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18F-DMFP-PET is an emerging neuroimaging modality used to diagnose Parkinson’s

disease (PD) that allows us to examine postsynaptic dopamine D2/3 receptors. Like other

neuroimaging modalities used for PD diagnosis, most of the total intensity of 18F-DMFP-

PET images is concentrated in the striatum. However, other regions can also be useful

for diagnostic purposes. An appropriate delimitation of the regions of interest contained

in 18F-DMFP-PET data is crucial to improve the automatic diagnosis of PD. In this

manuscript we propose a novel methodology to preprocess 18F-DMFP-PET data that

improves the accuracy of computer aided diagnosis systems for PD. First, the data were

segmented using an algorithm based on Hidden Markov Random Field. As a result, each

neuroimage was divided into 4 maps according to the intensity and the neighborhood

of the voxels. The maps were then individually normalized so that the shape of their

histograms could be modeled by a Gaussian distribution with equal parameters for all the

neuroimages. This approach was evaluated using a dataset with neuroimaging data from

87 parkinsonian patients. After these preprocessing steps, a Support Vector Machine

classifier was used to separate idiopathic and non-idiopathic PD. Data preprocessed by

the proposed method provided higher accuracy results than the ones preprocessed with

previous approaches.

Keywords: PET image segmentation, 18F-DMFP-PET data, intensity normalization, Hidden Markov Models,

Gaussian distribution, Parkinson’s disease

1. INTRODUCTION

Neuroimaging data have become an essential tool to diagnose the most frequent neurodegenerative
disorders: Alzheimer’s and Parkinson’s disease. Initially, the neuroimages were visually inspected
by experienced clinicians in order to corroborate a previous tentative diagnosis based on
neuropsychological and behavioral tests. To this end, they looked for areas of low activation located
in specific brain regions that are known to be affected by the supposed disorder. During the last
decade, the neuroimaging community has progressively increased the use of computer toolboxes
to analyze neuroimaging data (Friston et al., 2006; Schrouff et al., 2013). These tools are able to
carry out statistical analyses that perform a more exhaustive examination of the huge amounts of
information contained in the data and remove the subjectivity inherent to the visual inspection
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of the neuroimages (Górriz et al., 2017). However, these
statistical analyses require additional preprocessing steps that
make neuroimages from different subjects comparable. Two
procedures are usually performed: spatial registration and
intensity normalization (Saxena et al., 1998; Dukart et al., 2013).
The former ensures that a given voxel from different neuroimages
corresponds to the same anatomical position while the latter
removes the differences due to the scanner used or the amount
of radiopharmaceutical injected (Salas-Gonzalez et al., 2013).
Even when all the data are acquired using a single scanner, an
intensity normalization of the data is desirable. Several studies
suggested that the absolute values of cerebral blood flow and
other metabolic measurements have a coefficient of variance
about 15% in healthy elderly subjects and as high as 30% in
patients suffering neurodegenerative disorders (Leenders et al.,
1990; Huang et al., 2007; Borghammer et al., 2009). In addition to
spatial registration and intensity normalization, a segmentation
step can be carried out. This procedure consists on partitioning
the data into two or more maps each one containing information
of different classes. For example, brain Magnetic Resonance
Imaging (MRI) data are usually segmented into gray matter,
white matter and cerebrospinal fluid. Segmentation is common
in studies that use structural data but it has been also used for
functional data. In Moussallem et al. (2012) the authors used
a threshold (adjusted by an ad hoc function) to segment 18F-
FDG-PET data in order to delimit tumors. A more sophisticated
approach for the same purpose was demonstrated in Li et al.
(2017).

18F-DMFP-PET is a neuroimage modality that is increasingly
being used as an effective tool to distinguish between idiophatic
and non-idiophatic parkinsonian patients and therefore to assist
the diagnosis of Parkinson’s disease (PD) (la Fougère et al., 2010).
In contrast to DaTSCAN (widely used for PD diagnosis; Towey
et al., 2011; Illán et al., 2012; Segovia et al., 2012;Martínez-Murcia
et al., 2014), 18F-DMFP-PET is able to image the postsynaptic
striatal dopaminergic deficit that characterizes non-idiopathic
parkinsonian variants such as multiple system atrophy (MSA)
or progressive supranuclear palsy (PSP). Because of this, most
of the studies with 18F-DMFP-PET are focused on analyzing the
striatal region, even though this neuroimaging modality contains
moderate signal intensities in regions other than the striatum that
can be useful in PD diagnosis (Segovia et al., 2015, 2017).

In this work, we propose a methodology to preprocess
18F-DMFP-PET data that improves the results of subsequent
analyses. The proposed method consists of two steps: data
segmentation using Hidden Markov Random Fields (HMRF)
and intensity normalization using the Gaussian distribution. The
segmentation step divides each neuroimage into 4 maps: (i) high-
signal voxels (located in the striatum), (ii) medium-signal voxels
(located in most of the regions other than the striatum), (iii) low-
signal voxels (most of then correspond to the cerebrospinal fluid),
and (iv) voxels with intensities around zero (located outside
the brain). The second step normalizes the intensities of each
map using a Gaussian model. This approach was evaluated and
compared with previous approaches using 87 neuroimages and
a system based on Support Vector Machine (SVM) classification
(Vapnik, 2000). The obtained results suggest that our procedure

improves the automatic separation of idiopathic and non-
idiopathic parkinsonian patients. In addition, it allows us to
independently analyze the striatum and the remaining regions of
the brain.

2. MATERIALS AND METHODS

2.1. Ethics Statement
Each patient (or a close relative) gave written informed consent
to participate in the study and the protocol was accepted by the
Ethics Committee of the University of Munich. All the data were
anonymized by the clinicians who acquired them before being
considered in this work.

2.2. 18F-DMFP-PET Neuroimaging
Database
Eighty-seven 18F-DMFP-PET neuroimages were used to evaluate
the preprocessing approach proposed in this work. These
data were collected during a longitudinal study carried out
by the University of Munich (la Fougère et al., 2010). The
neuroimages were acquired 55 min after the 18F-DMFP injection
(which was synthesized using an automatic synthesis module
as described in la Fougère et al., 2010) by means of a
Siemens/CTI camera. Neuroleptics, metoclopramide and other
medications and dopamine agonists that could potentially
interfere were withdrawn before the data acquisition according
to their biologic half-life. The emission recording consisted of
3 frames of 10 min each, acquired in 3-dimensional mode. The
resulting images were reconstructed as 128 × 128 matrices
of 2 × 2mm voxels by filtered backprojection using a Hann
filter.

All the patients included in the study were referred to
18F-DMFP-PET examination from local movement disorder
clinics. They showed parkinsonian movement disorders and
nigrostriatal degeneration that were confirmed by a 123I-FP-CIT
SPECT scan according to widely accepted criteria (Koch et al.,
2005). They were monitored during 2 years after the 18F-
DMFP-PET acquisition and at this time the neuroimaging data
were labeled according to the last diagnosis. Specifically, the
last diagnosis was based on the response to an apomorphine
challenge test or the response to dopamine replacement
therapy and follow-up clinical examinations, paying special
attention to orthostatic hypotension, cerebellar signs, eye
movement disorders, spasticity or other atypical symptoms.
Table 1 shows the resulting groups and some demographic
details.

TABLE 1 | Group distribution of the neuroimaging data considered in this work

(µ and σ stand for the mean and the standard deviation, respectively).

Sex Age

# M F µ σ Range

PD 39 22 17 61.38 11.14 35–81

MSA 24 20 4 68.42 10.73 43–85

PSP 24 12 12 69.29 7.33 55–84

Frontiers in Aging Neuroscience | www.frontiersin.org 2 October 2017 | Volume 9 | Article 326

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Segovia et al. Novel Approach to Preprocess 18F-DMFP-PET Data

Before applying the proposed method and the subsequent
classification, the data were spatially registered using the template
matching algorithm implemented in Statistical Parametric
Mapping (SPM) (Friston et al., 2006). This procedure makes
each neuroimage matches a given template, pursuing the same
position (in the neuroimage space) in different neuroimages
corresponds to the same anatomical position. The template was
computed as follows: first all the neuroimages were registered
to a randomly chosen one. The registered images and their
hemisphere midplane reflections were then averaged (this step
ensured a symmetric template). Finally the resulting image was
smoothed and used to register the whole dataset (Ashburner
et al., 1997).

2.3. Markov Models
A Markov model (a.k.a. Markov chain) is a discrete stochastic
process in which the next state only depends on the current state.
If unobserved (hidden) states are assumed, the model is known as
hidden Markov model (HMM). This work is focused on Markov
random fields (MRF) that can be considered a generalization of
Markov models for multiple-dimensions problems.

2.3.1. Markov Random Fields

Markov random field theory is a branch of probability theory
for analyzing the spatial or contextual dependencies of physical
phenomena. A MRF is a family of random variables that satisfies
theMarkovianity property and can be described by an undirected
graphical model.

Let S = {1, 2, ...,N} be the set of indexes in space, and N =

{Ni, i ∈ S} a neighborhood system, with Ni being the set of sites
neighboring i and satisfying that i /∈ Ni and i ∈ Nj ⇐⇒ j ∈ Ni.
A random field is said to be a MRF on S with respect to a
neighborhood systemN if and only if Li (2001):

P(x) > 0,∀x ∈ χ

P(xi|xS−{i}) = P(xi|xNi )
(1)

where x = (x1, x2, ..., xN) is a configuration in S and χ is the set
of all possible configurations in S. AMRF can be characterized by
a Gibbs distribution, allowing us to redefine the probability P(x)
as (Hammersley-Clifford theorem):

P(x) =
1

Z
exp(−T−1U(x)) (2)

where:

Z =
∑

x∈χ

exp(−T−1U(x)) (3)

is a normalizing constant, T is a constant called temperature and
usually fixed to 1 and U(x) is the energy function, defined as a
sum of clique potentials Vc(x) over all possible cliques, C:

U(x) =
∑

c∈C

Vc(x) (4)

In this context, a clique c for the graph constituted by S and N

(S contains the nodes and N the links) is defined as a subset of S
whose elements are neighbors to one another (Li, 2001).

2.3.2. Hidden Markow Random Fields

Hidden Markow random fields are a generalization of HMMs
that assume MRFs (more than one dimension) instead of
Markov models (one dimension) and therefore, they can be
directly applied to two and three-dimensional problems, such as
neuroimage segmentation.

A HMRF is characterized by an unobservable (hidden) MRF
X = {Xi, i ∈ S} assuming values in a finite state space L, an
observable random field Y = {Yi, i ∈ S} assuming values in a
finite state space D, and a conditional independence restriction
(Zhang et al., 2001). For any particular configuration x ∈ χ , every
Yi follows a known conditional probability distribution p(yi|xi)
of the same functional form f (yi; θxi ). Given that (conditional
independence):

P(y|x) =
∏

i∈S

P(yi|xi) (5)

the joint probability of (X,Y) can be written as:

P(y, x) = P(y|x)P(x) = P(x)
∏

i∈S

P(yi|xi) (6)

Since P(yi, xi|xNi ) = P(yi|xi)P(xi|xNi ) (because of the local
characteristics of MRFs), the marginal probability distribution of
Yi can be computed in function of the parameter set θ and XNi :

p(yi|xNi , θ) =
∑

l∈L

p(yi, l|xNi , θ) =
∑

l∈L

f (yi; θl)p(l|xNi ) (7)

2.4. Automatic Segmentation Based On
HMRF
The segmentation based on HMRF assigns a label li ∈ L =

{1, 2, 3, 4}, i = {1, ...N} to each voxel in a 18F-DMFP-PET
neuroimage according to both intensity and neighborhood. Let
y = {y1, y2, ..., yN} be the intensity levels of theN voxels that form
a 18F-DMFP-PET neuroimage. In this procedure we looked for a
labeling x = (x1, x2, ..., xN), where xi ∈ L is the label assigned to
the voxel yi. Formally we estimated (MAP criterion):

x̂ = argmax
x∈χ

{P(y|x)P(x)} (8)

where x̂ is an estimation of x and considered a particular
realization of the MRF X. Using the equivalence between MRFs
and Gibb distributions the Equation (8) can be written as Zhang
et al. (2001):

x̂ = argmin
x∈χ

{U(y|x)+ U(x)} (9)
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where U(y|x) is the likelihood energy. Estimating x̂ involves
estimating the parameter set θ = {θl, l ∈ L}, where θl =

(µl, σl), since we assumed a Gaussian function for each of the
maps resulting from the segmentation of y. A k-means algorithm
was used to initialize the labeling x̂. Then, an Expectation-
Maximization (EM) algorithm was carried out to alternatively
estimate the parameter set, θ , and the label set, x̂.

Altogether, this segmentation procedure divides a neuroimage
into 4 maps: (i) voxels with intensity close to zero (mainly
voxels outside the brain), (ii) low-signal voxels, with very limited
diagnostic value, (iii) medium-signal voxels, and (iv) high-signal
voxels, with high diagnostic value (located in the striatal region).
In order to reduce the computational burden, the segmentation
procedure was only applied to an ad-hoc neuroimage computed
as the average of all the 18F-DMFP-PET images in our dataset (the
result is shown in Figure 1). Then, the resulting maps were used
as binary masks to segment the neuroimages in our dataset.

In this initial work, only striatal voxels were considered to
separate idiopathic and non-idiopathic patients. Thus, only the
maps containing high-signal voxels (one map per neuroimage)
were used in the subsequent analyses.

2.5. Intensity Normalization Based on the
Gaussian Distribution
The intensity of high-signal voxels largely differs from one
patient to another, even among patients suffering the same

parkinsonian disorder. This can be noted on Figure 2, which
shows the histogram of the map containing these voxels for the
first 20 patients in our dataset (all of them were diagnosed with
idiopathic parkinsonim).

In order to reduce these differences without losing the
discriminant information contained in the data, an additional
normalization step was performed. This procedure modeled
the histogram of a given map of each patient by a Gaussian
distribution. Then, these data were modified so that the
Gaussians corresponding to all the patients have approximately
same mean and standard deviation. First, parameters Gµ and Gσ

were computed:

Gµ =
1

n

n∑

i = 1

µpi (10)

Gσ =
1

n

n∑

i = 1

σpi (11)

where µpi and σpi respectively stand for the mean and standard
deviation of the Gaussian associated to data from patient pi, and n
is number of patients/neuroimages in our dataset. The data from
each patient were then modified as follows:

p
(NORM)
i = Gσ

pi − µpi

σpi
+ Gµ (12)

FIGURE 1 | Segmentation of the image computed as the average of all the 18F-DMFP-PET neuroimages (the map with the voxels outside the brain was not

represented). Note that two regions of interest, containing medium-signal and high-signal voxels, are clearly delimited.
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FIGURE 2 | Histograms associated to the striatal voxels of the first 20 neuroimages in our dataset. All of them correspond to idiopathic parkinsonian patients.

Figure 3 illustrates the transformation carried out by this
procedure. It shows the shape of the histograms of our data
before and after the normalization. Note that this procedure was
independently applied to the data of each patient and in our case,
it was only used to normalize the maps with high-signal voxels,
however it can be also applied other maps obtained from the
segmentation.

3. RESULTS AND DISCUSSION

In order to evaluate the advantages of preprocessing 18F-DMFP-
PET data with our methodology, a statistical classification
analysis was carried out. To this purpose, a SVM classifier
(Vapnik, 2000) was used after the preprocessing steps to separate
the idiopathic and non-idiopathic patients in our database (i.e.,
PD vs. MSA and PSP). As it is common in PD diagnosis
(Winogrodzka et al., 2001; Constantinescu et al., 2011; Niccolini
et al., 2014; Prashanth et al., 2014) we used only the voxels at
the striatum, as selected by the maps with high-signal voxels (the
othermaps resulting from the segmentation were discarded). The
normalized intensity values of the selected voxels were directly
used as feature.

The classification performance was estimated by means of
a k-fold cross-validation scheme (k = 5). In order to avoid
biased results, all the parameters required by the method were
fit inside the cross-validation loop, using only the training data.
A nested loop was also used to adjust the parameter C of the
SVM classifier (Varma and Simon, 2006). Table 2 shows the
achieved accuracy, sensitivity and specificity (idiopathic patients
were considered as positive) and compares these results with the
ones obtained by other approaches: (i) selecting voxels at the
striatum by means of an atlas and, (ii) using all the voxels of the
brain. In these cases, the intensity of the voxels was normalized
using the normalization to the maximum (Saxena et al., 1998).

The results shown in Table 2 suggest that our preprocessing
method allows improving the automatic separation of
parkinsonian patients. The relatively low rates achieved by
the SVM classifier are due to the dataset used in this work.
Most of the neuroimages correspond to patients in a very initial
stage. In fact they were acquired 2 years before obtaining the
final diagnosis used to label the data. In addition, the whole
brain approach also suffers from the small sample size problem
(Duin, 2000). In this classification the number of features is
larger and many of these features correspond to regions of low
signal in 18F-DMFP-PET data, which are not useful to separate
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FIGURE 3 | Gaussian distributions modeling the histograms of the maps with high-signal voxels from all the neuroimages in our database before (left) and after (right)

the proposed intensity normalization. Note that after normalization the histogram corresponding to all the maps can be modeled by a Gaussian with the same shape.

TABLE 2 | Accuracy, sensitivity and specificity obtained by a SVM classifier when

separating idiopathic and non-idiopathic Parkinsonism.

Features set Accuracy (%) Sensitivity (%) Specificity (%)

Striatum (proposed method) 75.86 74.36 77.08

Striatum (atlas) 72.41 66.67 77.08

All the voxels 65.52 56.41 72.92

the groups. In terms of sensitivity and specificity, the obtained
results show that the proposed method largely improve (about
8%) the ability of the classifier to correctly detect the positive
subjects (idiopathic Parkinsonism) however the improvement
in the true negative rate is limited, specially when compared
with the atlas-based approach. This fact can be explained by
the heterogeneity of the negative group (composed by subjects
diagnosed with MSA and PSP), which makes more difficult to
characterize the data.

As mentioned above, the analysis of neuroimaging data for
diagnostic purposes in PD-related studies is commonly focused
on the striatum. In fact, post-mortem studies reveled that most
of the neuropathological hallmarks of PD are gathered in this
area (Rinne et al., 1991; Hartmann, 2004; Nagatsu and Sawada,
2007). Nonetheless the region to be analyzed highly depends on
the neuroimage modality or, more specifically, on the binding
properties of the radiotracer used. For example, studies using
123I-FP-CIT (Winogrodzka et al., 2001; Spiegel et al., 2007)
frequently constraint their analyses to the striatum, since this
radiotracer binds to dopamine transporters, whereas studies
based on 18F-FDG usually analyze the whole brain (Hellwig
et al., 2012; Garraux et al., 2013) since this drug measures the
brain metabolism. 18F-DMFP is commonly used to study the
striatal dopamine (Schreckenberger et al., 2004) and indeed, the

vast majority of high-intensity voxels in 18F-DMFP-PET images
are gathered in the striatum. However, these data show a not
insignificant part of the total intensity in regions other than the
striatum (Segovia et al., 2017). The segmentation methodology
proposed in this work allows scientists to independently analyze
high-signal and medium-signal voxels (respectively located in
the striatum and in the remaining regions in 18F-DMFP-PET
data) while low-signal voxels (with low signal-noise ratio) are
discarded.

Compared with an atlas-based approach, our segmentation
method not only provides a higher accuracy in the subsequent
classification procedure but also allows the separation of regions
of interest in the image space. Thus, it is not necessary to
transform the data to the atlas space, avoiding the distortions
introduced by these procedures (Ashburner and Friston, 2007).

A comparison between the striatum region obtained by
the HMRF-based segmentation method and the atlas-based
approach is shown in Figure 4. A quantitative analysis
of this comparison reveals that: (i) the striatum region is
about 30% larger when obtained by means of the atlas-
based approach; (ii) most of the voxels selected by the
proposed method (about 72%) were also selected by the
other approach. Thus, the improvements in the classification
procedure are probably because the HMRF-based segmentation
provide a more accurate delimitation of the discriminant
voxels. Most of these voxels are located in the striatum
but not all the voxels in the striatum should be considered
to separate idiopathic and non-idiopathic Parkinsonism.
According to the results shown in Table 2, discarding these
moderately discriminant voxels of the striatum provides
larger sensitivity rates but have a reduced impact in the
specificity.

The motivation to use Gaussian distributions to model the
histogram of the maps resulting from the segmentation is
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FIGURE 4 | Overlap of the striatum mask obtained by the HMRF-based segmentation (red) and the atlas-based approach (blue). Four axial slices located respectively

at −6, 0, 6, and 12 mm from the anterior commissure are shown.

FIGURE 5 | Histogram of a 18F-DMFP-PET neuroimage corresponding to a

patient diagnosed with idiopathic Parkinsonism.

explained by the Figure 5, which shows the histogram of a
18F-DMFP-PET neuroimage. The two Gaussians corresponding
to maps with the low-signal and medium-signal-voxels can
be clearly identified. The Gaussian for high-signal voxels
has much less height than the remaining ones and can
not be appreciated in Figure 5 but it can be identified in
the histograms of Figure 2. Finally, the voxels with intensity
very close to zero could be modeled by a fourth Gaussian.
Indeed, the segmentation of a 18F-DMFP-PET neuroimage
using this algorithm is similar to model the histogram of that
neuroimage by a sum (or mixture) of 4 Gaussians (Segovia
et al., 2010; Górriz et al., 2011). Nevertheless, the HMRF
approach takes into account both, the voxel intensity and
the voxel neighborhood to associate each voxel to a specific
map/Gaussian.

In this work, the segmentation method was applied only
to an average neuroimage and the result was used to parcel
each individual neuroimage. This approach requires lower
computational burden than the straightforward alternative
consisting on applying the segmentation algorithm to each
neuroimage. Additionally the resulting maps are of equal size for

all the neuroimages, what allows us to directly use the voxels as
feature in the subsequent classification step.

4. CONCLUSION

In this manuscript we described a novel methodology to
preprocess 18F-DMFP-PET data in order to improve the
diagnosis of Parkinsonism. The preprocessing method
was carried out in two steps. First, using a HMRF-based
approach, each neuroimage was divided into 4 maps
according to the intensity and the neighborhood of the
voxels. Then, the intensity of the voxels was normalized
using the properties of the Gaussian distribution. To
this end, the histogram of each map was modeled by a
Gaussian distribution with the same parameters for all the
neuroimages.

This methodology was evaluated using a dataset with
neuroimaging data from 87 patients diagnosed with idiopathic or
non-idiopathic Parkinsonism. Using the proposed methodology,
we selected and normalized the high-signal voxels of each
neuroimage. These data were used to train a SVM classifier
in order to separate idiopathic and non-idiopathic subjects,
obtaining an accuracy rate about 75%. These results outperform
those reported by previous approaches, what suggests that our
preprocessing method improves the computer tools currently
used to assist the diagnosis of Parkinsonism.

AUTHOR CONTRIBUTIONS

Drafting the article and conception or design of the work: FS.
Critical revision of the article, data analysis and interpretation:
FS, JG, JR, FM, and DS.

ACKNOWLEDGMENTS

The authors are grateful to Johannes Levin, Axel Rominger,
Madeleine Schuberth, and Matthias Brendel from the University
of Munich for their help in data management. This work
was supported by and the MINECO under the TEC2012-
34306 and TEC2015-64718-R projects and the Ministry of
Economy, Innovation, Science and Employment of the Junta
de Andalucía under the Excellence Projects P09-TIC-4530 and

Frontiers in Aging Neuroscience | www.frontiersin.org 7 October 2017 | Volume 9 | Article 326

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Segovia et al. Novel Approach to Preprocess 18F-DMFP-PET Data

P11-TIC-7103 and a Talent Hub project approved by the
Andalucía Talent Hub Program launched by the Andalusian
Knowledge Agency, co-funded by the European Union’s
Seventh Framework Program, Marie Sklodowska-Curie actions
(COFUND — Grant Agreement no. 291780) and the Ministry

of Economy, Innovation, Science and Employment of the Junta
de Andalucía. The work was also supported by the Vicerectorate
of Research and Knowledge Transfer of the University of
Granada and the Salvador de Madariaga Mobility Grants
2017.

REFERENCES

Ashburner, J., and Friston, K. (2007). “Segmentation,” in Statistical Parametric

Mapping, eds K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny
(London: Academic Press), 81–91. doi: 10.1016/B978-012372560-8/50006-1

Ashburner, J., Neelin, P., Collins, D. L., Evans, A., and Friston, K. (1997).
Incorporating prior knowledge into image registration. NeuroImage 6, 344–
352. doi: 10.1006/nimg.1997.0299

Borghammer, P., Aanerud, J., and Gjedde, A. (2009). Data-driven intensity
normalization of PET group comparison studies is superior to global
mean normalization. NeuroImage 46, 981–988. doi: 10.1016/j.neuroimage.
2009.03.021

Constantinescu, C. C., Coleman, R. A., Pan, M.-L., and Mukherjee, J. (2011).
Striatal and extrastriatal microPET imaging of D2/D3 dopamine receptors in
rat brain with [18F]fallypride and [18F]desmethoxyfallypride. Synapse (New

York, N.Y.) 65, 778–787. doi: 10.1002/syn.20904
Duin, R. (2000). “Classifiers in almost empty spaces,” in 15th International

Conference on Pattern Recognition, 2000. Proceedings, Vol. 2 (Barcelona), 1–7.
Dukart, J., Perneczky, R., Förster, S., Barthel, H., Diehl-Schmid, J., Draganski,

B., et al. (2013). Reference cluster normalization improves detection of
frontotemporal lobar degeneration by means of FDG-PET. PLoS ONE

8:e55415. doi: 10.1371/journal.pone.0055415
Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., and Penny,W. D. (2006).

Statistical Parametric Mapping: The Analysis of Functional Brain Images, 1st
Edn. Amsterdam; Boston: Academic Press.

Garraux, G., Phillips, C., Schrouff, J., Kreisler, A., Lemaire, C., Degueldre, C.,
et al. (2013). Multiclass classification of FDG PET scans for the distinction
between Parkinson’s disease and atypical parkinsonian syndromes.NeuroImage

2, 883–893. doi: 10.1016/j.nicl.2013.06.004
Górriz, J. M., Ramírez, J., Suckling, J., Illán, I. A., Ortiz, A., Martinez-

Murcia, F. J., et al. (2017). Case-based statistical learning: a non-
parametric implementation with a conditional-error rate SVM. IEEE Access 5,
11468–11478. doi: 10.1109/ACCESS.2017.2714579

Górriz, J. M., Segovia, F., Ramírez, J., Lassl, A., and Salas-Gonzalez, D. (2011).
GMM based SPECT image classification for the diagnosis of Alzheimer’s
disease. Appl. Soft Comput. 11, 2313–2325. doi: 10.1016/j.asoc.2010.08.012

Hartmann, A. (2004). Postmortem studies in Parkinson’s disease. Dialogues Clin.
Neurosci. 6, 281–293.

Hellwig, S., Amtage, F., Kreft, A., Buchert, R., Winz, O. H., Vach, W., et al. (2012).
18F-FDG-PET is superior to 123I-IBZM-SPECT for the differential diagnosis of
parkinsonism.Neurology 79, 1314–1322. doi: 10.1212/WNL.0b013e31826c1b0a

Huang, C., Tang, C., Feigin, A., Lesser, M., Ma, Y., Pourfar, M., et al. (2007).
Changes in network activity with the progression of Parkinson’s disease. Brain
130, 1834–1846. doi: 10.1093/brain/awm086

Illán, I. A., Górriz, J. M., Ramírez, J., Segovia, F., Jiménez-Hoyuela, J. M., and
Lozano, S. J. O. (2012). Automatic assistance to Parkinson’s disease diagnosis in
DaTSCAN SPECT imaging.Med. Phys. 39, 5971–5980. doi: 10.1118/1.4742055

Koch, W., Radau, P. E., Hamann, C., and Tatsch, K. (2005). Clinical testing
of an optimized software solution for an automated, observer-independent
evaluation of dopamine transporter SPECT studies. J. Nucl. Med. 46, 1109–
1118.

la Fougère, C., Pöpperl, G., Levin, J., Wängler, B., Böning, G., Uebleis,
C., et al. (2010). The value of the dopamine D2/3 receptor ligand
18F-desmethoxyfallypride for the differentiation of idiopathic and
nonidiopathic parkinsonian syndromes. J. Nucl. Med. 51, 581–587.
doi: 10.2967/jnumed.109.071811

Leenders, K., Perani, D., Lammertsma, A., Heather, J., Buckingham, P., Jones, T.,
et al. (1990). Cerebral blood flow, blood volume and oxygen utilization: normal
values and effect of age. Brain 113, 27–47. doi: 10.1093/brain/113.1.27

Li, L., Wang, J., Lu, W., and Tan, S. (2017). Simultaneous tumor
segmentation, image restoration, and blur kernel estimation in PET using
multiple regularizations. Comput. Vis. Image Understand. 155, 173–194.
doi: 10.1016/j.cviu.2016.10.002

Li, S. Z. (2001). Markov Random Field Modeling in Image

Analysis, 2 Edn. Computer Science Workbench. Tokyo: Springer.
doi: 10.1007/978-4-431-67044-5

Martínez-Murcia, F. J., Górriz, J. M., Ramírez, J., Illán, I. A., and Ortiz, A.
(2014). Automatic detection of Parkinsonism using significance measures
and component analysis in DaTSCAN imaging. Neurocomputing 126, 58–70.
doi: 10.1016/j.neucom.2013.01.054

Moussallem, M., Valette, P.-J., Traverse-Glehen, A., Houzard, C., Jegou, C., and
Giammarile, F. (2012). New strategy for automatic tumor segmentation by
adaptive thresholding on PET/CT images. J. Appl. Clin. Med. Phys. 13:3875.
doi: 10.1120/jacmp.v13i5.3875

Nagatsu, T., and Sawada, M. (2007). Biochemistry of postmortem brains in
Parkinson’s disease: historical overview and future prospects. J. Neural Transm.

Suppl. 72, 113–120. doi: 10.1007/978-3-211-73574-9_14
Niccolini, F., Su, P., and Politis, M. (2014). Dopamine receptor mapping

with PET imaging in Parkinson’s disease. J. Neurol. 261, 2251–2263.
doi: 10.1007/s00415-014-7302-2

Prashanth, R., Dutta Roy, S., Mandal, P. K., and Ghosh, S. (2014).
Automatic classification and prediction models for early Parkinson’s
disease diagnosis from SPECT imaging. Exp. Syst. Appl. 41, 3333–3342.
doi: 10.1016/j.eswa.2013.11.031

Rinne, J. O., Laihinen, A., Lönnberg, P., Marjamäki, P., and Rinne, U. K. (1991). A
post-mortem study on striatal dopamine receptors in Parkinson’s disease. Brain
Res. 556, 117–122. doi: 10.1016/0006-8993(91)90554-9

Salas-Gonzalez, D., Górriz, J. M., Ramírez, J., Illán, I. A., and Lang,
E. W. (2013). Linear intensity normalization of FP-CIT SPECT brain
images using the α-stable distribution. NeuroImage 65, 449–455.
doi: 10.1016/j.neuroimage.2012.10.005

Saxena, P., Pavel, D. G., Quintana, J. C., and Horwitz, B. (1998). “An
automatic threshold-based scaling method for enhancing the usefulness of Tc-
HMPAO SPECT in the diagnosis of Alzheimer’s disease,” in Medical Image

Computing and Computer-Assisted Interventation — MICCAI’98, Lecture
Notes in Computer Science, eds W. M. Wells, A. Colchester, and S. Delp
(Cambridge MA: Springer Berlin Heidelberg), 623–630. doi: 10.1007/BFb00
56248

Schreckenberger, M., Hägele, S., Siessmeier, T., Buchholz, H.-G., Armbrust-
Henrich, H., Rösch, F., et al. (2004). The dopamine D2 receptor ligand 18F-
desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential
diagnosis of parkinsonism. Eur. J. Nucl. Med. Mol. Imaging 31, 1128–1135.
doi: 10.1007/s00259-004-1465-5

Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner,
J., et al. (2013). PRoNTo: pattern recognition for neuroimaging toolbox.
Neuroinformatics 11, 319–337. doi: 10.1007/s12021-013-9178-1

Segovia, F., Górriz, J. M., Ramírez, J., Álvarez, I., Jiménez-Hoyuela, J. M.,
and Ortega, S. J. (2012). Improved Parkinsonism diagnosis using a partial
least squares based approach. Med. Phys. 39, 4395–4403. doi: 10.1118/1.
4730289

Segovia, F., Górriz, J. M., Ramírez, J., Martínez-Murcia, F. J., Levin, J.,
Schuberth, M., et al. (2017). Multivariate analysis of 18F-DMFP PET data
to assist the diagnosis of parkinsonism. Front. Neuroinformatics 11:23.
doi: 10.3389/fninf.2017.00023

Segovia, F., Górriz, J. M., Ramírez, J., Salas-González, D., Álvarez, I.,
López, M., et al. (2010). Classification of functional brain images
using a GMM-based multi-variate approach. Neurosci. Lett. 474, 58–62.
doi: 10.1016/j.neulet.2010.03.010

Frontiers in Aging Neuroscience | www.frontiersin.org 8 October 2017 | Volume 9 | Article 326

https://doi.org/10.1016/B978-012372560-8/50006-1
https://doi.org/10.1006/nimg.1997.0299
https://doi.org/10.1016/j.neuroimage.2009.03.021
https://doi.org/10.1002/syn.20904
https://doi.org/10.1371/journal.pone.0055415
https://doi.org/10.1016/j.nicl.2013.06.004
https://doi.org/10.1109/ACCESS.2017.2714579
https://doi.org/10.1016/j.asoc.2010.08.012
https://doi.org/10.1212/WNL.0b013e31826c1b0a
https://doi.org/10.1093/brain/awm086
https://doi.org/10.1118/1.4742055
https://doi.org/10.2967/jnumed.109.071811
https://doi.org/10.1093/brain/113.1.27
https://doi.org/10.1016/j.cviu.2016.10.002
https://doi.org/10.1007/978-4-431-67044-5
https://doi.org/10.1016/j.neucom.2013.01.054
https://doi.org/10.1120/jacmp.v13i5.3875
https://doi.org/10.1007/978-3-211-73574-9_14
https://doi.org/10.1007/s00415-014-7302-2
https://doi.org/10.1016/j.eswa.2013.11.031
https://doi.org/10.1016/0006-8993(91)90554-9
https://doi.org/10.1016/j.neuroimage.2012.10.005
https://doi.org/10.1007/BFb0056248
https://doi.org/10.1007/s00259-004-1465-5
https://doi.org/10.1007/s12021-013-9178-1
https://doi.org/10.1118/1.4730289
https://doi.org/10.3389/fninf.2017.00023
https://doi.org/10.1016/j.neulet.2010.03.010
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Segovia et al. Novel Approach to Preprocess 18F-DMFP-PET Data

Segovia, F., Illán, I. A., Górriz, J. M., Ramírez, J., Rominger, A., and Levin,
J. (2015). Distinguishing Parkinson’s disease from atypical parkinsonian
syndromes using PET data and a computer system based on support
vector machines and Bayesian networks. Front. Comput. Neurosci. 9:137.
doi: 10.3389/fncom.2015.00137

Spiegel, J., Hellwig, D., Samnick, S., Jost, W., Möllers, M.-O., Fassbender, K.,
et al. (2007). Striatal FP-CIT uptake differs in the subtypes of early Parkinson’s
disease. J. Neural Transm. 114, 331–335. doi: 10.1007/s00702-006-0518-2

Towey, D. J., Bain, P. G., and Nijran, K. S. (2011). Automatic classification of
123I-FP-CIT (DaTSCAN) SPECT images. Nucl. Med. Commun. 32, 699–707.
doi: 10.1097/MNM.0b013e328347cd09

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. New York, NY:
Springer.

Varma, S., and Simon, R. (2006). Bias in error estimation when using
cross-validation for model selection. BMC Bioinformatics 7:91.
doi: 10.1186/1471-2105-7-91

Winogrodzka, A., Bergmans, P., Booij, J., van Royen, E. A., Janssen, A. G., and
Wolters, E. C. (2001). [123I]FP-CIT SPECT is a useful method to monitor the

rate of dopaminergic degeneration in early-stage Parkinson’s disease. J. Neural
Transm. 108, 1011–1019. doi: 10.1007/s007020170019

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain
MR images through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57.
doi: 10.1109/42.906424

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Segovia, Górriz, Ramírez, Martínez-Murcia and Salas-Gonzalez.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 October 2017 | Volume 9 | Article 326

https://doi.org/10.3389/fncom.2015.00137
https://doi.org/10.1007/s00702-006-0518-2
https://doi.org/10.1097/MNM.0b013e328347cd09
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1007/s007020170019
https://doi.org/10.1109/42.906424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Preprocessing of 18F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution
	1. Introduction
	2. Materials and Methods
	2.1. Ethics Statement
	2.2. 18F-DMFP-PET Neuroimaging Database
	2.3. Markov Models
	2.3.1. Markov Random Fields
	2.3.2. Hidden Markow Random Fields

	2.4. Automatic Segmentation Based On HMRF
	2.5. Intensity Normalization Based on the Gaussian Distribution

	3. Results and Discussion
	4. Conclusion
	Author Contributions
	Acknowledgments
	References


