lowest RMSE for iteration number, the highest SDNR for VM energy, initial learn-

ing rate, mini-batch size, epochs, and standard deviation of domain filter were selected as the

optimum parameters.

Evaluation of image quality

The SDNRs in case of DE–VM–VDSR with and without BF and the conventional algorithms

(polychromatic FBP, SART, SART–TV–FISTA, DE–VM–SART–TV–FISTA with reconstruc-

tion from the original projections) were compared to assess the increase in simulated nodule

contrast on each in-focus plane image. We further ascertained the ripple artifacts, spatial reso-

lution, and noise. Gumbel distributions [52] are statistical models that can be used for deter-

mining the influence of ripple artifacts. The radial modulation transfer function (radial MTF)

[53] shows the spatial resolution of the simulated GGO nodule on the features of the images in

the in-focus plane. The noise power spectrum (NPS) [54] is the noise of a uniform object on a

feature of an in-focus plane image. The characteristics of DE–VM–VDSR with and without BF

and the conventional algorithms were evaluated based on the contrast, ripple artifact reduc-

tion, spatial resolution, and noise. DE–VM–VDSR with and without BF was evaluated using

the optimized parameters generated based on the application image.

Fig 6. Assessing improvements in image quality using the Signal-Difference-to-Noise Ratio (SDNR), a statistical

model with a Gumbel distribution, and the radial Modulation Transfer Function (radial MTF) of the selected

features. (a) The in-focus plane image shows the simulated ground-glass opacity (GGO) nodule and background areas of

the SDNR, (b) measurements and the ripple artifact with simulated GGO nodule areas of the Gumbel analysis, and (c)

measurements of the simulated GGO nodule areas of the radial MTF.

https://doi.org/10.1371/journal.pone.0244745.g006
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Statistical model with a Gumbel distribution

Based on Gumbel distribution, the streak artifacts of the high-frequency components found in

cross-sectional images can be quantitatively analyzed [46, 52]. Therefore, we selected to use

this statistical model. The analysis procedure is shown below.

1. A rectangular window with a width of 24 pixels and a length (X-ray sweep direction) of 24

pixels was placed on each in-focus plane image nearly perpendicular to multiple streak arti-

facts, as shown in Fig 6B.

2. The parallel-line profiles of the pixel values at 1-pixel intervals (as shown by the arrow in

Fig 6B) resulted in a total of 23 parallel-line pixel-value profiles (each sampling size: 23).

3. The pixel-value profiles were graphed, and the maximal variations between adjacent pixel

values were determined and analyzed based on the Gumbel distribution.

4. The cumulative probability function was measured using the symmetry rank method

[cumulative probability Qðxð@ÞÞ ¼
ð@� 0:5Þ

ℓ ; ðfor @ ¼ 1; :::ℓÞ; ℓ is the sampling size] with order

statistics.

5. Based on the generated probability diagram, the maximal difference between adjacent pix-

els showed linearity with a cumulative probability; thus, the Gumbel characteristic could be

calculated based on the maximal difference between neighboring pixels.

Finally, to evaluate linearity, Pearson’s correlation coefficient was determined and exam-

ined [probability (P) values< 0.01] using IBM SPSS Statistics for Windows (version 24.0; IBM

Corp., Armonk, NY).

Radial MTF

Radial MTF [53] considers that the edge of a circular object is a combination of all the edges in

a line extending in the radial direction from the center of the circle and acquires several pro-

files in the radial direction from the center of the object. The edge-spread function is obtained

by averaging the pixel-value profile of the edge image, the line-spread function is obtained

from the difference, and MTF is obtained based on the one-dimensional fast Fourier trans-

form. The spatial resolution of the simulated GGO nodule was calculated in the radial direc-

tion, including the BG field from the center of the nodule as the evaluation area (radius: nine

pixels, area: 254 pixels) (Fig 6C).

Noise Power Spectrum (NPS)

Based on NPS, a uniform water phantom was acquired (vertical: 300 mm, horizontal: 200 mm,

longitudinal: 450 mm) and analyzed using the two-dimensional Fourier analysis method [54]

by considering an in-focus plane. The ROI (64 × 64 pixels) was set to 8 pixels in the vertical

direction and the horizontal direction in the area near the center of the field of view (256 × 256

pixels); 64 ROIs were set, and the average value was considered to be the NPS. Trend correc-

tion was achieved at each ROI through polynomial approximation (quadratic). The exposure

parameters were similar to those obtained when the chest phantom N1 was acquired.

Results

Optimization parameters

After measuring the RMSE of each iteration, the optimal number of iterations (k, m) in IR for

SART–TV–FISTA converged to 30 and SART converged to 24 (Fig 7A). Therefore, the
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number of iterations was set to 30 for SART–TV–FISTA and 24 for SART. The energy in DE–

VM processing was set to 60 keV because it resulted in the highest SDNR in VM energy opti-

mization of DE–VM–SART–TV–FISTA (Fig 7B). Next, the SDNR was measured with epochs

of 5 and 10 to 80 (interval: 10) to verify the optimization with different initial learning rates

(0.1, 0.01, and 0.001) and mini-batch sizes of 64, 128, 256, and 512. According to the optimiza-

tion verification conducted by Kim et al. [44] (evaluated by peak signal-to-noise ratio (PSNR),

epoch changes to around 40 but tends to be constant (converge) after 40. With reference to

these results, the highest values of epoch and mini-batch indicating a tendency of convergence

were selected as the optimization values. The SDNR value was the highest for epochs of 70 and

a mini-batch size of 128 with an initial learning rate of 0.001 (Fig 8A–8C). Therefore, learning

was performed by setting the mini-batch size to 128 and epochs to 70, with an initial learning

rate of 0.001 (hyper-parameter). SDNR was measured by changing σd to 1, 2, and 3 to optimize

the domain filter (σd) standard deviation of bilateral filtering, and the highest SDNR was 1 and

2 (Fig 8D). The increase in σd is affected by blurring with smoothing [26]. Therefore, σd was set

to 1. Using the results of optimization verification, DE–VM–VDSR images were generated by

setting the number of iterations (k, m) to 30, mini-batch size to 128, epochs to 70, and standard

deviation of the domain filter (σd) to 1; the simulated nodule contrast (SDNR), ripple artifact

Fig 7. Optimization results for parameter [number of iterations for Iterative Reconstruction (IR) and Dual-

Energy Virtual Monochromatic (DE–VM) energy] determination. (a) The root-mean square error (RMSE) with

respect to number of iterations are shown for each polychromatic IR algorithm. (b) The signal-difference-to-noise

ratios (SDNR) resulting from differences in the DE–VM energy in the simultaneous algebraic reconstruction

technique (SART) total-variation (TV) first-iterative shrinkage–thresholding algorithm (FISTA) [DE–VM–SART–

TV–FISTA] are shown.

https://doi.org/10.1371/journal.pone.0244745.g007
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(Gumbel distribution), spatial resolution (radial MTF), and noise (NPS) were evaluated and

compared with those of the images obtained using conventional algorithms.

Image quality

Fig 9 shows the reconstructed images of the chest phantom N1 with a simulated GGO nodule

using DE–VM–VDSR with and without BF or the conventional reconstruction algorithms.

Remarkably, the DT images generated by DE–VM–VDSR with BF algorithm showed

decreased ripple artifacts and increased simulated nodule contrast. Further, the edges on the

simulated nodule were sharpened and more clearly identified. In contrast, the images pro-

duced with polychromatic FBP exhibited more noise and ripple artifacts, and polychromatic

SART, SART–TV–FISTA, and DE–VM–SART–TV–FISTA exhibited reduced sharpness and

contrast in the simulated nodule.

SDNR. Fig 10 shows the SDNR results for the ROI set on the chest NI phantom. DE–

VM–VDSR with BF yielded the highest simulated GGO nodule contrast regardless of the

usage of the conventional algorithm. The simulated GGO nodule contrast was dependent on

the type of reconstruction algorithm in case of the polychromatic imaging algorithms, FBP,

SART, and SART–TV–FISTA, and DE–VM–SART–TV–FISTA.

Fig 8. Optimization results for parameter [mini-batch, epochs, and standard deviation of domain filter σd]

determination. The signal-difference-to-noise ratio (SDNR) resulting from differences in the initial learning rate [(a):

0.1, (b): 0.01, and (c): 0.001], mini-batch, and epochs in the DE–VM with the very-deep super-resolution (VDSR)

reconstruction algorithm (DE–VM–VDSR) are shown. (d) The SDNRs resulting from differences in σd in DE–VM–

VDSR are shown. From the results (Figs 7 and 8) of optimization verification, DE–VM–VDSR images were generated by

setting the number of iterations to 30, initial learning rate to 0.001, mini-batch size to 128, epochs to 70, and σd to 1.

https://doi.org/10.1371/journal.pone.0244745.g008
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Gumbel distribution. Fig 11 presents a Gumbel plot of the relations between the maximal

variations and predicted cumulative probabilities (DE–VM–VDSR with BF = 0.0087 ± 0.0006,

DE–VM–VDSR without BF = 0.0142 ± 0.0010, FBP = 0.0198 ± 0.0013,

SART = 0.0142 ± 0.0009, SART–TV–FISTA = 0.0099 ± 0.0005, SART–TV–FISTA with

VM = 0.0102 ± 0.0005). Here, the largest variations are linearly distributed (DE–VM–VDSR

with BF, r = 0.908 [P< 0.01]; DE–VM–VDSR without BF, r = 0.968 [P< 0.01]; polychromatic

FBP, r = 0.971 [P< 0.01]; polychromatic SART, r = 0.963 [P< 0.01]; polychromatic SART–

TV–FISTA, r = 0.943 [P< 0.01]; and DE–VM–SART–TV–FISTA, r = 0.938 [P< 0.01]).

These observations validated the use of Gumbel distribution as an acceptable statistical model

for defining the largest variations in differences between the nearby pixel-value profiles. Addi-

tionally, based on analysis of the maximal variations in the Gumbel plot, DE–VM–VDSR with

BF yielded the lowest high-frequency ripple artifacts. The polychromatic SART–TV–FISTA

algorithms exhibited fewer high-frequency ripple artifacts than DE–VM–SART–TV–FISTA,

whereas the polychromatic FBP algorithm distribution differed from other algorithms.

MTF. The spatial resolution of the simulated GGO nodule region is shown in Fig 12. DE–

VM–VDSR without BF exhibited improvement in the low-frequency region (0.2–0.3 cycles/

Fig 9. Comparisons among the Dual-Energy (DE) Virtual Monochromatic (VM) with Very-Deep Super-Resolution (VDSR)

reconstruction algorithm (DE–VM–VDSR) with and without BF and conventional reconstruction algorithms [DE–VM–VDSR

with and without BF (showing window: 0–0.23), FBP (kernel: Ramp; 0–0.4), SART (120 kV; 0–0.02), SART–TV–FISTA (120

kV; 0–0.4), and DE–VM–SART–TV–FISTA (60 keV; 0–0.23)] in the in-focus plane. The window of the chest phantom N1 with

lung field was varied to compare the contrast and background gray levels. For each corresponding set, the VM (DE–VM–VDSR and

DE–VM–SART–TV–FISTA) images are displayed at the same window width and level, whereas the polychromatic FBP and IR

images have larger window widths because the backgrounds are less flattened. The X-ray source is moved vertically along the image.

Abbreviations: FBP = filtered backprojection, SART = simultaneous algebraic reconstruction technique, TV–FISTA = total-variation

first-iterative shrinkage–thresholding algorithm, IR = iterative reconstruction, BF = bilateral filtering.

https://doi.org/10.1371/journal.pone.0244745.g009
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mm), whereas FBP improved in the high-frequency region (0.7–1.0 cycles/mm). When com-

paring DE–VM–VDSR with and without BF, the spatial resolution without BF was better. The

spatial resolution tended to decrease for polychromatic SART–TV–FISTA and DE–VM–

SART–TV–FISTA. Among the conventional algorithms, polychromatic SART–TV–FISTA

showed a similar spatial resolution to that exhibited by DE–VM–SART–TV–FISTA.

NPS. Fig 13 presents the noise characteristics of the reconstructed image in a uniform

water phantom. DE–VM–VDSR with BF showed the lowest noise characteristics. In particular,

the low noise in the low-frequency region (~0.8 cycles/mm). When comparing DE–VM–

VDSR with and without BF, BF resulted in lower noise. The noise characteristic tended to

increase for FBP and polychromatic SART.

Discussion

The newly established DE–VM–VDSR algorithm, in which DE–VM and VDSR are combined

with UM for projection-space processing with SART–TV–FISTA prior to reconstruction with

BF, achieved adequate overall functioning in this study. This hybrid algorithm resulted in an

improved image quality with respect to the simulated GGO nodule present in the chest phan-

tom. Furthermore, this algorithm effectively reduced the ripple artifacts from the images, spe-

cifically at large distances from the ribs. DE–VM–VDSR with BF was useful for enhancing the

pulmonary GGO nodule contrast. In summary, this algorithm may be a novel alternative with

promising applications for chest imaging because images considerably superior to those

Fig 10. Plots of the SDNR versus each algorithm from the in-focus plane. Comparisons of the signal-difference-to-noise

ratio (SDNR) of in-focus plane images obtained via the dual-energy (DE) virtual monochromatic (VM) with the very-deep

super-resolution (VDSR) reconstruction algorithm (DE–VM–VDSR) with and without BF and the conventional

reconstruction algorithms.

https://doi.org/10.1371/journal.pone.0244745.g010
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obtained using conventional algorithms can be achieved with respect to the contrast, ripple

artifacts, and noise reduction. Based on the chest imaging conditions and required characteris-

tics of the final images, DE–VM–VDSR with BF provides flexibility with respect to the selec-

tion of imaging parameters that may be helpful to users.

The VM method can be used to produce material-selective images devoid of beam-harden-

ing artifacts. Because the mass density of each basis material at each point in the image is

dependent on the linear attenuation coefficients of the basis materials at a nominal photon

energy, the beam-hardening artifacts can result in erroneous mass densities of the basis materi-

als [46]. Thus, our new DE–VM–VDSR with BF, which is created by combining VM-VDSR

processing and SART–TV–FISTA after reconstruction of the BF algorithms, could effectively

enhance contrast and reduce ripple artifacts (Figs 10 and 11).

VDSR is a training strategy based on which an image of any scale can be reconstructed. Thus,

a hybrid training strategy is helpful for SR images. A well-trained network can process images of

all scales and reconstruct the input image to any size. VDSR recreates the residual image, making

it simpler to examine the difference between LR and HR [55]. The edge and texture generated

using VDSR with UM are sharp. Residual learning can estimate the residuals between LR and SR

images so that the final SR images can be obtained using LR images. Images obtained via DE–

VM–VDSR without BF can be visualized by this feature in the radial MTF plot (Fig 12). However,

the ripple artifacts and noise increased as the spatial resolution improved. BF is a useful tool for

preserving the enhanced edge information and reducing ripple artifacts and noise.

DE–VM–VDSR with BF showed good characteristics with same results regarding ripple

artifacts and noise reduction. In particular, it can effectively reduce noise in the high-frequency

region and helped improve contrast. These effects are thought to have resulted from the

Fig 11. The largest variations extracted from 23 pixel-value profiles are plotted. The relatively large variations in

pixel values were attributed to high-frequency ripple artifacts.

https://doi.org/10.1371/journal.pone.0244745.g011
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improvement of contrast and resolution by the combination of DE–VM and VDSR with UM

and from the effective ripple artifacts and noise reduction in the state of edge preservation by

BF (Figs 10, 11 and 13).

Through CNN-based approaches, the upscaling process can use the transposed convolution

(so-called fractionally strided convolutional) layers [56, 57] or sub-pixel layers [58]. However,

the weights of these trained networks are set for a specific scale factor [59]. This is a restrictive

feature of CNN-based SR for DT projection data because a fixed upscaling factor is not ideal in

this scenario. This is because high-frequency image content cannot be retrieved from the LR

image when using fixed upscaling. We have presented a multiscale CNN-based SR method for

three-dimensional CDT that can learn multiple scales by training multiple scale factors

employing an independent upscaling method, for example, bicubic interpolation.

The following two factors are critical to ensure outstanding functioning of the CNN-based

SR algorithm: selecting the procedures for evaluating the enhancements in image quality (con-

trast and spatial resolution) and generating adequate training data. The choice of an appropri-

ate image-quality-enhancing method dictates whether sufficient data are available for the

CNN-based SR to differentiate the simulated GGO nodules from normal structures. The train-

ing data for CNN-based SR comprises as many pulmonary GGO nodule types as possible.

In FISTA, the initial value of the next iteration can be evaluated by linearly combining the

results of the two earlier iterations. CDT image reconstruction is normally scarce in some local

Fig 12. Plots of the radial Modulation Transfer Function (radial MTF) versus spatial frequency (cycles/mm) from

the in-focus plane for the Dual-Energy (DE) Virtual Monochromatic (VM) with Very-Deep Super-Resolution

(VDSR) reconstruction algorithm (DE–VM–VDSR) with and without BF and conventional reconstruction

algorithms. The spatial frequency of the simulated ground-glass opacity (GGO) nodule area indicates the simulated

GGO nodule and background areas of the radial MTF measurements. The plots are of the area of the GGO nodule and

background regions.

https://doi.org/10.1371/journal.pone.0244745.g012
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high-frequency regions because the GGO nodules are dispersed inside specific lung fields.

This suggests that a combination of regularizations that increase the effect of the conditions of

sparsity and smoothness could enhance the recreation of CDT. The most basic sparse index is

the L0 norm, which is the number of nonzero elements in all vectors. However, the normal

inverse problem of L0 is difficult to solve, at least in the undetermined case [60]. In contrast,

the L1 norm is a convex relaxation of the L0 norm and frequently employed to improve the

sparsity of images, specifically in the field of CS [50, 61]. The optimization difficulties can be

resolved using many algorithms, such as gradient projection [62], iterative shrinkage–thresh-

olding [63], and FISTA [29, 30]. FISTA is ideal because it can assess fast and precise L1 solu-

tions that can solve the reconstruction problem and improve the sparsity of CDT images.

TV minimization assumes that a true image is comparatively uniform and piecewise.

Because TV is defined as the sum of the first-order derivative magnitudes [64], noise and arti-

facts can be observed as valleys, and peaks have relatively larger TV values. Thus, TV is

restricted to clinical CT. Through the combination of the CNN-based SR algorithm and

FISTA–TV, nonlinear regression can be learned. Further, prior knowledge can be effectively

used in future pulmonary GGO nodules and CDT images.

Preferably, the structures in each plane of interest must be clearly displayed in the corre-

sponding plane of DT reconstruction, whereas those present outside the plane must be ren-

dered invisible [65]. Fundamentally, the restricted angular range of the DT image-acquisition

geometry restricts spatial resolution in the dimension perpendicular to the detector plane [65].

Fig 13. Plots of the Noise Power Spectrum (NPS) versus spatial frequency (cycles/mm) from the in-focus plane for the

Dual-Energy (DE) Virtual Monochromatic (VM) with Very-Deep Super-Resolution (VDSR) reconstruction algorithm

(DE–VM–VDSR) with and without BF and conventional reconstruction algorithms. The NPS was obtained via two-

dimensional Fourier analysis of the central field of view from the reconstructed image of the uniform water phantom. (a)

Horizontal directions and (b) vertical directions.

https://doi.org/10.1371/journal.pone.0244745.g013
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Consequently, out-of-plane structures cannot be totally reduced from the reconstruction

plane; therefore, they are always present. However, majority of these structures are invisible

because different low-amplitude structures from projections overlap in the reconstruction

plane and cause image blurring. On the contrary, out-of-plane structures from high-attenua-

tion features cannot be lowered and show up as replicates in each reconstruction plane except

in the plane in which the actual high-attenuation feature (dorsal lib) can be observed. At one

projection angle, ghosting features (ripple artifacts) are spread along the line between the

actual feature and X-ray source. DE–VM–VDSR with BF has been beneficial for reducing the

ripple artifacts but may result in the elimination of the needed clinical features.

Because CDT acquisition requires an imaging time of 6.4 s, it may be difficult to hold breath

depending on the patient’s condition when assuming clinical use. Currently, patients whose

condition is stable will be considered for examination. We hope that the acquisition time can

be reduced by improving the specifications of the acquisition system (detector sensitivity,

hardware control, etc.).

Our DE–VM–VDSR with BF has some limitations. First, even though the three-material

decomposition method was selected to estimate the numerical stability, further perfections are

required in this area. The precision of three-material decomposition is restricted on current

DT systems, specifically for elements with low fractions [66]. Second, the indicated learning

model is proposed for a specific type of phantom with simulated pulmonary nodules and may

not work efficiently when the trained network is adjusted to projection-data correction from

entirely different scanning geometries. Future studies are required to design a learning model

that can be employed in general cases. Third, DE acquisition is a mechanical constraint, and

not many devices can quickly switch between tube voltages during a single acquisition. Finally,

HR projections in training the VDSR network is the original CDT acquisitions. Because all the

LR projections are artificially downsampled, obtaining LR projections is an important step in

the proposed workflow to reduce the imaging noise and processing time.

Conclusion

In this chest phantom study, we compared the newly developed DE–VM–VDSR with BF and

various conventional DT reconstruction algorithms without and with VM processing. The fea-

tures of the new DE–VM–VDSR with BF are implemented by combining preprocessing (VM

and VDSR with UM) and postprocessing (BF). The performance of DE–VM–VDSR with BF

was evaluated for contrast (SDNR), ripple artifacts (Gumbel distribution), resolution (radial

MTF), and noise (NPS). Particularly, our DE–VM–VDSR with BF increased the contrast,

reduced high-frequency ripple artifacts, and generated relatively better noise reduction results

when compared with those of conventional reconstruction algorithms.
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