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Abstract

Comparative network analysis provides effective computational means for gaining novel

insights into the structural and functional compositions of biological networks. In recent

years, various methods have been developed for biological network alignment, whose main

goal is to identify important similarities and critical differences between networks in terms of

their topology and composition. A major impediment to advancing network alignment tech-

niques has been the lack of gold-standard benchmarks that can be used for accurate and

comprehensive performance assessment of such algorithms. The original NAPAbench (net-

work alignment performance assessment benchmark) was developed to address this prob-

lem, and it has been widely utilized by many researchers for the development, evaluation,

and comparison of novel network alignment techniques. In this work, we introduce NAPA-

bench 2—a major update of the original NAPAbench that was introduced in 2012. NAPA-

bench 2 includes a completely redesigned network synthesis algorithm that can generate

protein-protein interaction (PPI) network families whose characteristics closely match those

of the latest real PPI networks. Furthermore, the network synthesis algorithm comes with

an intuitive GUI that allows users to easily generate PPI network families with an arbitrary

number of networks of any size, according to a flexible user-defined phylogeny. In addition,

NAPAbench 2 provides updated benchmark datasets—created using the redesigned net-

work synthesis algorithm—which can be used for comprehensive performance assessment

of network alignment algorithms and their scalability.

Introduction

Comparative network analysis through local or global network alignment provides effective

computational means to identify orthologous proteins and conserved functional modules (e.g.,

molecular complexes or pathways) across biological networks of different species. It also
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enables transferring prior knowledge of a well-studied species to a less-studied species, poten-

tially leading to significant savings in terms of experimental cost and time [1]. However, one of

the major barriers slowing down further advances in comparative network analysis research

has been the lack of a gold standard benchmark that allows a fair and comprehensive perfor-

mance assessment of comparative network analysis algorithms. To overcome this barrier,

NAPAbench (Network Alignment Performance Assessment benchmark)—probably the first

comprehensive synthetic benchmark for network alignment—was released in 2012 [2]. The

original NAPAbench is comprised of three suites of benchmarks, for testing pairwise, 5-way,

and 8-way alignment, respectively. Each suite consists of three different datasets generated by

different network synthesis models (i.e., DMC, DMR, and CG), where each dataset contains

ten network families generated independently by a given synthesis model. Since the original

release, NAPAbench has been widely used for evaluating the performance of various network

alignment algorithms [3–14].

However, the key parameters of the network synthesis models that were used in the original

NAPAbench were trained based on the PPI networks in Isobase [15], which was released in

2010. Due to the advances in high-throughput profiling and text mining techniques, the qual-

ity and coverage of the latest PPI networks have been dramatically improved during the past

decade. As a result, the latest real PPI networks contain many new proteins and a significantly

larger number of interactions and they tend to be much denser compared to the networks in

the original NAPAbench. In order to keep pace with the recent developments, we introduce

NAPAbench 2 in this paper. NAPAbench 2 consists of benchmarks that consist of families of

networks generated by new and/or updated network synthesis models, whose characteristics

closely resemble those of the latest real PPI networks. The new release of NAPAbench is also

accompanied by a network synthesis tool with an intuitive and user-friendly interface, which

allows users to easily create additional benchmarks that consist of network families with an

arbitrary number of networks of any size, according to a user-specified phylogeny.

Materials and methods

Dataset and preprocessing

In order to learn parameters of the network synthesis models in NAPAbench 2, we analyzed

characteristics of the latest real PPI networks in terms of topological structure and biological

correspondence between proteins in different PPI networks. We used STRING database

(v10.0) [16] to analyze the key properties of the real PPI networks as it provides comprehensive

coverage and rich source of proteins by integrating a number of public PPI network databases:

BIND [17], DIP [18], GRID [19], HPRD [20], IntAct [21], MINT [22], and PID [23]. Among

various eukaryotes, we selected five species as our references: human (H. sapiens), yeast (S. cer-
evisiae), fly (D. melanogaster), mouse (M. musculus), and worm (C. elegans).

First, to study the topological structure of the PPI networks, we only employed direct pro-

tein interactions (i.e., protein binding) and retained reliable protein interactions that have

been experimentally validated with a confidence score greater than 400 (i.e., the medium level

of confidence recommended by STRING). Since the aforementioned filtering steps made the

networks fragmented, we extracted the largest connected subnetwork from each of the net-

works and utilized them as our reference networks. Table 1 shows differences in the number

of edges and proteins between the reference PPI networks from STRING and Isobase.

Then, we observed the distribution of protein sequence similarity scores of each reference

network pair to analyze the biological correspondence between proteins in the different PPI

networks. To do this, we downloaded protein sequences (i.e., amino acid sequences) of the five

species from the STRING database and computed amino acid sequence similarity score using
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BLASTp [24] between nodes that belong to different networks. For a given node pair, if it has

multiple BLAST bit scores, we took the highest bit score as a representative similarity score.

Additionally, we excluded BLAST bit scores whose e-value is greater than 0.01. PANTHER

orthology annotation [25] was used to determine the protein orthology between proteins in

different species. Note that NAPAbench 1 utilized KEGG orthology (KO) group annotations

[26, 27] as a reference. Both databases have been manually curated by experts and widely uti-

lized in diverse protein studies [28]. An overall procedure is shown in Fig 1.

Statistical feature analysis of real PPI networks

To synthesize realistic benchmark network families, it is necessary to select features capturing

key characteristics of the PPI networks. For this purpose, we categorized the features from two

different perspectives: i) intra-network features catching the topological structures of the PPI

networks and ii) cross-network features detecting the biological relevance of proteins in differ-

ent PPI networks. As intra-network feature analysis, we utilized graphlet degree distribution

agreement (GDDA) [29] in addition to the degree distribution and clustering coefficient that

were utilized in the original NAPAbench. For the cross-network feature analysis, we compared

distributions of the BLAST bit scores for orthologous/non-orthologous protein pairs in differ-

ent networks. To accomplish this, we employed PANTHER protein orthology annotation as it

has been manually well-curated by a group of experts since it was released in 2010 [25].

Intra-network feature analysis. As a feature capturing global topological structures, we

first investigated individual degree distribution of each PPI network in STRING and Isobase.

For a given node, the node degree is defined as the number of edges (i.e., interactions) con-

nected to the node. We assumed that a PPI network can be modeled as a scale-free network

following the power-law degree distribution [30]. In other words, for a given node, the

Table 1. The number of edges and proteins in real PPI networks from Isobase and STRING.

Isobase STRING

Species # of Edges # of Proteins # of Edges # of Proteins

H. Sapiens 34,250 8,580 95,095 11,852

S. Cerevisiae 27,981 4,899 88,312 5,724

D. Melanogaster 19,579 6,572 64,929 6,652

C. Elegans 4,211 2,511 60,234 6,590

M. Musculus 23 16 112,321 10,125

https://doi.org/10.1371/journal.pone.0227598.t001

Fig 1. NAPAbench 2 analysis and network family generation procedure.

https://doi.org/10.1371/journal.pone.0227598.g001
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probability that the node has a degree k is given by Pd(k)� k−γ, where γ is a degree exponent

[2]. Note that the degree exponent tends to be smaller as the network has more number of

nodes with higher node degree. We hypothesized that the PPI networks in STRING have more

proteins with higher node degrees compared to those of Isobase as novel proteins and their

interactions have been identified and archived in the public databases over the past decade in

accordance with the rapid advances of high-throughput profiling techniques. Fig 2 shows the

degree distributions and corresponding estimated degree exponents for the five species in

STRING and Isobase. The degree exponents were estimated through the linear regression

function polyfit in MATLAB. The degree exponents for Isobase ranged from 1.86 to 2.17

and ranged from 1.53 to 1.84 for STRING, respectively. As we expected, the PPI networks in

STRING had more proteins with higher node degrees, which resulted in smaller degree expo-

nents. In fact, hub nodes, nodes with higher node degrees, play crucial roles in a scale-free net-

work as they not only provide the shortest paths to distant nodes within subnetworks, but also

characterize the topological features of the network. Based on the analysis of the degree distri-

butions, we found out that a degree exponent is a discriminate feature recapitulating global

topological structures. Note that we excluded a degree exponent estimated from a mouse PPI

network from our analysis since the size of the network (i.e., the number of nodes) was too

small to be compared with those of other PPI networks.

Next, we observed individual distribution of local clustering coefficients of each PPI net-

work as a feature capturing local structures of the networks. Given a node v with a degree k,

the clustering coefficient is defined as CCðkÞ ¼ 2e
kðk� 1Þ

, where e is the number of connections

among the neighbors of v. The clustering coefficient of a node indicates how close the given

node and its neighborhood are for forming a complete graph, a clique. In fact, proteins in a

Fig 2. Node degree distribution of the five species in STRING and Isobase.

https://doi.org/10.1371/journal.pone.0227598.g002
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functional subnetwork of a PPI network tend to be densely connected to each other while

sparsely connected to nodes outside the subnetwork [31]. Therefore, if a PPI network contains

a large number of proteins with high clustering coefficients, the network is more likely to have

an increased number of functional subnetworks. Fig 3 shows the comparison results between

the clustering coefficient distributions of the PPI networks in STRING and Isobase. It shows

that the PPI networks in STRING have more nodes with high clustering coefficients than

those of Isobase, meaning that the latest PPI networks from STRING could have more func-

tional subnetworks than the PPI networks from Isobase. These results clearly support the

necessity of new benchmark datasets reflecting the local topological features of the latest real

PPI networks.

In addition to the features aforementioned, we considered a graphlet degree distribution as

a new feature to capture the detailed local interaction patterns as well as the statistical global

PPI network structure [29]. The graplets are 29 small connected induced subgraphs consisting

of 2 to 5 nodes, respectively, and there are 73 automorphism orbits within the graphlets

according to topological relevance. For a given PPI network G, we can generate the set of 73

graphlet degree distributions {Dj
GðkÞ}, where the distribution Dj

GðkÞ for j-th orbit is defined as

the number of nodes touching k j-th orbits. Note that D0
GðkÞ is a degree distribution. As graph-

let degree distributions rigorously detect not only local interaction patterns around focal

nodes but also global structure of the PPI network, a number of PPI network alignment algo-

rithms have been proposed based on the graphlet degree distributions [8, 32–34]. Note that we

utilized a graphlet degree distribution agreement (GDDA) score between two networks as the

new feature indicating degree of similarity of local and global topological interaction patterns

to learn the parameters of each network growth model.

Fig 3. Clustering coefficient distribution of the five species in STRING and Isobase.

https://doi.org/10.1371/journal.pone.0227598.g003
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Cross-network feature analysis. As a cross-network feature, we analyzed the orthology

relationship between proteins in different PPI networks thereby learning core parameters of

NAPAbench 2 to synthesize realistic network families through the network growth models. To

do this, we followed the similar procedure presented in the original NAPAbench. Hence, we

here briefly introduce the overall procedure for the cross-network feature analysis.

Suppose that we have two PPI networks G1 ¼ ðV; EÞ and G2 ¼ ðU;DÞ, where V and U rep-

resent sets of nodes (i.e., proteins) and E and D indicate sets of edges (i.e., protein interactions)

in each network. We analyzed the number of potential orthologous proteins and their similar-

ity scores (i.e., BLAST bit scores) across different networks. That is, given a node v 2 V, we

estimate the number of proteins u 2 U that are potentially orthologous to the protein v. We

assumed that a protein pair from different PPI networks is highly likely to be orthologous if

they have a high sequence similarity score. In other words, given a node v 2 V, we estimate

potential orthologous proteins as follow:

NðvÞ ¼ jfuju 2 U; sðv; uÞ > Tsgj; ð1Þ

where we set the threshold Ts as 45. We defined Pp(l) as a probability density function that the

protein node u in G1 has l potential orthologous nodes in the network G2. Similar to the analy-

sis of the degree distribution in the previous section, we assumed that the distribution Pp(l)
can be modeled by a power-law distribution Pp(l)� l−β, and used the polyfit function in

MATLAB to estimate the exponent β. Fig 4 shows the comparison results between the esti-

mates of the β of PPI networks in STRING and Isobase. Based on the linear regression results,

we observed that STRING had the exponent β ranged from 1.28 to 2.07, and the exponent

ranged from 1.27 to 1.79 for Isobase. Interestingly, the PPI networks in STRING had lager β
compared to those of PPI networks in Isobase, meaning there were more node pairs with low

similarity scores but fewer node pairs with high similarity scores. However, we observed a

peak at the high sequence similarity score region (greater than 102) in the potential ortholo-

gous node distribution of PPI network pairs in STRING as shown in Fig 4. These results show

that although the regression analysis may not clearly capture the peak in the high sequence

similarity regions, there is higher chance to have a larger number of high sequence similarity

protein pairs in PPI networks obtained from STRING.

Next, for each real PPI network pair, we estimated the distribution of the BLAST bit scores

for orthologous protein pairs as well as that for the non-orthologous pairs. As previously noted

in [2], the distribution can be effectively modeled as a Gamma distribution X� Γ(κ, θ), where

κ is a shape parameter and θ is a scaling parameter. We estimated the shape and scaling param-

eters through the curve fitting function fitdist in MATLAB. Figs 5 and 6 show the analysis

results of PPI networks in STRING and Isobase, respectively. For STRING, the estimated scal-

ing and shape parameters of orthologous protein pairs ranged from 0.91 to 0.97 and from 143

to 216, respectively. These parameters significantly differ from those of network pairs in Iso-

base, where the scaling and shape parameters ranged from 0.96 to 1.38 and from 192 to 284,

respectively. Note that we excluded the parameters estimated between human and mouse in

STRING from our analysis as they were outliers. In addition, we removed the parameters esti-

mated between worm and mouse; fly and mouse; human and mouse; and mouse and yeast PPI

networks in Isobase from our analysis since homologous protein pairs did not exist. For non-

orthologous protein pairs, the scaling and shape parameters of PPI networks in STRING ran-

ged from 0.81 to 0.89 and 38 to 47, respectively, and they ranged from 0.56 to 1 and 48 to 170

in Isobase, respectively. The clear differences also support that the synthesized networks in the

original NAPAbench have been outdated and it clearly motivates the necessity of updating the

network synthesis models and the benchmark datasets.
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Fig 4. Distributions of the number of the potential orthologous nodes between different PPI network pairs. Note that the mouse PPI network

in Isobase results in significant errors because it contains a large number of singleton nodes.

https://doi.org/10.1371/journal.pone.0227598.g004
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Fig 5. Estimation of the shape and scaling parameters of the sequence similarity score distributions for different

PPI network pairs in STRING.

https://doi.org/10.1371/journal.pone.0227598.g005
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Fig 6. Estimation of the shape and scaling parameters of the sequence similarity score distributions for different

PPI network pairs in Isobase.

https://doi.org/10.1371/journal.pone.0227598.g006
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Overview of network synthesis models

NAPAbench 2 provides rich benchmark datasets based on four different network growth

models: DMC (duplication-mutation-complementation) [35], DMR (duplication with random

mutation) [36], CG (crystal growth) [37], and STICKY [38] models. The first three network

models were introduced in the original NAPAbench [2] and we newly included the STICKY

model in this release since the STICKY model accurately captures critical features of the real

PPI networks such as the graphlet degree distribution [39, 40]. In the STICKY model, for the

given number of nodes, interaction patterns between proteins are formed in a way that two

proteins with a higher stickiness index can have a higher chance to interact with each other.

Note that we extended the STICKY model in order to accommodate it into the NAPAbench 2

framework performing a bifurcation process according to a given phylogenetic tree to synthe-

size a set of biologically related network families. Different from the original STICKY model,

where it assigns stickiness index to all protein nodes and produces all interactions simulta-

neously, the extended STICKY model is capable of gradually forming interaction patterns in

accordance with the increase in its size (i.e., the number of nodes). Since the first three net-

works growth models (i.e., DMC, DMR, and CG models) were described in the original

NAPAbench paper [2], we omit the detailed steps of the models regarding extending its

size and forming interactions and we describe the procedure of the STICKY model and its

extended version that has been adopted in the NAPAbench 2.

STICKY model

Let G ¼ ðV; EÞ be the graph representing a given PPI network, where V is a set of nodes (pro-

teins) V ¼ fv1; v2; :::; vng and edges E ¼ fei;jg indicating interactions between a protein vi and

vj. STICKY model generates a synthetic network based on the following procedures:

STEP 1. Given N nodes in the network, it assigns an initial node degree di to each node vi.

STEP 2. For each node vi, it assigns a stickiness index based on the following equation:

yi ¼ di=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1

dj

q

.

STEP 3. For every node pair, it inserts edge between vi and vj if x� θi � θj, where x is a sample

drawn from a uniform distribution U(0, 1).

Extended STICKY model

As we described earlier, NAPAbench performs a bifurcation process along a given phyloge-

netic tree in order to synthesize a set of realistic PPI network families that are biologically

related to each other. More specifically, as the bifurcation process proceeds along the phyloge-

netic tree, the network model constructs subsequent networks by extending PPI networks

from the ancestor PPI network on the tree. To adapt the static STICKY model in the NAPA-

bench framework, we extended the STICKY model in a way that it can iteratively add a new

node to itself until the number of nodes in the network reaches the predefined size as follows:

STEP 1. Given a PPI network with N nodes, we introduce a new node vN+1 and assign a node

degree dN+1 drawn from a power-low distribution p(d) = cd−γ. We set the degree

exponent γ to 1.6 based on our analysis.

STEP 2. For each node vi, i = 1, 2, . . ., N + 1, we update the corresponding sticky index di as

follow: yi ¼ di=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNþ1

j¼1
dj

q

.
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STEP 3. For each node pair (vN+1, vj), where j = 1, 2, . . ., N, we insert edge between vN+1 and

a neighbor node vj if xj� θN+1 � θj, where xj is a sample drawn from a uniform distri-

bution U(0, 1).

STEP 4. The extended STICKY model randomly removes an edge between vN+1 and a neigh-

bor node v 2 Neighborhood(vN+1) according to a user-defined probability fdel.

STEP 5. We randomly select a node among the neighborhood v 2 Neighborhood(vN+1) based

on a distribution of STICKY indices and assign the biological function of the selected

adjacent node to the node vN+1.

STEP 6. N is increased by 1, N( N + 1, and we repeat STEP 1 through 6 until the network

reaches the target size (i.e., the number of proteins in the network).

Parameter estimation of NAPAbench 2

In NAPAbench 2 framework, there are two types of parameters: intra-network parameters

and cross-network parameters. The intra-network parameters are dependent on the network

growth models. In other words, each network growth model in the NAPAbench 2 has its

own parameters affecting a topological structure of the synthetic networks. The cross-network

parameters are independent of the network growth models and they determine biological cor-

respondence of node pairs in different synthesized networks.

For the intra-network parameters, we optimized the parameters of each network growth

model through grid search so that they can generate realistic PPI network families whose fea-

tures closely resemble those of the real networks observed from the intra-network feature anal-

ysis of the PPI networks in STRING. First, for each network model, we divided range of the

parameters ranging [pmin, pmax] by the equal width 0.05. Next, we generated synthetic net-

works based on each parameter combination and selected the best parameter combinations,

where it results in the best fitting to our analysis of the PPI networks in STRING in terms of

degree distribution, clustering coefficient distribution, the number of nodes and edges, and

GDDA score. Through the grid search, we optimized the parameters as follows: qcon = 0.5 and

qmod = 0.4 for DMC, qnew = 0.85 and qdel = 0.4 for DMR, and sdel = 0.55 and sf = 50 for STICKY

model. Note that we did not adjust the parameter δ = 4 for the CG network growth model

due to the fact that the model was sensitive to changes in the parameter, generating unrealistic

results with other values.

We tuned the cross-network parameters according to the results of cross-network feature

analysis. With regard to parameters of node similarity score generation for the orthologous

protein pairs, we took the average of the scaling and shape parameters, yielding ko = 0.94 and

θo = 169.49, and for the non-orthologous proteins pairs, we used kn = 0.86 and θn = 42.00. A

probability of not assigning the null function to a given node PfO
was set to 0.9 and a random

scaling factor of similarity score λmax was set to 0.1, respectively.

Construction of benchmark datasets through updated model parameters

In the NAPAbench 2, we adopted the same procedure utilized in the original NAPAbench to

generate synthetic benchmark datasets. Hence, we briefly introduce the overview of the syn-

thetic network generation process described in [2]. Suppose that we generate a family of N syn-

thetic PPI networks G ¼ fG1;G2; . . . ;GNg. Each network Gk ¼ ðVk; Ek;F kÞ consists of a set

Vk ¼ fvk;1; vk;2; . . . ; vk;Nk
g of Nk nodes; a set Ek ¼ fek;ijg of Mk edges, where ek,ij denotes the

edge between nodes vk,i and vk,j; and a set F k ¼ ffk;1; fk;2; . . . ; fk;Nk
g which maps each node vk,i

NAPAbench 2: A network synthesis algorithm for generating realistic PPI network families
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to a functional group fk,i in FO ¼ fF0;F1;F2; . . .g, a set of all functional orthology (FO)

annotations.

In order to synthesize a set of PPI networks biologically related to each other, we utilized a

bifurcation process over a phylogenetic tree T , where it has a single root node and each parent

node has exactly two child nodes. That is, starting from the root node corresponding to the

ancestor network GS, we repeated a bifurcation process until the phylogenetic tree is developed

to have N leaf nodes corresponding to N synthetic networks. In each bifurcation process, since

each internal node in the phylogenetic tree T has exactly two child nodes, we first duplicate

the parent network and inherent the functional annotations. Then, each duplicated network

corresponding to the child node starts an independent network extension process based on

the predefined network growth model by a user. When developing the networks, we assigned

the node similarity scores based on the Gamma distribution with the parameters learned from

our analysis. We repeated the aforementioned process until it generates N synthetic networks.

Note that we obtained the root network GS by developing a small seed network Gseed, and we

utilized the different seed networks according to the network growth models. To generate the

root network GS for each network growth model, we utilized the same seed networks adopted

in the original NAPAbench and we used the seed network for the CG model as the seed net-

work for the STICKY model. Note that network growth models can generate a singleton node,

where it is completely isolated from others because the edge perturbation steps in each net-

work growth model can remove all edges connecting to the newly added node. If it generates a

singleton node, we discard the singleton node and repeat the node generation procedure until

a non-singleton node is generated.

Graphical user interface of NAPAbench 2

The original NAPAbench was released as a command line-based standalone toolkit which

makes it difficult for users to generate new benchmark datasets according to their preference.

To enhance usability, we implemented the graphical user interface (GUI) for NAPAbench 2 as

shown in Fig 7. We believe that the GUI implementation clearly lowers the hurdle for users to

generate new benchmark datasets based upon their own needs. Additionally, we also provide

the default parameter settings for the pairwise, 5-way, and 8-way network families along with

phylogenetic tree files that were utilized to construct the standard benchmark datasets of

NAPAbench 2. The supplementary material provides the detailed guidelines.

Results

Based on the extensive intra-network and cross-network analysis, we updated the key model

parameters for each network growth model in NAPAbench 2. In the following subsection, we

compared topological structures of the synthetic networks against that of real PPI networks in

order to verify the topological similarity between synthetic and the real PPI networks.

Comparison of synthetic networks to real PPI networks in STRING

We carried out experiments to compare the statistical differences across the networks gener-

ated by the network growth models in NAPAbench 2, the networks generated by the models

in NAPAbench 1, and the real PPI networks in STRING. For this purpose, we first generated

100 synthetic networks, each of which containing 5, 500 nodes, for each network growth

model in NAPAbench 1 and 2. Then we counted the total number of edges and computed the

average node degree for the 100 realizations of synthetic networks generated by each network

model. As shown in Table 2, the average node degrees of human, yeast, and fly PPI networks

were 8.02, 15.42, and 9.76, respectively, which were significantly higher than those of the 100

NAPAbench 2: A network synthesis algorithm for generating realistic PPI network families

PLOS ONE | https://doi.org/10.1371/journal.pone.0227598 January 27, 2020 12 / 20

https://doi.org/10.1371/journal.pone.0227598


network realizations generated by models in NAPAbench 1. On the other hand, DMC, DMR,

and STICKY models in NAPAbench 2 generated PPI networks whose average node degrees

were 9.83, 12.12, and 8.40, respectively. This comparison clearly shows that the network

growth models in NAPAbench 2 are able to synthesize network families whose average edge

densities are noticeably closer to those of the latest PPI networks. Note that because the param-

eter of the CG model in NAPAbench 2 has not been updated, the average node degree of 100

realizations generated by the CG model remained the same as that of the CG model in NAPA-

bench 1.

To further compare the capability of the network growth models to construct realistic PPI

networks, we visualized the node degree distribution and the clustering coefficient distribution

using scatter plots, which are shown in Figs 8 and 9. The scatter plots in Fig 8 compare the

node degree distributions resulting from the network growth models in NAPAbench 1 and

those resulting from the models in NAPAbench 2. For comparison, the node degree and clus-

tering coefficient distributions are also shown for the three real PPI networks. In these plots,

we used the first 10 out of the 100 realizations that were previously generated to obtain the

results in Table 2, to avoid overcrowding the plots. As we can see, the red-colored circles corre-

sponding to NAPAbench 2 networks overlap fairly well with the blue dots that correspond to

Fig 7. Graphical user interface (GUI) of NAPAbench 2 network synthesis tool.

https://doi.org/10.1371/journal.pone.0227598.g007

Table 2. Comparison of statistics of synthetic networks with real PPI networks.

STRING NAPAbench 2 NAPAbench 1

Human Yeast Fly DMC DMR CG STICKY DMC DMR CG

# of nodes 11,852 5,724 6,652 5,500

# of edges 95,095 88,312 64,929 54,052 66,650 21,986 46,214 11,241 11,156 21,985

Edges/Node 8.02 15.43 9.76 9.83 12.12 4 8.40 2.04 2.03 4

https://doi.org/10.1371/journal.pone.0227598.t002
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real PPI networks. The scatter plots also clearly show the statistical deviation between the node

degree distributions resulting from the network growth models in NAPAbench 1 (depicted in

green circles) and the distributions observed in real PPI networks. Fig 8 clearly shows that the

updated network growth models in NAPAbench 2, including the newly added STICKY model,

are capable of generating PPI networks whose node degree distributions are statistically similar

to those of the real PPI networks. Similarly, Fig 9 compares the cluster coefficient distributions

that result from the network growth models in NAPAbench 1 and 2 with the distributions

obtained from the three real PPI networks. The scatter plots in Fig 9 show that the updated

network growth models in NAPAbench 2 consistently improve the clustering coefficient dis-

tributions compared to the NAPAbench 1 network growth models, bringing them closer to

the distributions observed in real PPI networks. Especially, the clustering coefficients of the

networks generated by the extended STICKY model (shown in the third column of Fig 9)

closely resembled those in real PPI networks, in terms of their distributions.

Fig 8. Node degree distribution comparison.

https://doi.org/10.1371/journal.pone.0227598.g008
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For additional statistical comparison between the PPI networks generated by the network

growth models in NAPAbench 1 and NAPAbench 2, we computed the GDDA (graphlet degree

distribution agreement) score between the yeast PPI network and a synthetic PPI network gen-

erated by a specific network growth model. Fig 10 shows that the networks synthesized by the

network growth models in NAPAbench 2 achieved higher GDDA scores compared to those

synthesized by NAPAbench 1 models.

The statistical comparison results in Table 2 and Figs 8–10 clearly show that the updated

network models in NAPAbench 2 are capable of synthesizing more realistic PPI network fami-

lies, whose topological characteristics closely resemble those of the latest real PPI networks,

compared to the previous models in NAPAbench 1. Further statistical validation demonstrates

that the NAPAbench 2 models produce more realistic networks compared to NAPAbench 1

models whose characteristics match those of real networks more closely. These results can be

found in the supplementary material.

Fig 9. Clustering coefficient distribution comparison.

https://doi.org/10.1371/journal.pone.0227598.g009
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Updated network alignment performance assessment benchmark:

NAPAbench 2

We generated three suites of datasets, pairwise, 5-way, and 8-way according to the three pre-

defined phylogenetic trees as shown in Fig 11. Note that each node in Fig 11 indicates indi-

vidual synthetic PPI network and the number in the node represents the total number of

proteins in the synthetic network. The mint-colored nodes stand for output synthetic PPI

networks of NAPAbench 2, and pink colored nodes are ancestral or internal networks that

are not included in the generated benchmark dataset. In NAPAbench 2, each suite includes

ten network families per network growth model. In pairwise dataset (Fig 11a), each family

consists of a network pair GA with NA = 3, 000 and GB with NB = 4, 000. Both networks are

evolved from an ancestral network GS with NS = 2, 000. In 5-way dataset (Fig 11b), each fam-

ily contains five PPI networks with 1, 250, 1, 500, 1, 750, 2, 000, and 2, 000 nodes, respec-

tively. Each family from 8-way dataset (Fig 11c) has eight PPI networks containing 1, 000

nodes, respectively.

Fig 10. Graphlet degree distribution agreement (GDDA) with the yeast PPI network in STRING.

https://doi.org/10.1371/journal.pone.0227598.g010

Fig 11. Phylogenetic trees adopted in NAPAbench 2.

https://doi.org/10.1371/journal.pone.0227598.g011
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Potential limitations of the current network growth models in

NAPAbench 2

Although NAPAbench 2 comes with updated network growth models that can synthesize real-

istic networks, whose properties closely resemble those of the latest real PPI networks, there is

still room for further improvement. One potential limitation of the current approach lies in

how functionalities are assigned to the nodes (corresponding to proteins) in the synthesized

networks. Several studies have pointed out that interaction patterns of proteins often define

the functionality of the proteins, resulting in the hierarchical functional structure of proteins

[41, 42]. Furthermore, there exist special proteins called multi-functional proteins, such as

Transglutaminase 2 (TG2) [43] or Ribosomal protein S3 (RPS3) [44], that can change their

functions and interaction patterns under different conditions. However, the current network

growth models in NAPAbench 2 do not consider the aforementioned properties. Another

potential limitation of NAPAbench 2 is that it does not currently support the combined utiliza-

tion of multiple network growth models for synthesizing the networks. As the individual net-

work growth models utilized in NAPAbench 2 have low degrees of freedom, it is practically

challenging to optimize their parameters to make the synthetic networks resemble real PPI

networks based on multiple criteria. Combining multiple network growth models for network

synthesis may give rise to more sophisticated models that may potentially generate more realis-

tic networks.

Concluding remarks

In this paper, we present NAPAbench 2, a comprehensive update to the original NAPAbench

[2] that was originally released in 2012. NAPAbench 2 provides a network synthesis algorithm

with an intuitive and user-friendly GUI that can be used to generate biologically realistic PPI

network families, whose properties closely match those of the latest PPI networks in STRING

v10.0 [16]. Furthermore, this new release includes a comprehensive network alignment bench-

mark that consists of 120 network families comprised of 600 networks. The new benchmark

enables objective performance assessment of network alignment algorithms based on synthetic

network families whose characteristics are similar to the latest PPI networks and for which the

ground truth alignment is known. The accompanying network synthesis tool could be easily

used to generate further benchmarks—for example, families that consist of a very large num-

ber of genome-scale networks—to assess the scalability and efficacy of network alignment

algorithms.

Supporting information

S1 Appendix. Supplementary material for “NAPAbench 2: A network synthesis algorithm

for generating realistic protein-protein interaction (PPI) network families”.

(PDF)
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8. Malod-Dognin N, Pržulj N. L-GRAAL: Lagrangian graphlet-based network aligner. Bioinformatics. 2015;

31(13):2182–2189. https://doi.org/10.1093/bioinformatics/btv130 PMID: 25725498

9. Micale G, Pulvirenti A, Giugno R, Ferro A. GASOLINE: a Greedy And Stochastic algorithm for Optimal

Local multiple alignment of Interaction NEtworks. PLoS ONE. 2014; 9(6):e98750. https://doi.org/10.

1371/journal.pone.0098750 PMID: 24911103

10. Mohammadi S, Gleich DF, Kolda TG, Grama A. Triangular Alignment (TAME). A Tensor-based

Approach for Higher-order Network Alignment; 2015. Available from: https://doi.org/10.2172%

2F1226005.

11. Hashemifar S, Huang Q, Xu J. Joint Alignment of Multiple Protein–Protein Interaction Networks via Con-

vex Optimization. Journal of Computational Biology. 2016; 23(11):903–911. https://doi.org/10.1089/

cmb.2016.0025 PMID: 27428933

12. Tuncay EG, Can T. SUMONA: A supervised method for optimizing network alignment. Computational

Biology and Chemistry. 2016; 63:41–51. https://doi.org/10.1016/j.compbiolchem.2016.03.003 PMID:

27177812

13. Liu M, Ding H. Protein Mover’s Distance: A Geometric Framework for Solving Global Alignment of PPI

Networks. In: Combinatorial Optimization and Applications. Springer International Publishing; 2017. p.

56–69. Available from: https://doi.org/10.1007%2F978-3-319-71150-8_5.

14. Elmsallati A, Msalati A, Kalita J. Index-Based Network Aligner of Protein-Protein Interaction Networks.

IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2018; 15(1):330–336. https://

doi.org/10.1109/TCBB.2016.2613098 PMID: 28113986

15. Park D, Singh R, Baym M, Liao CS, Berger B. IsoBase: a database of functionally related proteins

across PPI networks. Nucleic acids research. 2010; 39(suppl_1):D295–D300.

16. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in

2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids

Research. 2016; 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937 PMID: 27924014

17. Bader GD, Betel D, Hogue CW. BIND: the biomolecular interaction network database. Nucleic acids

research. 2003; 31(1):248–250. https://doi.org/10.1093/nar/gkg056 PMID: 12519993

NAPAbench 2: A network synthesis algorithm for generating realistic PPI network families

PLOS ONE | https://doi.org/10.1371/journal.pone.0227598 January 27, 2020 18 / 20

https://doi.org/10.1109/MSP.2011.942819
https://doi.org/10.1109/MSP.2011.942819
https://doi.org/10.1371/journal.pone.0041474
http://www.ncbi.nlm.nih.gov/pubmed/22912671
https://doi.org/10.1093/bioinformatics/btt071
http://www.ncbi.nlm.nih.gov/pubmed/23413436
https://doi.org/10.1093/bioinformatics/btt713
https://doi.org/10.1093/bioinformatics/btt713
http://www.ncbi.nlm.nih.gov/pubmed/24336414
https://doi.org/10.1371/journal.pone.0067995
https://doi.org/10.1371/journal.pone.0067995
http://www.ncbi.nlm.nih.gov/pubmed/23874484
https://doi.org/10.1093/bioinformatics/btv063
http://www.ncbi.nlm.nih.gov/pubmed/25667548
https://doi.org/10.1186/1752-0509-9-S1-S7
http://www.ncbi.nlm.nih.gov/pubmed/25707987
https://doi.org/10.1093/bioinformatics/btv130
http://www.ncbi.nlm.nih.gov/pubmed/25725498
https://doi.org/10.1371/journal.pone.0098750
https://doi.org/10.1371/journal.pone.0098750
http://www.ncbi.nlm.nih.gov/pubmed/24911103
https://doi.org/10.2172%2F1226005
https://doi.org/10.2172%2F1226005
https://doi.org/10.1089/cmb.2016.0025
https://doi.org/10.1089/cmb.2016.0025
http://www.ncbi.nlm.nih.gov/pubmed/27428933
https://doi.org/10.1016/j.compbiolchem.2016.03.003
http://www.ncbi.nlm.nih.gov/pubmed/27177812
https://doi.org/10.1007%2F978-3-319-71150-8_5
https://doi.org/10.1109/TCBB.2016.2613098
https://doi.org/10.1109/TCBB.2016.2613098
http://www.ncbi.nlm.nih.gov/pubmed/28113986
https://doi.org/10.1093/nar/gkw937
http://www.ncbi.nlm.nih.gov/pubmed/27924014
https://doi.org/10.1093/nar/gkg056
http://www.ncbi.nlm.nih.gov/pubmed/12519993
https://doi.org/10.1371/journal.pone.0227598


18. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D. DIP: the database of interact-

ing proteins. Nucleic acids research. 2000; 28(1):289–291. https://doi.org/10.1093/nar/28.1.289 PMID:

10592249

19. Breitkreutz BJ, Stark C, Tyers M. The GRID: the general repository for interaction datasets. Genome

biology. 2003; 4(3):R23. https://doi.org/10.1186/gb-2003-4-3-r23 PMID: 12620108

20. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, et al. Human protein

reference database as a discovery resource for proteomics. Nucleic acids research. 2004; 32(suppl_1):

D497–D501. https://doi.org/10.1093/nar/gkh070 PMID: 14681466

21. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, et al. The IntAct molecular inter-

action database in 2012. Nucleic acids research. 2011; 40(D1):D841–D846. https://doi.org/10.1093/

nar/gkr1088 PMID: 22121220

22. Chatr-Aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, et al. MINT: the

Molecular INTeraction database. Nucleic acids research. 2006; 35(suppl_1):D572–D574. https://doi.

org/10.1093/nar/gkl950 PMID: 17135203

23. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the pathway interaction data-

base. Nucleic acids research. 2008; 37(suppl_1):D674–D679. https://doi.org/10.1093/nar/gkn653

PMID: 18832364

24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of

molecular biology. 1990; 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID:

2231712

25. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded anno-

tation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements.

Nucleic acids research. 2016; 45(D1):D183–D189. https://doi.org/10.1093/nar/gkw1138 PMID:

27899595

26. Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 2000; 28

(1):27–30. https://doi.org/10.1093/nar/28.1.27 PMID: 10592173

27. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome

variations in KEGG. Nucleic Acids Research. 2018; 47(D1):D590–D595. https://doi.org/10.1093/nar/

gky962

28. Sreenivasaiah PK, Rani S, Cayetano J, Arul N, Kim DH. IPAVS: Integrated Pathway Resources, Analy-

sis and Visualization System. Nucleic Acids Research. 2011; 40(D1):D803–D808. https://doi.org/10.

1093/nar/gkr1208 PMID: 22140115

29. Przulj N. Biological network comparison using graphlet degree distribution. Bioinformatics. 2007; 23(2):

e177–e183. https://doi.org/10.1093/bioinformatics/btl301 PMID: 17237089

30. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nature

reviews genetics. 2004; 5(2):101. https://doi.org/10.1038/nrg1272 PMID: 14735121

31. Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proceedings of

the National Academy of Sciences. 2003; 100(21):12123–12128. https://doi.org/10.1073/pnas.

2032324100
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