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Antigen-specific CD8+ tissue-resident memory T cells (TRM cells) persist in the lung

following resolution of a respiratory virus infection and provide first-line defense against

reinfection. In contrast to other memory T cell populations, such as central memory

T cells that circulate between lymph and blood, and effector memory T cells (TEM
cells) that circulate between blood and peripheral tissues, TRM cells are best defined

by their permanent residency in the tissues and their independence from circulatory T

cell populations. Consistent with this, we recently demonstrated that CD8+ TRM cells

primarily reside within specific niches in the lung (Repair-Associated Memory Depots;

RAMD) that normally exclude CD8+ TEM cells. However, it has also been reported

that circulating CD8+ TEM cells continuously convert into CD8+ TRM cells in the lung

interstitium, helping to sustain TRM numbers. The relative contributions of these two

mechanisms of CD8+ TRM cells maintenance in the lung has been the source of vigorous

debate. Here we propose a model in which the majority of CD8+ TRM cells are maintained

within RAMD (conventional TRM) whereas a small fraction of TRM are derived from

circulating CD8+ TEM cells and maintained in the interstitium. The numbers of both types

of TRM cells wane over time due to declines in both RAMD availability and the overall

number of TEM in the circulation. This model is consistent withmost published reports and

has important implications for the development of vaccines designed to elicit protective

T cell memory in the lung.
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INTRODUCTION

Memory CD8+ T cells in non-lymphoid tissues are optimally positioned tomediate rapid responses
to invading pathogens. They comprise at least two distinct subpopulations: tissue-resident memory
T cells (TRM cells) and effector memory T cells (TEM cells). TRM cells are a non-circulating
population that typically, but not exclusively, expresses a specific array of surface markers (e.g.,
CD69, CD103, and CD49a) and possess gene-expression profiles that are associated with tissue
retention (1). In contrast, TEM cells lack the expression of these molecules and continuously
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circulate between blood and non-lymphoid tissues (2). The vast
majority of memory CD8+ T cells in most non-lymphoid tissues
are TRM and play the predominant role in protective immunity
(3, 4). In contrast, memory CD8+ T cells in the circulation have
minimal, if any, impact on immediate local protection (3, 5).
However, it is possible that the small numbers of CD8+ TEM cells
that transit through the tissues at the time of reinfection may
contribute to protection.

The lung appears to differ from other non-lymphoid tissues in
that it harbors relatively large numbers of both tissue-circulating
TEM and TRM cells in a number of distinct niches (3, 6).
Furthermore, these memory CD8+ T cell subpopulations alter
their phenotypes and functions in response to environmental
factors present in distinct compartments of the lung (7, 8).
Thus, a complete understanding of the phenotypic and functional
features of these memory T cell populations in each of these lung
compartment has been hampered by the challenges of isolating
pure populations for analysis. This has resulted in confusion
in the field. In this perspective, we attempt to resolve these
issues and outline a model that explains the generation and
maintenance of diverse populations of memory CD8+ T cells in
the lung.

MEMORY CD8+ T CELLS IN THE LUNG

The tissues that comprise the barrier surfaces of the body
typically consist of an epithelial layer that overlays a stromal
layer, such as the epidermis and dermis in the skin and
the epithelium and lamina propria in the intestine. These
tissues differ considerably and provide distinct anatomical
and biological niches for the maintenance of memory CD8+

T cells (9). Consistent with other barrier tissues, the lung
airways (epithelium) and the lung interstitium (stroma) host
phenotypically and functionally distinct memory CD8+ T
cell populations.

Memory CD8+ T cells in the lung airways are localized
primarily in the epithelial layers of the bronchiole and are
readily isolated by bronchoalveolar lavage (BAL) (10–12). Since
the lung airways are anatomically separated from blood vessels,
there are few, if any, blood cell contaminants in BAL samples
(unless the blood vessels are damaged by poor technique or
infection). Consequently, it is possible to interpret the data
on T cells isolated by BAL without using intravascular (i.v.)
staining to distinguish contaminating cells from the blood (13).
Such BAL data indicate that large numbers of antigen-specific
memory CD8+ T cells are present in the lung airways for several
months following recovery from a respiratory virus infection
(14, 15). These airway T cells do not return to the circulation
or the lung interstitium under steady-state conditions (12),
suggesting that they are TRM. However, since they have relatively
short lifespans (presumably due to cell-extrinsic factors, such
as their biophysical removal by the barrier function of airway
mucosa) (16), their maintenance depends on continual influx
of memory cells from the interstitium (16, 17). This continual
replenishment of memory pool does not fit with the definition
of TRM and, as such, is a unique feature memory CD8+ T cells

in the lung airways. Upon recruitment to the airways, the cells
receive antigen-independent local environmental cues to acquire
an activation phenotype (e.g., upregulation of CD69) and to
completely downregulate the integrin LFA-1 (CD11a) (7, 16). As
a result, memory CD8+ T cells in the airways lose cell contact-
mediated cytolytic activity (11). Nevertheless, these cells can
confer antigen-specific protection by rapidly secreting interferon
(IFN)-γ in the face of antigenic challenge (18, 19).

Memory CD8+ T cells in the lung interstitium can be purified
by enzymatic digestion of lung tissues after removal of the BAL.
However, cells prepared this way are contaminated with small
numbers of memory CD8+ T cells that had been trapped in
the airways, although a certain fraction of these cells (i.e., cells
that are exposed in the airway environment more than 48 h)
can be distinguished by their reduced expression of CD11a
(16). Interstitial cells prepared by enzymatic digestion are also
contaminated with blood derived T cells from the capillaries.
Therefore, prior i.v. staining is necessary to discriminate cells in
the interstitium from those in the pulmonary capillary bed (13).
It is important to point out two things here. First, data regarding
parenchymal cells that have been isolated without i.v. staining
must be cautiously interpreted given the significant degree of
blood cell contamination. For example, before researchers began
discriminating cells in the lung tissue and the lung vasculature,
lung interstitium had erroneously been considered to be a
“permissive tissue” that was readily accessible to memory CD8+

T cells in the circulation (20–22). However, a more detailed
analysis has revealed that, as with other mucosal tissues, the
migration of circulating memory CD8+ T cells into the lung
interstitium isminimal in uninfected lung interstitium (6, 23, 24).
Second, because memory CD8+ T cells in the lung interstitium
(i.e., negative for i.v.-injected antibody) include both TRM and
small numbers of tissue-circulating TEM, parabiosis approaches
are necessary to distinguish these populations. Using these
approaches, we and others have formally demonstrated that a
large proportion ofmemory CD8+ T cells in the lung interstitium
are TRM cells (Figure 1) (3, 6). It has also become evident
that CD8+ TRM and TEM cell populations are maintained in
distinct compartments of the lung interstitium: the former is
predominantly localized within the site of tissue repair and
regeneration around the bronchiole (we termed these Repair-
Associated Memory Depots: RAMD), while the latter are widely
and sparsely distributed in unaffected areas of the interstitium
(6). Unlike memory CD8+ T cells in the airways, CD8+ TRM

cells in the lung interstitium are a stable population (6). Hence,
memory CD8+ T cells in the lung interstitium comprise a
mixture of stable (TRM) and dynamic (TEM) memory populations
that are maintained independently.

The true phenotypes of memory T cells in the lung
interstitium are best revealed through parabiosis studies in which
a pair of influenza virus infected mice are surgically joined after
memory has been established and rested until leucocytes in
the blood of each mouse are equilibrated. Non-circulating host
CD8+ T cells in the lung predominantly, but not exclusively,
express TRM markers CD69, CD103, and CD49a that facilitate
tissue-retention while partner-derived TEM cells are mostly
negative for these markers (Figure 1) (6). The small fraction of
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FIGURE 1 | Analysis of lung TRM and TEM by parabiosis experiment. Congenically distinct mice (CD45.1+ and CD45.2+) were infected i.n. with influenza virus x31

(300 EID50) and subjected to parabiotic surgery 35 days later. Day 21 after the surgery, mice were injected i.v. with 1 µg anti-CD8β 3min prior to tissue harvest.

Cells in the lung airways were recovered by BAL. Lung tissues were digested by collagenase D, and enriched by centrifugation in 40/80% Percoll gradient. Cells were

stained with influenza NP366−374/D
b tetramer and fluorescent-conjugated antibodies. Data shown are derived from a CD45.2+ parabiont. Plots shown in (A) indicate

the gating strategy of host- and partner-derived antigen-specific CD8+ T cells in the spleen, lung interstitium and airways. Bar graphs show ratio of host and partner

cells among i.v. antibody negative cells in individual mouse. Plots shown in (B) indicate the expression of CD69, CD103, and CD49a on host- and partner-derived

NP366−374/D
b tetramer+ CD8+ T cells in the lung airways and interstitium. Host cells are the mixture of a large proportion of TRM (CD69+ CD49a+ CD103+ and

CD69+ CD49a+ CD103−) and a minor population of TEM (CD69− CD49a− CD103−). The former population may include a small number of circulation-driven TRM
converted from host TEM. The data also show how circulation-driven TRM cells are a relatively small population and are difficult to identify in individual animals.

host CD69− CD103− CD49a− cells likely represent the host-
derived TEM population. It is interesting that a sizable fraction
of host CD69+ CD49a+ cells in both the lung interstitium and
airways lack the expression of another TRM marker, CD103
(Figure 1) (6, 25). The lack of CD103 on some TRM is consistent
with subpopulation of TRM found in the intestinal lamina
propria, brain, and liver (26–28). In this regard, i.n. infection of

CD103 knockout mice with influenza virus resulted in partial,
but not complete, loss of CD8+ TRM in these tissues (29). These
data also indicate that the CD103 marker does not efficiently
discriminate TRM from TEM in the lung. Given the diversity
of memory CD8+ T cell populations in the lung, it is critical
to precisely identify each population to avoid misinterpretation
and confusion.
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GENERATION AND MAINTENANCE OF
CANONICAL TRM CELLS IN THE LUNG

Following initial priming in the draining lymph nodes (LN),
effector CD8+ T cells migrate to the inflamed tissues where they
receive local instructive signals that promote their subsequent
differentiation into TRM (9, 30). Transforming growth factor-
β1 (TGF-β) is a common factor in most non-lymphoid tissues
that drives T cell expression of CD103 and thereby promotes
integrin αEβ7-mediated adhesion to E-cadherin on epithelial
cells. A variety of cells, such as macrophages and stromal cells
in the interstitium, and epithelial cells, are known to produce
the latent form of TGF-β in the lung during early phases of an
influenza virus infection (25, 31). As with the intestine (32–34),
CD103+ dendritic cells (DC) in the lung interstitium may play a
role in the local conversion of TGF-β into the active form through
integrin αvβ8, and promote the establishment of CD103+ CD8+

TRM cells in the lung (35). In the absence of TGF-β signaling,
CD8+ TRM cells in the whole lung (i.e., a mixture of cells in
the airway and interstitium) completely lack the expression of
CD103 (35, 36), although the number of antigen-specific CD8+

T cells in the whole lung is not affected (36). This suggests
that the establishment of CD103− CD8+ TRM cells in the lung
interstitium and airways is not dependent of TGF-β.

Since there is limited space for cells to inhabit in normal
lung tissue, newly created anatomical niches are required for the
establishment and long-term maintenance of CD8+ TRM cells in
the lung (6, 9, 37). Upon respiratory virus infection, infection-
induced cytolysis and disruption of infected cells by antigen-
specific effector CD8+ T cells both contribute to tissue damage.
A broad spectrum of cells including immune cells as well as
basal cells (e.g., distal airway stem cells) accumulate at sites of
damage to mediate the repair process which can be virtually
observed as cytokeratin-expressing cell aggregates (Krt-pods)
(38), thereby providing special niches for the establishment of
CD8+ TRM cells in the lung interstitium (6, 37). Thus, lung CD8+

TRM cells may be specifically committed to protect weak spots
(tissues undergoing repair) in the lung against reinfection (24).
The structural characteristics of these TRM depots (RAMD) differ
from inducible bronchus-associated lymphoid tissue (iBALT) as
most CD8+ TRM cells in the RAMD do not form organized
lymphoid structures (iBALT consists of CD4+ T cell cluster that
surround B cell follicles) (6). This is consistent with the fact
that unlike CD4+ T cells and B cells that act cooperatively,
CD8+ TRM cells can act alone upon recall. Furthermore, our
timed parabiosis approach (joining pairs of mice at various
time points before and after infection) clearly demonstrated
that CD8+ T cells recruited to the lung later than the peak
of T cell response in the lung (around day 10 post influenza
virus infection) failed to from TRM (6). This indicates that lung
TRM niches are occupied at the peak of tissue damage and
are no longer available for latecomer CD8+ T cells including
TEM cells. It is well known that CD8+ TRM cells in the
lung display relatively shorter longevity relative to TRM in
other tissues as TRM cell-mediated heterosubtypic immunity to
influenza virus lost at 4–6 months post-infection (5, 8). The

decline in the size of the RAMDs overtime as tissue repair
proceeds would explain the limited longevity of lung CD8+ TRM

cells as compared to CD8+ TRM cells in other non-lymphoid
tissues (6, 37). Similarly, the elevated proapoptotic activities
of CD8+ TRM cells in the whole lung can be attributed to
the concomitant loss of environmental factors that potentially
support the homeostasis of TRM (8).

It has been established that concurrent CD4+ T cell responses
also contribute to the establishment of CD8+ TRM cells in the
lung (39). In contrast to other mucosa (female reproductive
tract) where CD4+ T cells play an indirect role in promoting
optimal positioning of CD8+ TRM cells by triggering the local
production of inflammatory chemokines (40), CD4+ T cell
help in the lung confers prolonged survival and improved
functionality of CD8+ T cells by transcriptionally modulating
the metabolism to maintain higher spare respiratory capacity
(41), a hallmark of T cell memory (42). CD4+ T cell-derived
IFN-γ also acts directly on CD8+ T cells to downregulate the
expression of T-bet. This leads to memory CD8+ T cell rescue
from T-bet-mediated repression of CD103, thereby promoting
TRM formation (43). Given the differential distribution of CD8+

and CD4+ TRM (RAMD and iBALT, respectively), it seems
likely that the primary involvement of CD4+ T cell help during
CD8+ TRM formation is exerted during the acute phase of
infection (41).

A recent study has shown that cell-intrinsic factors also
contribute to the durability of TRM in the lung. CD8+

TRM cells generated from memory CD8+ T cells that had
previously experienced multiple antigen encounters exhibit
superior longevity compared to these generated from naïve
CD8+ T cells (44). Reciprocal adoptive transfer approaches
using a mixture of memory and naïve T cell receptor (TCR)
transgenic T cells revealed that TRM cells derived from memory
cells preferentially occupy lung TRM niches compared to TRM

cells derived from naïve cells (44). This suggests that there
may be increased frequencies of TRM precursors (KLRG1lo

effector cells) among memory-derived CD8+ T cells, compared
to naïve CD8+ T cells following activation in the draining
LN. It is also possible that memory-derived CD8+ T cells
may be capable of receiving additional instructive signals,
such as 4-1BB signals for up-regulation of pro-survival factors,
when cells are recruited to the RAMD and acquire resultant
longevity (45).

Cognate antigen-driven local reactivation is also indispensable
for the establishment of lung CD8+ TRM cells. The best example
for this is the impact of route of infection/vaccination on the
establishment of CD8+ TRM cells in the lung. Intranasal (i.n.)
infection elicits robust populations of CD8+ TRM cells in the
lung interstitium and airways, whereas non-pulmonary route of
infection do not (5, 6, 19, 23, 24, 35, 46–49). In the case of the
skin and genital tract, forced recruitment of circulating CD8+

T cells to the mucosa using inflammatory stimuli or topical
administration of chemokines is sufficient to establish local TRM,
an approach referred to as “prime and pull” (50, 51). However,
we and others have shown that the exposure of CD8+ T cells
to the lung environment is insufficient to promote subsequent
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differentiation of these into long-lived lung TRM (6, 23, 35).
Instead, local reactivation induced by pulmonary administration
of trace amount of antigen during the process of “prime and pull”
is necessary for converting circulating CD8+ T cells into lung
TRM cells (6, 23). Thus, both cell-intrinsic and extrinsic factors
are necessary for complete conversion of these cells to TRM.
First, pulmonary administration of antigen generates antigen-
bearing target cells that are eliminated by antigen-specific CD8+

T cells, leading to the creation of damage and repair-associated
TRM niches (6). Second, local reactivation provides cell-intrinsic
effects such as prolonged expression of CD69 and CD49a
necessary for retention (6, 23), and upregulation of interferon-
induced transmembrane protein 3 (IFITM3) for survival (52).
Furthermore, TCR signaling may protect TRM cells from a
damage/danger-associated molecular pattern (DAMP)-induced
cell death (53). Interestingly, there is differential expression
of CD103 on distinct epitope-specific CD8+ TRM cells in the
lung, irrespective of their localization, suggesting that difference
in the extent of antigen presentation or subset of antigen
presenting cells (APC) involved may also influence lung TRM

biology (25).
While it is unclear which APC provide local antigen signaling,

the delivery of antigen to pulmonary DC by antibody-targeted
vaccination (conjugate of antigen and antibody specific for
DC) significantly facilitates the establishment of CD103+

CD8+ TRM cells in the lung (35). Furthermore, CD103+

respiratory DC are known to continually carry residual
antigen from the lung to the draining LN, suggesting that
respiratory DC are the primary source of local antigen signaling
(54). Given the unique ability of CD103+ respiratory DC
to provide strong stimulatory signals in the draining LN,
thereby generating effector CD8+ T cells that preferentially
home back to the lung (55), local reactivation by respiratory
DC may promote terminal effector maturation rather
than memory differentiation (56–58). Thus, other APC
subsets, such as pulmonary macrophages, that accumulate
in the RAMD during the early phase of infection may be
necessary to provide the optimal antigen signaling required for
TRM development (59, 60).

CONVERSION FROM TEM TO TRM: A
MINOR PATHWAY OF TRM DEVELOPMENT
IN THE LUNG

Despite the inefficiency of the non-pulmonary route of
infection/immunization in establishing lung CD8+ TRM cells,
several studies have nevertheless reported the deposition of
CD8+ TRM cells in the lung following systemic infections
(3, 61–63). Such blood-borne TRM are derived from effector
cells that have undergone less differentiation (defined as null
to intermediate expression of CX3CR1 and lack of KLRG1
expression and including exKLRG1 cells that have downregulated
this molecule during the contraction phase) (64, 65). Adoptive
transfer of splenic memory clearly revealed the emergence of
a small fraction of CD103+ CD69+ CD8+ T cells in the
whole lung (8). The appearance of CD8+ T cells exhibiting

TRM phenotypes was also evident in our parabiosis experiments
(Figure 1) (6), indicating that some levels of TEM to TRM

conversion occurs in the lung. These cells exhibited a TRM

gene-expression signature and their tissue-residency was also
confirmed by parabiosis (3, 61). Since several cytokines, such as
TGF-β, IL-33, and tumor necrosis factor (TNF)-α, are reported
to drive TEM to TRM conversion (66), the formation of blood-
borne CD8+ TRM cells in the lung likely depends on TNF,
and its effect is prominent in previously infected lung tissues
as compared to naive lung tissues (8). Because partner cells
are also detected in the lung airways after parabiotic surgery
(Figure 1) (6), circulating memory CD8+ T cells can reach
to this tissue at basal levels, and CXCR3 plays a role in this
recruitment (67). Treatment with pertussis toxin (PTx), which
inhibits G protein-coupled chemokine receptors, significantly
reduced the number of whole lung CD8+ TRM cells (including
the dynamic population in the airways), suggesting that not
only migration from the lung interstitium to the airway, but
also the entrance of circulating CD8+ TEM cells into the lung
depends on chemokine signaling (8). Despite their relatively
low numbers, blood-borne lung CD8+ TRM cells confer some
extent of protection against respiratory virus challenge (61–63). It
should be emphasized, however, that this protection is far inferior
to that mediated by bona fide lung CD8+ TRM cells generated
by intranasal infection/immunization (5, 19, 23, 24, 48, 49). It is
well known that the phenotype and function of memory CD8+

T cells in the circulation continues to change over time after
infection, with central memory T cells (TCM cells) emerging
as the predominant subset (64, 68–70). This leads to reduced
numbers of memory CD8+ TEM that can be recruited to the lung
and the eventual loss of a dynamic population of memory CD8+

T cells in the lung (8).

FUTURE PERSPECTIVE

In Figure 2, we suggest a model by which the diverse populations
of memory CD8+ T cells are generated and maintained in the
distinct compartments of the lung. Although the ontogeny of
lung TRM and TEM differs, some levels of conversion from TEM

to TRM occurs within the lung interstitium and also following
recruitment to the airways. Furthermore, although lung airway
memory CD8+ T cells are a non-circulating population, the
maintenance of their numbers depends on the continual influx of
new cells from the lung interstitium. Thus, precise discrimination
of each population is critical for future studies to avoid confusion
in the field (2). Based on the model, it is likely that the limited
longevity of conventional lung CD8+ TRM cells and eventual loss
of blood-borne lung CD8+ TRM cells both contribute the rapid
decay of total CD8+ TRM cells in this tissue (Figure 2). In other
words, such a short-lived nature of lung memory CD8+ T cells
may, in a sense, be programed to avoid unnecessary pathogenesis
in this tissue (71). Hence, multiple combinations of strategies to
extend the longevity of both TRM and TEM should be considered
for the development of vaccines against respiratory infectious
pathogens. Since additional tissue damage is required to create
new TRM niches, strategies that enable the effective establishment
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FIGURE 2 | A comprehensive picture of memory CD8+ T cell populations in the lung. (A) Memory CD8+ T cells in the lung interstitium comprise a major population of

conventional TRM and a smaller population of TEM. Some of the latter also give rise to TRM in response to TNF secreted in the conditioned lung that experience prior

virus infection. Both host and partner cells in the interstitium are likely recruited to the lung airways and undergo phenotypic changes induced by environmental factors

in this tissue. Although lung airway memory CD8+ T cells represent non-circulating population, and thus, are recognized as TRM, continual replacement is required for

their maintenance. The size of the circles indicates the relative sizes of the respective populations in the lung. (B) As TEM cells in the circulation decrease overtime after

infection, input of TEM to the lung interstitium and airways also decrease. Full recovery from the tissue damage, and resultant decrease of the size of RAMDs leads to

reduction in the number of host CD8+ TRM cells in the lung interstitium and airways. Consequently, the animals lost CD8+ T cell-mediated protective immunity in the

lung. (C) Because of the lack of local antigen, bona fide CD8+ TRM cells are not generated in the lung interstitium and airways. Although some TEM cells give rise to

TRM in the lung, the extent is less than infection-experienced lung.

of TRM (including conversion from TEM to TRM) without the
induction of undesirable pathogenesis should be considered in
the future.
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