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A B S T R A C T

In big data-based analyses, because of hyper-dimensional feature spaces, there has been no previous distinction
between machine learning algorithms (MLAs). Therefore, multiple diverse algorithms should be included in the
analysis to develop an adequate model for detecting/recognizing patterns exhibited by classes. If multiple classifiers
are developed, the next natural step is to determine whether the prediction benchmark set by the top performer can
be improved by combining them. In this context,multiple classifier systems (MCSs) are powerful solutions for difficult
pattern recognition problems because they usually outperform the best individual classifier, and their diversity
tends to improve resilience and robustness to high-dimensional and noisy data. To design an MCS, an appropriate
fusion method is required to optimally combine the individual classifiers and determine the final decision. Process
monitoring for quality is a Quality 4.0 initiative aimed at defect detection via binary classification. Because most
mature organizations have merged traditional quality philosophies, their processes generate only a few defects per
million of opportunities. Therefore, manufacturing data sets for binary classification of quality tends to be highly/
ultra-unbalanced. Detecting these rare quality events is one of the most relevant intellectual challenges posed to the
fourth industrial revolution, Industry 4.0 (I 4.0). A newMCS aimed at analyzing these data structures is presented. It
is based on eight well-known MLAs, an ad hoc fitness function, and a novel meta-learning algorithm. For predicting
the final quality class, this algorithm considers the prediction from a set of classifiers as input and determines which
classifiers are reliable and which are not. Finally, to demonstrate the superiority of the MLAs over extensively used
fusion rules, multiple publicly available data sets are analyzed.
1. Introduction trivial task, the driving technologies in I 4.0 have the capacity to further
1 Quality 4.0 is the fourth wave in the quality movement (1. Statistical Quality
Control, 2. Total Quality Management, 3. Six Sigma, 4. Quality 4.0). Its quality
philosophy is built on the statistical and managerial foundations of the previous
The fourth industrial revolution (I 4.0) is changing the way we work,
live, and interact with one another. It is founded on new technologies
such as industrial Big Data, Industrial Inter-net of Things (IIoT), and Artificial
Intelligence (AI), and it fuses physical systems with virtual ones, thus
enabling a smart and connected world. I 4.0 is impacting all scientific
disciplines, industries, and economies. A simulation study demonstrated
that by 2030, 70% of companies might adopt at least one type of AI
technology and potentially generate an additional economic activity of
$13 trillion USD [1]. However, new business models such as Amazon,
Facebook, and Uber have recently emerged and are propelling the I 4.0.
Manufacturing science has been innovating, advancing, and evolving
after the beginning of the first industrial revolution [2]. At present,
manufacturing is the driving economic force of the most advanced
countries [3]. Top-ranking nations in overall manufacturing environment
[4] have the highest gross domestic product (GDP) [5]. Although not a
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From the perspective of manufacturing quality, most mature organi-

zations have merged traditional quality control methods to create high-
conformance production environments. Process monitoring charts have
been developed to improve the process capability index at the industrial
benchmark of sigma level four [6, 7]. This sigma level generates 6,210
defects per million of opportunities (DPMOs) [8, 9]. Detecting these defects
to move manufacturing processes to the next sigma level is one of the
primary intellectual challenges posed to AI [10] (see Figure 1).

Process monitoring for quality (PMQ) is aQuality 4.01 initiative founded
on AI (Figure 2). Detecting rare quality events or few DPMOs generated
philosophies. It leverages IBD and AI to solve an entirely new range of intrac-
table engineering problems. Quality 4.0 is founded on a new paradigm based on
empirical learning, empirical knowledge discovery, and real-time data genera-
tion, collection, and analysis to enable smart decisions [13].
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Figure 1. Current conformance rate across manufacturing companies.

Figure 2. PMQ in the context of Industry 4.0.
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by a typical manufacturing process is one of the primary goals. Defect
detection is formulated as a binary classification problem (good or
defective) [11]. PMQ has evolved the traditional quality problem solving
strategies (PDCA, DMAIC, IDDOV [12]) into a seven-step approach
—(Identify, Acsensorize, Discover, Learn, Predict, Redesign, Relearn:
IADLPR2) — to effectively solve pattern classification problems and to
guide (Figure 3) [12,13]. An approach to solve the predict step (or letter P)
of the problem solving strategy is presented.

From the ML perspective, manufacturing-derived data sets for binary
classification of quality tend to be highly/ultra-unbalanced (minority
class count <1%). Therefore, a learning strategy (e.g., hyper-parameter
tuning, classification threshold definition, and misclassification cost)
must be developed to address this situation. Owing to the limited amount
of information available of the minority class, it is extremely complicated
for an MLA to capture this pattern.

In big data-based analyses, because of hyper-dimensional feature
spaces, the data structure is not known in advance. There is, therefore, no
a priori distinction between MLAs [14]. Multiple MLAs should be
included in the analysis to develop an adequate model for the pattern
exhibited by the classes. Moreover, based on empirical evidence, di-
versity tends to improve the prediction performance, resilience, and
robustness of high-dimensional and noisy data [15].

If multiple classifiers are developed, the next natural step is to
combine them to optimize prediction. The most common fusion rules are
majority, simple majority, and unanimous voting [15]. Recently, a ma-
jority voting, Multiple Classifier System (MCS) concerning biological ac-
tivities was developed [16]; this predictive system outperformed
individual classifiers by addressing the over-fitting problem. However, in
anMLA, the concept of drift [17, 18] addresses the fact that the statistical
distributions of classes change over time in an unforeseen manner. This
poses important technical and practical challenges because a stationary
relationship is assumed between features and classes. Assumption is
rarely held by manufacturing systems [13]. Moreover, the pitfall of using
predefined classification rules was acknowledged in Ref. [19].

If extensively used or existing static fusion rules rarely generalize/
sustain inmanufacturing, the research question addressed in this study is:
which fusion rule should be used to optimize the detection of rare events?
A novel meta-learning algorithm [20] was developed to answer this
question.

The process of developing an MCS is divided into two optimization
goals: (1) coverage optimization, an approach aimed at increasing the
hyper-dimensional space covered by a set of mutually complementary
classifiers, and (2) decision optimization, a meta-learning algorithm aimed
at designing an appropriate decision combination scheme (i.e., fuser)
over a set of previously trained classifiers [21, 22].

A prediction optimization approach, PMQ-O, is presented. It is an
effective strategy aimed at developing an MCS with the capacity to
analyze highly/ultra-unbalanced data. The proposed approach is based
on the following: (1) a list of eight diverse MLAs, (2) an ad hoc fitness
function, and (3) a new meta-learning algorithm that searches for an
optimal solution. These three components address the two optimization
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goals. As demonstrated by multiple empirical studies, PMQ-O is a step
forward in moving manufacturing processes to the next sigma level.

The rest of this study is organized as follows. A general scheme of
PMQ is presented in Section 2. A brief theoretical background of this
study is presented in Section 3. An optimizer is presented in Section 4.
Empirical studies are outlined in Section 5, wherein a virtual case study is
presented, aimed at explaining the optimizer in a step-by-step manner,
followed by the analysis of six real data sets. Industry 4.0 technologies and
sustainability are mentioned in Section 6. Finally, Section 7 concludes
this paper. Table 1 summarizes the acronym definitions.

2. Process monitoring for quality

In PMQ, the Big Models (BM) learning paradigm [23] is applied to
process data to develop a classifier aimed at defect detection. Using the
notation of eqn. (1), a positive label refers to a defective item, whereas a
negative one refers to a good quality item.

Quality¼
�
1 if ith item is defectiveð þ Þ
0 f ith item is goodð � Þ (1)

The predictive performance of a classifier is summarized using a
confusion matrix (CM) (see Table 2).

Because predictions are performed under uncertainty, a classifier can
commit FP (type-I, α) and FN (type-II, β) errors [24]. In the context of
binary classification of quality, an FP error occurs when a classifier labels
a good item as a defective one, whereas an FN error occurs when a
defective item is labeled as good. Errors are computed by the following
equations:

α¼ FP
FPþ TN

(2)

β¼ FN
FN þ TP

(3)

Figure 4 shows a typical high-conformance process controlled by
PMQ where observational (i.e., empirical) data are used to train a clas-
sifier following the BM learning paradigm [23]. From a theoretical
perspective, applying ML to detect the minority class is the primary
challenge, whereas from practical/business perspectives, the goal is to
develop defect-free processes [10]. Because an FN can be reevaluated at a
minimum cost and continue in the value-adding process, the classifier
must exhibit a predominantly high detection ability (β � 0) and the
smallest possible α error.

PMQ uses a seven-step problem solving strategy to guide innovation.
IADLPR2 is developed based on theory and our knowledge of complex
manufacturing systems. As per empirical results, this strategy increases



Figure 3. PMQ problem solving strategy.

Table 1. Acronym definitions.

Acronym Definition

AI Artificial Intelligence

ANN Artificial Neural Networks

BM Big Models

CM Confusion Matrix

DPMO Defects Per Million of Opportunities

FN False Negative

FP False Positive

GDP Gross Domestic Product

IADLPR2 Identify, Acsensorize, Discover, Learn, Predict, Redesign, Relearn

IIoT Industrial Internet of Things

I4.0 Industry 4.0

KNN K-Nearest Neighbors

MCS Multiple Classifier System

LR Linear Regression

ML Machine Learning

MLA Machine Learning Algorithm

MPCD Maximum Probability of Correct Decision

NB Naive Bayes

PMQ Process Monitoring for Quality

PMQ-O Prediction Optimization approach

RF Random Forest

RBF Radial Basis Fusion

QMC Quality Monitoring and Control

SVM Support Vector Machine

TN True Negative

TP True Positive

Table 2. Confusion matrix.

Predicted good Predicted bad

Good item True Negative (TN) False Positive (FP)

Defective item False Negative (FN) True Positive (TP)
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the likelihood of success by addressing the primary challenges of
manufacturing systems [ 11,13, 23]. Table 3 lists the primary goals for
each step of this strategy.

3. Theoretical background

The overall research goal of AI is to create technologies that augment
human intelligence or take over risky jobs not appropriate for humans.
ML, robotics, computer vision, natural language processing, and expert
systems are the common AI areas [25].
3

ML serves as a tool for information extraction, data pattern recogni-
tion, and prediction. Although it becomes increasingly challenging to
build first-principle models in these increasingly complex processes,
data-driven process modeling, monitoring, prognosis, and control have
recently received considerable attention. Manufacturing must be reima-
gined in the new era of data science and information technology.

The primary goal of data mining is to extract beneficial details and
transfer them to practical knowledge to improve process decision sup-
port. Multiple tasks require pattern recognition, reasoning, and decision-
making under complex conditions. Furthermore, they often deal with ill-
defined problems, noisy data, model uncertainties, combinatorially large
search spaces, non-linearities, and the requirement for speedy solutions.
Such features are reported in many issues in the process industry—in
synthesis, design, control, scheduling, optimization, and risk
management.

There are three different types of MLA: unsupervised methods, super-
vised learning methods (SVMs), and reinforcement learning methods. Super-
vised and unsupervised learning methods account for 80%–90% of all
industrial applications, [26]. With I 4.0, IIoT, and cloud computing,
MLA-based quality monitoring and control (QMC) has successfully resur-
faced in various industrial domains. For example, real-time data acqui-
sition systems enable anMLA application to accurately assess the quality
of a manufacturing process.

A feedback (adaptive and self-updating) system with sufficient data is
essential to ensure the effectiveness of an MLA over time, which enables
the real-time improvement in quality inspection. Furthermore, an MLA
can be used to devise complex models and algorithms that can lend
themselves to prediction. These algorithms allow for people to produce
reliable, repeat-able decisions and uncover hidden insights by learning
from historical relationships and trends in the data.

An algorithm integrating feedback and an adaptable process that is
analyzed over time in the long run to improve SVM-based systems was
proposed in [27]. The adaptive approach considerably improved the
feedback process and effectively enhanced the system accuracy and
reliability over time. The framework to pre-process the input data for
SVM-based decision-making algorithms was applicable for MLAs, e.g.,
cost-effective SVM-based automated QMC. It incorporated
inspection-related expenses (warranty cost, rework cost, inspection cost)
and error types (type I and II errors) in the algorithm [28]. In this pro-
posal, the quality check reflected the company priorities regarding
cost-saving policy versus traditional SVM methods that employ the
lowest inspection error rate criterion for classification. Essential features
were considered the ability to learn from and make predictions based on
defective parts.

In addition to these SVM-based applications, there are many more
that combine two MLAs to generalize the practical approach: MCSs. To
develop an MCS, three questions must be answered: (1) which classifiers
should be included?, (2) which fitness function should be optimized?,
and (3) how should the predictions (labels) of the classifiers be
combined?



Figure 4. PMQ scheme.

Table 3. Seven steps and goals.

Step Goal

Identify to develop a prioritized portfolio of projects with a high business impact
and likelihood of success.

Acsensorize to observe the process and generate the raw empirical data to monitor
the system to create features

Discover
Learn

to develop the classifier using the Big Models learning paradigm

Predict to optimize prediction (this paper goal)

Redesign to derive engineering knowledge from the data mining results

Relearn to develop a relearning strategy for classifier to learn new statistical
distributions classes
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An overview of aggregation methods and meta-learning in ML is pre-
sented. Thereafter, a brief theoretical review is provided to answer the
first two questions, and the third one is answered in Section 4.
2 ANN can be shallow or deep, depending on the available type of data.
3 The authors acknowledge that some algorithms can change their taxonomy

(e.g., from parametric to non-parametric) depending upon their definition.
3.1. Aggregation methods

For an ensemble learning approach (voting by several classifiers), a
group of homogeneous classifiers is called an ensemble [29], e.g., bagging
and boosting [29, 30, 31]. However, a group of heterogeneous classifiers
is called an MCS or non-ensemble [32, 33]. In the context of ideas
expressed in this study, anMCS is a predictive approach that may include
a com bination of classifiers with ensembles.

MCSs are a powerful solution to difficult pattern recognition problems
because they usually outperform the best individual classifiers [34]. This
improvement has been analytically proven under certain conditions (e.g.,
majority voting by a group of independent classifiers) [35].

To design an MCS, an appropriate fusion method is required to opti-
mally combine the individual classifier outputs to deter-mine the final
decision (classification). Heterogeneous or homogeneous modeling
backgrounds can be integrated (e.g., LR, SVM, and random forest (RF)) to
exploit the strengths of each individual classifier and to overcome the
limitations of an optimal local solution developed by an individual
classifier. More-over, high diversity helps by decreasing the classifier
output correlation [36, 37] and providing better options to explore
different decision combination schemes. The most common fusion rules
are majority, simple majority, and unanimous voting [15].
4

Meta-learning is a broad topic in AI [20, 38]. This paradigm refers to
an MLA that learns from the output of another MLA [39, 40]. A meta-l-
earning algorithm is applied to dynamically learn or adjust the fusion rule
of the MCS on the basis of the characteristics of the data at hand. It re-
places static fusion rules or human involvement to manually evaluate
different fusion rules. Figure 5 describes recent developments of meta-l-
earning algorithms [41, 42, 43, 44]. A brief comment is included for each
of them to briefly describe their diverse agendas.

3.2. List of MLA

To address the coverage optimization problem [22], a list of eight
diverse and complementaryMLAs is considered: LR, SVM [45], including
radial basis function (RBF) kernels [46], Naive Bayes (NB) [47], k-nearest
neighbors (KNN) [48], artificial neural network (ANN)2 [49], RF [31], and
random undersampling boosting (RUS-Boost) algorithms (see Table 4). The
proposed list includes margin- and probability-based, linear and
non-linear [49], parametric and non-parametric [50], stable and unstable
[51], and generative and discriminative [52] algorithms3. These ap-
proaches can be used to solve a wide spectrum of binary classification
problems.

The first sevenMLAswere initially proposed in [23]. They include the
RF algorithm, a bagging approach. The original list is complemented with
a boosting method. Because rare quality event detection is one of the
primary applications of PMQ [10], RUSBoost [53] was selected as a
boosting algorithm. RUSBoost is a combination of random undersampling
and AdaBoost [54]. Random undersampling is applied to the majority class
to balance the ratio between minority and majority classes, following
which AdaBoost is applied to the balanced-subset to build a model.

The primary causes of error (i.e., misclassifications) are noise, bias,
and variance. Ensemble learning (e.g., bagging and boosting) tends to
produce a more reliable classification than a single classifier, and
therefore minimizes these sources of errors. Although these methods are
designed to improve the stability and robustness to noise, they have
slightly different agendas for solving the bias–variance tradeoff [55]. In
general, boosting tends to reduce the bias problem. Bagging may solve
the over-fitting (variance) problem while boosting can increase it.
Including both types of ensembles may be a good idea to effectively solve



Figure 5. Recent developments of meta-learning algorithms.
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the bias–variance trade-off. Once a set of classifiers has been defined and
trained, the next natural step is to rank them on the basis of a fitness
function.

3.3. Maximum Probability of Correct Decision (MPCD)

Maximum Probability of Correct Decision (MPCD) is the fitness function
to be optimized. It is a probability-based measure of classification per-
formance, based on the α and β errors. It effectively analyzes highly/
ultra-unbalanced data structures [11, 56] because its score essentially
describes the ability of the classifier to detect the minority class, e.g.,
defective items. One has

MPCD ¼ (1 � α) (1 � β) 2 [0, 1] (4)

where a higher score indicates better classification performance.MPCD¼
1 describes the perfect separation of classes, whereasMPCD¼ 0 describes
either an α¼ 1 (all good called bad) or β¼ 1 (all bad called good)4. Once
the classifiers have been ranked and the top performer identified, the
next intuitive challenge is to determine whether two or more classifiers
can be combined to improve the predictive benchmark of the top
performer.

4. Classification optimization

A meta-learning algorithm (meta-classifier5) is presented. Its primary
goal is to determine the optimal fusion scheme for PMQ-O. It generates a
4 Since MPCD is the fitness function, it is recommended to tune the hyper-
parameters of the MLA with respect to this metric too.
5 Meta-learning algorithm for classification tasks.

5

search space based on the set of classifiers and determines the optimal
fusion rule.

Because manufacturing systems tend to be time dependent, the data
set should be split after a time-ordered hold-out vali-dation scheme
(training and testing sets). The eight MLAs described in Table 4 are
applied to the training set (e.g., first 70% samples) to create a set of
classifiers. Thereafter, they are applied to the testing set (e.g., remaining
30 % samples). The Real Labels (RLs), Predicted Labels (PLs), and classifier
list are the inputs of the optimizer that searches for a better solution (i.e.,
optimized prediction performance) with two possible outcomes: (1) top
performer, a single classifier, or an ensemble (RF or RUSBoost); this situ-
ation occurs when no classifier fusion surpasses the benchmark set by the
top performer (see Figures 6 and 2) MCS, a set of classifiers (it may
include only a few or all) with a fusion rule that improves the benchmark
set by the top performer (see Figure 7). The top performer may or may
not be included in the MCS.
4.1. Optimizer pseudo-code

The PMQ-O algorithm has three components (see Figure 8 and
Table 5). It performs n iterations (lines 1–20), in each of which Cn

k number
of combinations are generated, where different combinations created at
each iteration (line 2). Once the combinations have been defined, the
algorithm performs C iterations to determine the best one
ðargmax fMPCDgÞ at each value of k (lines 3–16). To determine the best
combination, a new vector is created, SumLMCS (see Eqn. 5), in which
the values of the labels of the classifiers included in the combination are
summed up (line 4). Thereafter, different fusion rules (r) are explored for
each combination, starting with zero up to k – 1. The number of different
fusion rules to be explored is equal to k (lines 5–13). To evaluate each
fusion rule, the final PL, LMCS (see Eqn. 6), of the combination (lines 6–10)
is used to compute the associated MPCD (line 11).

The PredictionCapacityList is used to store the associated MPCD to
each different value of r for the combination under analysis (line 12).
PredictionCapacityListNC and FusionRuleListNC lists are used to store
the best fusion rule r of all the combinations developed at each value
of k (lines 14 and 15). PredictionCapacityListK, FusionRuleListK, and
SelectedCombinationListK lists are used to store the information (MPCD,
r, combination index -nc- respectively) of the best combination at each
value of k (lines 17–19). The final combination, PredCapacityFinal, is
identified on the basis of the MPCD value (line 21). Because the di-
mensions of Com change at every iteration, the final combination must
be generated again. At this point, all the information is available and
is collected in K (line 22). SelectedCombinationFinal identifies the
combination index (line 23) and the associated fusion rule in Fusion-
RuleFinal (line 24). Using the values of n and K, the set of combina-
tions in Cnare generated (line 25), and the classifiers included
in the index SelectedCombinationFinal are included in the MCS
(line 26). Finally, the solution is reported (see Eqn. 7); mcs: the
number of classifiers, SelectedClassifiersFinal, FusionRuleFinal, and
PredCapacityFinal (lines 27–31).

SumPLMCS¼
X

Lnc (5)

PLMCSnci ¼
�
1 if SumPLMCSnci > r ⇒ ithitem Pred: badð þ Þ
0 if SumPLMCSnci � r ⇒ ithitem Pred: goodð � Þ (6)

MCS¼ argmax
nkncr

fMPCDg (7)

The algorithm determines an optimal fusion scheme (i.e., number of
classifiers, and fusion rule) for theMCS, where the search space is defined
by the following:

Xn

k¼1

k � Cn
k (8)



Figure 6. Top performer.

Figure 7. Multiple classifier system.

Figure 8. Optimizer pseudo-code.

Table 4. Characteristics of the MLA.

Index MLA Linear Nonlinear Parametric Nonparametric Stable Unstable Gen Dis

1 SVM ✓ ✓ ✓ ✓

2 LR ✓ ✓ ✓ ✓

3 NB ✓* ✓ ✓ ✓

4 KNN ✓ ✓ ✓ ✓

5 ANN ✓ ✓** ✓ ✓

6 SVM(RBF) ✓ ✓ ✓ ✓ ✓

7 RF ✓ ✓ ✓ ✓

8 RUSBoost ✓ ✓ ✓ ✓

*with numeric features, **with a set of parameters of fixed size. Gen: Generative, Dis: Discriminative.
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5. Empirical studies

To gain insights into how the algorithm searches for fusion rules aimed
at prediction optimization, a virtual case is validated.

5.1. Virtual case study

A sample size of 10 (m ¼ 10) with three bad(s) and seven good(s) is
generated. The prediction of three classifiers (n ¼ 3) is input, and then
6

the optimizer is applied to search for a fusion rule that enhances the
prediction ability of the top performer. The RLs and PLs of each classifier,
Class(C1, ..., C3), are presented in Table 6, and the prediction perfor-
mance of each classifier is detailed in Table 7.

Tables 6 and 7 present the results of the different combinations in C3
1.

Because there is only one classifier in each combination (k¼ 1), r¼ 0 is the
only fusion rule to be evaluated, and PL¼ SumPLMCS¼ PLMCS. According
to the prediction results, C1 is the top performer with MPCD ¼ 0.7142.



Table 5. Optimizer pseudo-code.

(1) Inputs

A set of classifiers and their associated predicted labels

� Class(C1, C2, ..., Cn), a list of classifiers, n represents the number of classifiers

� PL(pli j)mxn, a matrix with predicted labels (pli j 2 {0, 1}) of the samples in the validation
set, where m denotes the sample size, and the subscripts i,j are used to denote the ith sample
of the jth classifier

� RL(rli)m, a vector of size m with real labels (rli 2 {0, 1})

(2) Outputs

A Multiple Classifier System (MCS)

� mcs the number of classifiers in the MCS

� SelectedClassifiersFinal, set of classifiers (C1, .., Cmcs) in the MCS (it may include only the
top performer)

� FusionRuleFinal, the fusion rule (zero is the fusion rule if only the top performer is
included)

� PredCapacityFinal, estimated prediction ability

(3) Initialization

Define the algorithm's lists.

� Set Com as empty

� Set SumLMCS as empty

� Set LMCS as empty

� Set MPCD as empty

� Set PredictionCapacityListR as empty

� Set PredictionCapacityListNC as empty

� Set FusionRuleListNC as empty

� Set PredictionCapacityListK as empty

� Set FusionRuleListK as empty

� Set SelectedCombinationListK as empty

Table 7. Prediction performance (k ¼ 1, r ¼ 0).

r ¼ 0 C1 C2 C3

α 0.2857 0 0

β 0 0.6667 0.3333

MPCD 0.7142 0.3333 0.6667
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Now, the different combinations generated with k ¼ 2 (C3
2Þ are

evaluated with respect to r ¼ 0 and 1, where Eq. (5) is used to populate
Table 8 (sumPLMCS). The classification rule described in Eq. (6) is then
applied to define the PLs of each combination (PLMCS) (see Tables 9 and
10). Finally, Tables 11 and 12 present their associated predictive
performances.

As per Table 11, the combination of classifiers C2 and C3 with a fusion
rule r ¼ 0 perfectly separates the data (MPCD ¼ 1) and surpasses the
benchmark set by classifier C1 (MPCD ¼ 0.7142). Finally, k ¼ 3 is eval-
uated. Because it is just one combination with the three classifiers, three
rules are assessed, r ¼ 0, 1, and 2. Following the same structure, the re-
sults are presented in Tables 13, 14, 15, 16, 17, 18, and 19.

As per Table 17, the combination of classifiers C1, C2, and C3 with a
fusion rule r ¼ 1 perfectly separates the data (MPCD ¼ 1). Finally, a
comparative analysis combining the three classifiers with the three most
common fusion rules (i.e., majority, unanimous-zero, and unanimous-
one) and PLs are presented in Table 20. The classification performance
is summarized in Table 21.
Table 6. Predicted labels of each classifier vs real labels, k ¼ 1.

Sample PLC1 PLC2 PLC3 RL

1 1 0 0 0

2 1 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 1 1 0 1

9 1 0 1 1

10 1 0 1 1

7

According to Table 21, although the majority vote resulted in perfect
separation, this is not always the case [23]. However, as shown in this
study, unanimous-zero (i.e., r ¼ 0) tends to be a good rule for rare event
detection when the data set is highly/ultra-unbalanced. This fusion rule,
however, tends to increase the α error. The unanimous-one rule (i.e., r ¼
n) is on the other extreme; it tends to fail to detect or significantly in-
crease the β error.

Static fusion rules, such as majority or unanimous voting, often times
do not determine the optimal manner to combine the decisions of the
classifiers because they do not eliminate highly correlated or spurious
classifiers [36, 37] that degrade the generalization performance. How-
ever, the meta-learning algorithm presented only includes classifiers that
optimize prediction. This is demonstrated in the following subsection.

5.2. Real case studies

To exhibit the performance of PMQ-O, six highly/ultra-unbalanced
data sets (five publicly available) were analyzed using the eight MLAs
(see Table 4). The name and relevant information for each data set are
presented in Table 22, [23, 57]. The prediction performance on the
testing set of each classifier is summarized in Tables 23 and 24 presents
the information of the MCS.

In data set #1, the top performer is the LR algorithm with an esti-
mated MPCD ¼ 0.8799, α ¼ 0.0101, and β ¼ 0.1111 (see Table 23); this
benchmark is improved (MPCD ¼ 0.8821) if LR is combined with the
ANN with a fusion rule of 1. In this case, although the detection ability
(β-error) is not improved, the FP (α-error) is reduced. In data set # 2, the
benchmark set by the KNN (MPCD ¼ 0.9736) is higher (MPCD¼ 0.9799)
by theMCSs based on SVM, SVM(RBF), ANN, and KNN algorithms with a
fusion rule of 1. In this scenario, the detection ability is improved by
1.74% (from β ¼ 0.0239 to β ¼ 0.0065) with a 1.1% loss of α (from
0.0026 to 0.0136). In data sets #3 and #4, the benchmarks set by
RUSTBoost and ANN are not improved by any decision combination. In
data set #5, the benchmark set by SVM(RBF) (MPCD ¼ 0.9901) is
improved (MPCD ¼ 0.9966) if the predictions of the KNN and RF are
aggregated with a fusion rule of 1. In this case, detection is slightly
improved, whereas the α-error remains essentially the same. Finally, in
data set #6, the benchmark set by the SVM (MPCD¼ 0.8704) is improved
(MPCD¼ 0.8760) by anMCS based on the SVM LR and ANNwith a fusion
rule of 1. In this case, the α-error increases by 0.37% (from 0.0399 to
0.0436), whereas the β-error decreases by 0.94% (from 0.0935 to
0.0841).
Table 8. SumPLMCS, sum of the values of the combinations created with k ¼ 2.

Sample
P

PLC1�C2

P
PLC1�C3

P
PLC2�C3 RL

1 1 1 0 0

2 1 1 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 2 1 1 1

9 1 2 1 1

10 1 2 1 1



Table 9. PLMCS, predicted labels with r ¼ 0.

Sample
P

PLC1�C2

P
PLC1�C3

P
PLC2�C3 RL

1 1 1 0 0

2 1 1 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 1 1 1 1

9 1 1 1 1

10 1 1 1 1

Table 10. PLMCS, predicted labels with r ¼ 1.

Sample
P

PLC1�C2

P
PLC1�C3

P
PLC2�C3 RL

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 1 0 0 1

9 0 1 0 1

10 0 1 0 1

Table 11. Prediction performance (k ¼ 2, r ¼ 0).

r ¼ 0 C1–C2 C1–C3 C2–C3

α 0.2857 0.2857 0

β 0 0 0

MPCD 0.7142 0.7142 1

Table 12. Prediction performance (k ¼ 2; r ¼ 1).

r ¼ 1 C1–C2 C1–C3 C2–C3

α 0 0 0

β 0.6667 0.3333 1

MPCD 0.3333 0.6667 0

Table 13. SumPLMCS, sum of the values of the combination created with
k ¼ 3.

Sample
P

PLC1 – C2– C3 RL

1 1 0

2 1 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 2 1

9 2 1

10 2 1

Table 14. PLMCS, predicted labels with r ¼ 0.

Sample
P

PLC1 – C2– C3 RL

1 1 0

2 1 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 1 1

9 1 1

10 1 1

Table 15. Prediction performance (k ¼ 3, r ¼ 0).

r ¼ 0 C1–C2 – C3

α 0.2857

β 0

MPCD 0.7142

Table 16. PLMCS, predicted labels with r ¼ 1.

Sample
P

PLC1 – C2– C3 RL

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 1 1

9 1 1

10 1 1

Table 17. Prediction performance (k ¼ 3; r ¼ 1).

r ¼ 1 C1–C2 – C3

α 0

β 0

MPCD 1

Table 18. PLMCS, predicted labels with r ¼ 2.

Sample
P

PLC1 – C2– C3 RL

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 1

9 0 1

10 0 1
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Table 19. Prediction performance (k ¼ 3, r ¼ 2).

r ¼ 2 C1–C2 – C3

α 0

β 1

MPCD 0

Table 20. Predicted labels for comparative analysis.

Sample PMQ-O Majority Unanimous RL

zero one

1 0 0 1 0 0

2 0 0 1 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

8 1 1 1 0 1

9 1 1 1 0 1

10 1 1 1 0 1

Table 21. Prediction performance of the comparative analysis.

PMQ-O Majority Unanimous

zero one

α 0 0 0.2857 0

β 0 0 0 1

MPCD 1 1 0.7142 0

Table 22. Data sets information.

Data
set

Description Features Training
set

Validation
set

Ratio
(overall)

1 UMW 54 18,495
(20)

12,236 (9) 0.09yy

2 Statlog (class 1) 36 4,435
(1,072)

2,000 (461) 23.82y

3 Occupancy
Detection

5 6,587
(173)

1,791 (98) 3.23y

4 HTRU2 8 12,000
(1,484)

5,898 (155) 9.15y

5 Sensorless
Drive

48 44,000/
14,509

4,000/
1,319

9.09y

6 Credit Card
Fraud

29 200,000
(385)

84,807
(107)

0.17yy

yhighly unbalanced yyultra unbalanced. In parentheses the count of the positive
class.
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The proposed list ofMLAs support fusion strategy. The top performer is
a different classifier in each data set, and within each data set, classifiers
tend to mislabel different examples. These results support the coverage
optimization problem that recommends including a diverse and com-
plementary list of MLAs to reduce dependency/redundancy.

Because the proposed algorithm performs an exhaustive search to
determine an optimal solution, there are certain rare cases in which the
solution is not unique. In this situation, it is recommended to generate a
test set to evaluate the generalization ability of MCSs to a new unseen
data set.
9

5.3. Limitations, recommendations, and managerial insights

PMQ uses real-time process data, which usually are in the form of
signals, warranty data, direct quality observations, or coordinates. In
these cases, each of the steps of the problem solving strategy are applied
to solve the pattern classification problem. Moreover, as per a recent
study, most of today's problems can be more effectively solved by simple
MLAs, rather than deep learning [58].MLAs simplify model interpretation
and understandability, enabling engineering knowledge creation aimed
at process redesign and improvement. However, there are multiple
image-based applications aimed at visual inspection replacement (i.e.,
train a deep neural network to identify whether a screw is present in a
transmission). In these types of applications, the seven steps do not apply
and only a deep neural network structure can be used, such as a
convolutional.

PMQ-O proposes a list of eight diverseMLAs. However, this list can be
modified (MLAs can be added/eliminated/changed) on the basis of user
preference/intuition. Adding (or removing) an MLA would increase (or
decrease) the number of combinations to be evaluated. The Six Sigma
approach or reaching of the maximum possible level in an organization is
a business strategy, which summarized includes financial benefits,
increased productivity, and a better customer satisfaction [59].

6. Industry 4.0 - technologies and sustainability

Implementing Quality 4.0 practices indicates the maturity of an or-
ganization to pursue the excellence in performance [60]. This can only be
achieved with digital transformation, making technology innovation and
connectivity a priority. The collection of data needed for generation of
insights and propositions of value in almost real-time is one of the main
pillars in I 4.0. For quality improvement, industries have to enable the
acquisition of data and measure current processes to have a starting point
to know where the optimization needs to occur. Sensors and smart sen-
sors let this information to be interpreted. According to [61], monitoring
equipment and environmental conditions in a manufacture floor, allow
for diagnosis and analysis of the processes, creating competitive advan-
tages in companies implementing these practices. As a high amount of
data is required for better decision-making, intelligent transducers or
smart sensors are used for this purpose. They encompass both analog and
digital sensors with their corresponding signal, a microprocessor and a
communication protocol for data transfer [62]. These sensors can be
arranged in a network for monitoring process and performance. The
cross-sensor data validation allows a high reliability in both the sensors
and the network, creating an identifiable and easy detection of problems
[61].

As per [63], quality and the implementation of Six Sigma or the cor-
responding sigma level are directly related to manufacturing processes,
although Six Sigma is a generic improvement methodology. Competi-
tiveness is on a rise, and moving from Four Sigma to Six Sigma would
mean improvements to be integrated into normal operations. The future
benefits would include financial and technological development, stan-
dardization, and safety measure implementation. The variation in pro-
cesses should decrease over time, and therefore, creating more robust
systems, which would mean less maintenance and investments for up-
grades. Certain key performance indicators (KPIs) in a successful imple-
mentation [64] include the following: (1) efficiency, (2) cost reduction,
(3) time to de liver, (4) quality of the service, (5) customer satisfaction,
(6) employee satisfaction, (7) reduced variation, and (8) financial
benefits.

The following step from obtaining the necessary data is to commu-
nicate it and process it in almost real-time to prevent failures or detect
defects. This big data approach andML usage are the current standard for
detecting gaps in the process. The business value of implementing real-
time processing is the ability for instantaneous streaming of informa-
tion and reaction [65] and this value has to prevail for a company to keep
investing and develop new products and services.



Table 23. Prediction ability (testing set) of each classifier by data set.

MLA Data set

1 2 3 4 5 6

SVM α 0.001 0.015 0.029 0.010 0.017 0.040

β 0.222 0.013 0.031 0.103 0.055 0.094

M 0.777 0.972 0.941 0.888 0.929 0.8704

LR α 0.010 0.030 0.033 0.022 0.136 0.000

β 0.111 0.022 0.010 0.077 0.124 0.252

M 0.88 0.949 0.958 0.902 0.758 0.748

NB α 0.006 0.138 0.033 0.025 0.089 0.003

β 0.222 0.135 0.010 0.090 0.049 0.187

M 0.773 0.746 0.958 0.887 0.867 0.811

KNN α 0.000 0.003 0.023 0.009 0.004 0.000

β 0.778 0.024 0.316 0.271 0.021 0.262

M 0.222 0.974 0.668 0.723 0.975 0.738

ANN α 0.011 0.012 0.033 0.027 0.011 0.009

β 0.111 0.035 0.010 0.052 0.017 0.150

M 0.879 0.954 0.958 0.92 0.972 0.843

SVM RBF α 0.001 0.016 0.015 0.011 0.003 0.000

β 0.778 0.017 0.327 0.090 0.007 0.402

M 0.222 0.967 0.663 0.899 0.99 0.598

RF α 0.000 0.014 0.026 0.008 0.003 0.000

β 0.889 0.050 0.174 0.168 0.019 0.280

M 0.111 0.937 0.805 0.826 0.978 0.720

RUST Boost α 0.006 0.287 0.032 0.019 0.079 0.038

β 0.222 0.089 0.000 0.142 0.030 0.150

M 0.773 0.649 0.968 0.842 0.893 0.818

Top performer in bold, M means MPCD.
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The selection of the adequate solutions highly depend on the
practitioners leading the engineering teams. As generations pass by,
new challenges are found when training new technicians to handle
new technologies and models. According to [66], in I 4.0, engineers
must be able to understand mobile technology, embedded systems,
sensors, network technology, machine-to-machine communication,
robotics, AI, bionics, and safety competencies, along with other
managerial skills such as leadership, financial analysis, and critical
thinking. The value of these abilities will change the educational
system to meet current and future global demands in the industry
[67]. To close the gap between generations, education needs to
transform and enhance the benefits that technology can bring to the
industry. Some of the main changes in the workplace have been the
flexibility to work without fixed hours or places, unconventional
projects or opportunities, abroad programs, experimental jobs and the
constant use of technology [68].

Even though training and the possession of technology are important,
the value of an organization lays in its ability to sustain itself. The ma-
jority of companies are not prepared to tackle problems that could
happen three or more years in the future, which can lead to poor
Table 24. PMQ-O results by data set.

Data
set

Classifier(s) α β MPCD Fusion
rule

1 LR,ANN 0.0076 0.1111 0.8821 1

2 SVM,SVM(RBF),ANN,KNN 0.0136 0.0065 0.9799 1

3 RUSBoost 0.0319 0 0.9681 0

4 ANN 0.0273 0.0516 0.9225 0

5 SVM(RBF),KNN,RF 3.790e-
04

0.0030 0.9966 1

6 SVM,LR,ANN 0.0436 0.0841 0.8760 0
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implementation of Quality 4.0 initiatives, as they only try to optimize
operational efficiency immediately [69]. The steps in the path for sus-
tainability, according to the North Highland Consulting Company, are:
(1) To recognize transformation is required, (2) Envision the future and
build the case, (3) Create the strategy and success measures, (4) Socialize
and align, (5) Prioritize and organize, (6) Execute and implement. The
implementation of these steps will ensure an excellent execution and a
constant attention for customer and company needs.

7. Conclusions

In today's manufacturing world, most mature organizations have
merged traditional quality-control methods to create high-conformance
production environments. Process-monitoring charts are being applied
to improve the process capability index, at the industrial benchmark of
sigma level four, where only a few DPMOs are generated. Detecting these
defects to move manufacturing processes to the next sigma level is one of
the primary intellectual challenges posed to the application of AI to
manufacturing processes.

PMQ is a Quality 4.0 initiative aimed at defect detection, where rare
quality event detection is its primary application. Detection is formulated
as a binary classification problem. Because manufacturing-derived data
sets for binary classification of quality tend to be highly/ultra-
unbalanced, PMQ-O, an MCS with the capacity to effectively analyze
these data structures, was developed.

PMQ-O is founded on a list of eight diverse MLAs, an ad hoc fitness
function (measure of classification performance), and a novel meta-
learning algorithm. This algorithm takes the prediction from a set of
classifiers as input, and determines which classifiers are reliable and
which are not, in predicting the final quality class. As per several
publicly available data sets, the meta-learning algorithm outperforms
widely used fusion rules because they do not adapt to the character-
istics of the data.
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Because PMQ-O improves prediction by determining the optimal
fusion rule from a set of classifiers, this development is a step forward in
the path of moving manufacturing processes to the next sigma level.

Future research along this path can focus on evaluating different
fitness functions for PMQ-O. This would allow for the proposed method
to generalize to other types of data structures and regression problems.
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