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Galactose supramolecular docking orchestrates macrophage
phenotype
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Macrophages play a key role in the body’s immune functions,
including tumor surveillance. Recent studies have indicated that
environmental cues and molecular mediators can regulate
macrophage polarization via protein–glycan interactions.1 The
glycans decorating the Mφ membrane transduce a cascade of
feedback signals from the cellular microenvironment into internal
signaling pathways, shifting the functional Mφ phenotype that
forms the molecular complex.2,3 Therefore, glycans and their
derivatives might be attractive targets for controlling Mφ
polarization at the supramolecular level. However, the influence
of galactose supramolecular docking on cell behavior is currently
unknown.
In this study, functional galactose probes were designed (see

Supplementary Material) to target proteins on the macrophage
membrane. As confirmed by fluorescence assay (Fig. 1a) and FACS
data (Fig. 1b), Gal beads had significant binding activity with the
macrophage membrane, while plain beads were not. Gal bead-
binding affinity and sensitivity were verified by selecting a range
of cell:bead ratios between 1:10 and 1:100 and using plain beads
as a negative control (contr(−)). When the green fluorescence
signal measured on single cells was compared among various cell:
bead ratios, the number of anchored beads increased linearly with
the cell:bead ratio (Fig. S3a). The fluorescence intensity correlated
with the concentration of galactose, and the dissociation constant,
KD, was 1.25 mM (Fig. S3b).3,4 Furthermore, with increasing Gal
bead concentration, the percentage of the Gal-bead-coated Mφs
increased almost linearly (Fig. S3c).
Binding activity represents a miniscule aspect of the interac-

tion of cells with galactose moieties. To test our initial
hypothesis that active moieties can induce macrophage
polarization, we mimicked the in vivo interaction by incubating
resting Mφs (M0 phenotype) with LPS/IFN-γ to induce the M1
phenotype, IL-4 to induce the M2 phenotype, Gal beads or
control plain beads.5 The relative transcript levels of the
cytokines TNF-α and IL-1β and the scavenger CD163 (which is
commonly used to evaluate the M1 or M2 phenotypic status of
Mφs6) were measured. As expected, M1 Mφs were found to
highly express proinflammatory cytokines (TNF-α and IL-1β),
while CD163 expression was suppressed, and the results for M2
Mφs were the opposite (Fig. 1c, d, S4a). Interestingly, incubation

of Mφs with Gal beads resulted in obviously increased
expression of both TNF-α (Fig. 1c) and IL-1β (Fig. S4a) compared
to their levels in the untreated and negative controls. The CD163
transcript levels recorded in Mφ incubated with Gal beads were
lower than those in naïve Mφs and negative control-treated Mφs
(Fig. 1d). A more advanced step of determining protein
production was used to quantify the levels of TNF-α, IL-1β,
and IL-10 released from the Mφs when activated by the
biochemical factors described above. Similar to the results from
the genomic analyses, the data from the biochemical treatments
showed that M1 Mφs released more proinflammatory cytokines
(TNF-α, Fig. 1e; IL-1β, Fig. S4b), and that IL-4 exposure
suppressed these cytokines. As expected, M2 Mφs released
more IL-10 than LPS/IFN-γ-induced M1 Mφs (Fig. 1f). These
crucial results indicate that, after interacting with galactose
moieties, resting Mφs were educated to release a notably
greater amount of proinflammatory cytokines, and this release
was more profound than that caused by LPS/IFN-γ induction
(Fig. 1e, S3b). In addition, IL-10 production was suppressed
(Fig. 1f).
Docking by Gal beads induced resting Mφs to polarize and

release proinflammatory cytokines, which possess potent immu-
noregulatory properties that could be exploited to facilitate host
defenses or tumor surveillance. An in vitro Transwell system was
used to evaluate cancer cell apoptosis by educated Mφs. As shown
in Fig. 1g–j, after being cocultured with either Mφs only or Mφs
together with plain beads, few cancer cells underwent apoptosis
(green) or another type of death (red) (Fig. 1g, h). However, when
Mφs were combined with Gal beads, the number of cancer cells
undergoing apoptosis or emitting signals indicating death
increased (Fig. 1i). The quantitative results, shown as the ratio of
apoptotic cells to normal cells, indicated that the apoptosis rate of
the cancer cells cocultured with Gal beads bound to Mφs was
significantly higher than it was for the cancer cells cocultured with
plain beads and Mφs or with only resting Mφs (Fig. 1j).
Recent biochemical studies have underscored the value of

galactose as an attractive target influencing Mφ behavior,7,8 but
the structural basis of the role of galactose moieties in Mφ
polarization remains unresolved. Here, as shown in the scheme
presented in Fig. 1k, resting Mφs can be polarized to acquire
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either the M1 or M2 phenotype according to the cellular
microenvironment (panel i in Fig. 1k). Following Gal probe
binding, the resting macrophages polarized into the proinflam-
matory phenotype, giving them the potential to induce cancer cell
apoptosis, rather than the anti-inflammatory phenotype (panel ii
in Fig. 1k). The results presented here provide a rational basis for
designing small molecules to block the mechanisms induced by
galectins (tumorigenesis, metastasis, and so on). We have high-
lighted a potential approach to rebalance inflammation, maintain
immunological homeostasis, and possibly develop more effective
vaccines.
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