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Abstract
Spatial synchrony is a common characteristic of spatio‐temporal population dynam‐
ics across many taxa. While it is known that both dispersal and spatially autocor‐
related environmental variation (i.e., the Moran effect) can synchronize populations, 
the relative contributions of each, and how they interact, are generally unknown. 
Distinguishing these mechanisms and their effects on synchrony can help us to bet‐
ter understand spatial population dynamics, design conservation and management 
strategies, and predict climate change impacts. Population genetic data can be used 
to tease apart these two processes as the spatio‐temporal genetic patterns they 
create are expected to be different. A challenge, however, is that genetic data are 
often collected at a single point in time, which may introduce context‐specific bias. 
Spatio‐temporal sampling strategies can be used to reduce bias and to improve our 
characterization of the drivers of spatial synchrony. Using spatio‐temporal analyses 
of genotypic data, our objective was to identify the relative support for these two 
mechanisms to the spatial synchrony in population dynamics of the irruptive for‐
est insect pest, the spruce budworm (Choristoneura fumiferana), in Quebec (Canada). 
AMOVA, cluster analysis, isolation by distance, and sPCA were used to characterize 
spatio‐temporal genomic variation using 1,370 SBW larvae sampled over four years 
(2012–2015) and genotyped at 3,562 SNP loci. We found evidence of overall weak 
spatial genetic structure that decreased from 2012 to 2015 and a genetic diversity 
homogenization among the sites. We also found genetic evidence of a long‐distance 
dispersal event over >140 km. These results indicate that dispersal is the key mecha‐
nism involved in driving population synchrony of the outbreak. Early intervention 
management strategies that aim to control source populations have the potential to 
be effective through limiting dispersal. However, the timing of such interventions 
relative to outbreak progression is likely to influence their probability of success.
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Box 1 
The processes underlying large‐scale spatial synchrony in outbreaks of forest insect pests have fascinated population ecologists for 
centuries. Two central hypotheses have been proposed to describe these dynamics: (a) synchrony due to dispersal (i.e., the “epicenter 
hypothesis”); or (b) synchrony due to spatially correlated environmental conditions (i.e., the Moran effect). Distinguishing between these 
two processes can help us to better understand the spatial dynamics of population irruptions and is needed to develop effective early 
intervention strategies to mitigate the negative effects of pest outbreaks.
Spatio‐temporal analysis of geo‐referenced molecular markers offers a powerful tool to assess the relative weight of the two processes 
and to infer population dynamics over extensive geographic and temporal scales. This objective is nonetheless challenging because both 
the epicenter process and the Moran effect can lead to similar spatial genetic patterns when an outbreak is at or near its peak. Given the 
temporal contingency of outbreaks and the genetic patterns within and among populations, spatio‐temporal approaches to analyzing spa‐
tial genetic structure are required to assess the relative strength of these two processes in driving spatial synchrony. Here, we illustrate 
the hypothesized development of synchronous spatial genetic structure under these two processes.
The upper panel illustrates the development genetic structure under the epicenter hypothesis, and the lower panel illustrates the devel‐
opment genetic structure under the Moran effect, in a chronological order from the initiation of the outbreak to the peak phase (from 
left to right). Panel a1 (“epicenter”) shows three distinct populations, one of which is increasing in population density and spatial extent. 
The other two populations remain at a low density. In this case, we expect genetic structure to manifest as a gradient extending from the 
source population (i.e., the epicenter, panels b1 & c1) and significant isolation by distance. This rapidly spreading epicenter population can 
then subsume the other sites, effectively swamping out their genetic variation (d1) and leading to eventual panmixia (panel e1).
In contrast, panel a2 (“Moran effect”) shows three distinct populations that are each increasing in density and extent, presumably in response to 
regionally synchronous environmental conditions. Because each population's growth is independent and does not rely on dispersal from other 
populations, we expect the development of patchy genetic differentiation (panels b2, c2 & d2). Boundaries between populations become less 
clear as the outbreak progresses as a result of both the spatial expansion of the populations and dispersal among them (panel d2), leading to high 
levels of genetic admixture between populations (panel e2) and eventual panmixia. Genetic diversity at panmixia due to the Moran effect is (panel 
e2) expected to be higher than that due to the epicenter hypothesis (e1), due to the genetic contributions of multiple, versus a single, populations.
Using this framework, collection and analysis of spatial genetic data from multiple years can be used to distinguish between the processes 
underlying outbreak synchrony. However, successful identification of the dominant process requires that sampling occurs early enough 
during the outbreak, before panmixia is reached. After panmixia is reached (i.e., panels e1 and e2), the genetic legacy of the previous 
outbreak collapse may no longer be detectable. The specific rate at which these historical legacies in spatial genetic structure fade is 
likely a function of multiple demographic parameters such as effective population size, dispersal capacity, and genetic diversity within the 
population of interest. The precise roles of these factors remain to be further investigated.



     |  1933LARROQUE et al.

1  | INTRODUC TION

Spatial synchrony is the tendency of geographically separated pop‐
ulations to fluctuate in unison over large areas (Liebhold, Koenig, 
& Bjornstad, 2004) and is a common characteristic of spatio‐tem‐
poral population variability in many taxa (e.g., insects, Peltonen, 
Liebhold, Bjornstad, & Williams, 2002; Pollard, 1991; or mammals, 
Elton, 1942; Gouveia, Bjørnstad, & Tkadlec, 2016). Quantifying spa‐
tial synchrony and the mechanisms underlying it is important for 
improving our understanding of spatio‐temporal population dynam‐
ics (Liebhold et al., 2004), designing conservation strategies (Earn, 
Levin, & Rohani, 2000), informing management strategies that aim 
to mitigate outbreaks of pest (Régnière et al., 2001), and predicting 
the impacts of future climate change (Cornulier et al., 2013).

Two main contrasting theories have been proposed to explain 
synchrony in dynamics of spatially disjunct populations. In one the‐
ory, dispersal maintains regional synchrony owing to population flow 
from areas with relatively high population density to surrounding 
areas with low population density (Bjornstad, Ims, & Lambin, 1999; 
Liebhold et al., 2004). A second theory attributes spatial synchrony 
to spatially correlated environmental fluctuations across the land‐
scape (i.e., the Moran effect) (Bjornstad et al., 1999; Liebhold et 
al., 2004; Moran, 1953). These two mechanisms are not mutually 
exclusive, and their relative importance has been suggested to be 
scale dependant (Paradis, Baillie, Sutherland, & Gregory, 2000), with 
dispersal being the dominant mechanism at the local scale and envi‐
ronmental stochasticity prevailing at larger scales (Ranta, Kaitala, & 
Lundberg, 1998). Despite extensive empirical and theoretical works 
on spatial synchrony (Liebhold et al., 2004), teasing apart the rela‐
tive importance of these two processes can be difficult because they 
can both result in very similar patterns of spatial population dynam‐
ics (Kendall, Bjornstad, Bascompte, Keitt, & Fagan, 2000; Myers & 
Cory, 2013; Okland, Liebhold, Bjornstad, Erbilgin, & Krokene, 2005; 
Royama, MacKinnon, Kettela, Carter, & Hartling, 2005). Although 
dispersal is most often identified as the most likely explanation for 
synchrony (Franklin, Myers, & Cory, 2014; Noren & Angerbjorn, 
2014; Schwartz, Mills, McKelvey, Ruggiero, & Allendorf, 2002), the 
Moran effect has also been implicated (Peltonen et al., 2002).

Dispersal is the more difficult of the two mechanisms to directly 
quantify (Ims & Andreassen, 2005). Indirect approaches using popu‐
lation genetic information are increasingly used to measure dispersal 
(Broquet & Petit, 2009). Spatial analyses of geo‐referenced molec‐
ular markers can be used to assess genetic connectivity between 
populations and quantify the strength, spatial scale, and effective‐
ness of dispersal (Baguette, Blanchet, Legrand, Stevens, & Turlure, 
2013). Significant genetic differentiation between populations indi‐
cates low levels of gene flow and limited dispersal. In contrast, the 
absence of genetic differentiation indicates high levels of gene flow 
and a high degree of effective dispersal between populations.

In demographically complex outbreaking populations (i.e., pop‐
ulations with rapid change in population density), the strength and 
spatial scale of population genetic structure, as well as the inferences 
one can make regarding dispersal and spatial synchrony, can depend 

on the ecological context in which the data were collected (James 
et al., 2015). Here, ecological context can include standard drivers 
of spatial population genetic variation such as effective population 
size, generation time, and dispersal capacity (Charlesworth, 2009). 
Context can also include when during the outbreak cycle samples 
are collected. Samples collected during the endemic phase of an out‐
break, where distant populations experience limited genetic connec‐
tivity, are likely to express relatively strong genetic spatial structure. 
In contrast, samples collected near the peak of an outbreak may see 
their original structure muted owing to the dominant signature of 
individuals immigrating from high‐density populations (James et al., 
2015). Temporally explicit approaches to measuring spatial genetic 
structure are needed to better understand the spatial dynamics of 
outbreaking populations.

Although the two synchrony‐inducing mechanisms referred to 
above can be difficult to distinguish on the basis of spatial patterns 
alone, we expect their spatio‐temporal patterns to be unique (Box 
1). Spatio‐temporal strategies that monitor changes in genetic di‐
versity (Devillard, Santin‐Janin, Say, & Pontier, 2011) and evaluate 
how genetic differentiation between populations changes through 
time (Hoffman, Schueler, & Blouin, 2004) can be used to help us 
understand the underlying processes. When dispersal is driving 
synchrony, one expects to observe the spatial spread resulting in a 
genetic gradient. When the Moran effect is driving synchrony, one 
expects patchy genetic differentiation as a result of the independent 
growth of each population, with the boundaries among populations 
becoming less clear as the outbreak progresses (Box 1). Thus, an ex‐
plicitly temporal approach allows one to overcome the limitations of 
the single snap‐shot approach commonly used in population genet‐
ics (Draheim, Moore, Fortin, & Scribner, 2018; Tessier & Bernatchez, 
1999). However, spatio‐temporal population genetics studies of ir‐
ruptive populations remain scarce in the literature (but see Berthier, 
Charbonnel, Galan, Chaval, & Cosson, 2006; Rikalainen, Aspi, 
Galarza, Koskela, & Mappes, 2012).
The spruce budworm (SBW; Choristoneura fumiferana Clemens) pro‐
vides an excellent example of spatially synchronous population dy‐
namics. The SBW is a univoltine native lepidopteran that periodically 
outbreaks (every ~35 years) and defoliates large areas (>106 ha) of 
balsam fir (Abies balsamea (L.) Mill) and spruce (Picea spp.) forests in 
North America (Royama, 1984). SBW populations exhibit both local 
epicentric growth (Greenbank, Schaefer, & Rainey, 1980; Hardy, 
Lafond, & Hamel, 1983) and regional‐scale synchronization (up to 
500,000 km2) during outbreaks (Royama, 1984). The resulting eco‐
nomic consequences for forest industries and forestry‐dependent 
communities are severe (Chang, Lantz, Hennigar, & MacLean, 2012).

Large‐scale spatial synchrony of SBW outbreaks is a common 
feature in North American forests, particularly in the eastern part 
of its range (Blais, 1983; Pureswaran, Johns, Heard, & Quiring, 2016; 
Williams & Liebhold, 2000). However, despite a century of research, 
there remains opportunity to improve our understanding of these 
large‐scale population processes, including how dispersal contrib‐
utes to spatial synchrony (Anderson & Sturtevant, 2011; James et 
al., 2015; Myers & Cory, 2013; Pureswaran et al., 2016).
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In this paper, we use multi‐year spatial genetic data, covering 
the extent of an ongoing SBW outbreak, to investigate the spatial 
processes involved in synchronous outbreak dynamics. Specifically, 
we investigate whether outbreaking populations are synchronized 
as a result of (a) exposure to a common regional disturbance (i.e., 
the Moran effect, Moran, 1953; Royama et al., 2005) resulting in 
demographically independent populations and thus, high levels of 
population genetic differentiation (Box 1); or (b) dispersal of adults 
moths (i.e., the "epicenter hypothesis," Hardy et al., 1983; Peltonen 
et al., 2002; Williams & Liebhold, 2000) leading to low genetic dif‐
ferentiation among populations (Box 1). We also assess how the 
relative support for these two hypotheses evolved over a 4‐year 
period. Distinguishing between the epicenter and Moran hypothe‐
ses is critical for large‐scale forest management strategies against 
the SBW in Canada and the United States (Pureswaran et al., 2016).

2  | MATERIAL S AND METHODS

2.1 | Study area

The study was conducted in the boreal and mixed‐boreal for‐
est (Rowe, 1972) in Quebec, Canada (398,000  km2, Figure 1). In 

2006, a new outbreak was detected on the north shore of the Saint 
Lawrence River in Quebec (Bouchard & Auger, 2014). Since then, the 
area affected has increased to >8.2 million ha in Quebec (Ministère 
des Forêts, de la Faune et des Parcs [MFFP], 2018) and is currently 
moving toward other jurisdictions (e.g., New Brunswick and Maine, 
where larvae densities are still low) to the south. Spruce budworm 
larvae were collected over a 2‐week period in June, from 25 loca‐
tions in 2012 (n = 527), 14 locations in 2013 (n = 420), 17 locations in 
2014 (n = 260), and 10 locations in 2015 (n = 163). In 2012, sites were 
selected to cover all the outbreak patches. Not all sites were identi‐
cal from one year to the next. Some sites were discarded due to low 
larvae density or trouble accessing the site, but close (i.e., <10 km) 
replacement sites were selected when possible. When substitute 
sites were selected, we considered the original and the substitute 
site to be a single site through time (Table S1).

Each year, we sampled only larvae (no moths) from all defoliated 
zones to ensure that all individuals were associated with their site 
and the possibility of migrants from outside the study area would 
not affect the results. Many sites were sampled successively in all 
years, whereas some were sampled for only a single year (Figure 1). 
Larvae were collected on live foliage from branch tips (Dobesberger 
& Lim, 1983) on both spruce and fir when they were both present at 

F I G U R E  1  Spruce budworm distribution range, study area, and sampling sites. Sites sampled in (a) 2012; (b) 2013; (c) 2014; and (d) 2015 
are represented by points whose size is proportional to the site's sample size (n). Spruce budworm distribution range (adapted from Picq et 
al., 2018) is displayed in orange, and defoliation areas observed the year of sampling are represented in gray
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the site. Multiple branches from multiple trees were sampled from 
each site to reduce the probability of sampling related individuals 
from the same clutch. Larvae were transported on branches in paper 
bags and were reared in the laboratory on synthetic diet (McMorran, 
1965) until moth eclosion. Emerging moths were placed into 1.5‐mL 
tubes and stored at −80°C until DNA extraction. Genomic DNA was 
extracted from 6 to 33 individuals per site (total of 1,370 individuals) 
using the Qiagen DNA Blood and Tissue Kit.

2.2 | Sequencing

All DNA samples were prepared for genotyping‐by‐sequencing 
(GBS, Elshire et al., 2011) using the methods described in Brunet 
et al. (2017). PstI‐MspI GBS libraries (96 plex) were prepared 
by the Institut de Biologie Intégrative et des Systèmes (IBIS) at 
Université Laval (Quebec City, QC) using the protocol of Poland, 
Brown, Sorrells, and Jannink (2012). Following final amplification 
of the pooled, adapter‐ligated restriction fragments, 600  ng of 
each amplified library was normalized to remove the repetitive 
fraction by treatment with duplex‐specific nuclease (Zhulidov 
et al., 2004). Finally, an additional PCR step using a selective re‐
verse primer extending a single base (C) into the insert past the 
3′ restriction site was used to selectively amplify one‐quarter 
of the total number of fragments, thereby increasing the read 
depth of sequenced fragments (Sonah et al., 2013). Single‐end 
sequencing (100 bp reads) of these libraries was then performed 
with an Illumina HiSeq2000 (McGill University‐Génome Québec 
Innovation Centre, Montreal, QC).

Bioinformatic processing of reads was performed using the 
Fast‐GBS pipeline (Torkamaneh, Laroche, Bastien, Abed, & Belzile, 
2017). The Fast‐GBS pipeline includes demultiplexing, trimming, 
mapping, and variant calling steps to process genotyping‐by‐se‐
quencing samples and provide highly accurate genotyping. This 
pipeline has been shown to yield the highest accuracy compared 
to the other pipelines (Torkamaneh, Laroche, & Belzile, 2016). After 
demultiplexing and adapter trimming, reads less than 50 bp were 
discarded. A total of 4.162 gigabases of reads were aligned on the 
spruce budworm reference genome (bw6 version, Dupuis et al., 
2017; Picq et al., 2018). Alignment of 3.141 gigabases of reads was 
performed using the Burrows–Wheeler Aligner (BWA, Li & Durbin, 
2010) with the mem algorithm and yielded a 75% mapping suc‐
cess. SNP calls were made as part of the Fast‐GBS pipeline using 
Platypus (v0.8.1, Rimmer et al., 2014). Minimum read depth was set 
to eight reads. Only bi‐allelic SNPs, with a maximum of 50% missing 
genotypes throughout all samples, were retained. Individuals with 
more than 50% missing genotypes were removed. Finally, as some 
methods cannot handle missing data, missing genotypes were im‐
puted using the software BEAGLE (v3.3.2, Browning & Browning, 
2016) which replaces missing genotypes with the most frequently 
observed genotype associated with proximal SNP loci. Variants 
with R2 (i.e., imputation accuracy) <.4 were removed as advised by 
Browning and Browning (2016).

2.3 | Filtering SNP loci

SNPs with a minor allele frequency (MAF) <5% were removed to ex‐
clude putative sequencing errors and keep only the most informative 
SNPs (Marees et al., 2018). Similarly, SNPs in high linkage disequilib‐
rium (LD) at a threshold of r2 ≥  .2 were discarded to remove highly 
correlated variants that add minimal extra information and could 
overly influence some methods (Price et al., 2008; Zou, Lee, Knowles, 
& Wright, 2010), using the snpgdsLDpruning function of the SNPRelate 
package (Zheng et al., 2012) in R (R Core Team, 2017). SNPs showing 
deviation from expected Hardy–Weinberg equilibrium (HWE) in more 
than 15% of the sites were also removed as deviation from HWE can 
be indicative of genotyping errors (Anderson, Epperson, et al., 2010; 
Anderson, Pettersson, et al., 2010), null alleles (Brookfield, 1996), 
or selection (Wittke‐Thompson, Pluzhnikov, & Cox, 2005). HWE 
was calculated using the hw.test function of the pegas package in R 
(Paradis, 2010) and using a Bonferroni correction for multiple com‐
parisons. Finally, as our aim was to quantify the neutral evolutionary 
process of gene flow, we removed all SNPs identified as potentially 
under selection (Beaumont & Nichols, 1996) using the pcadapt func‐
tion of the pcadapt package in R (Luu, Bazin, & Blum, 2017).

2.4 | Genetic diversity

For each site and for each year, we calculated observed (Ho) and 
expected (He, heterozygosity expected under Hardy–Weinberg 
equilibrium that accounts for both the number and the evenness of 
alleles) heterozygosity, rarefied allelic richness (Ar, El Mousadik & 
Petit, 1996), inbreeding coefficient (Fis), and total number of alleles 
(n.all) using the hierfstat R package (Goudet & Jombart, 2015). The 
degree of structuring between subpopulations (Fst) was computed 
within each year also using hierfstat.

2.4.1 | Inter‐individual genetic distances

We calculated inter‐individual genetic distances using principal com‐
ponents analysis (PCA). We first created multiple principal compo‐
nents (PC) using a matrix of allele occurrence (0, 1, or 2) using adegenet 
(Jombart, 2008) and then derived a distance matrix from the Euclidean 
distances between individuals in the multidimensional space created 
by the first 64 PC axes (Shirk, Landguth, & Cushman, 2017).

2.5 | Spatio‐temporal genetic variation

To examine the effects of space (sampling sites) and time (year of 
sampling) on patterns of genetic variation, we conducted a per‐
mutation‐based multivariate analysis of variance using the func‐
tion adonis of the vegan package (Oksanen et al., 2017) in R. This 
method partitions sum of squares for distance matrices in a manner 
similar to AMOVA, but allows for both nested and crossed factors. 
We tested for the effects of space (sampling sites) and time (year 
of sampling) as crossed factors on the matrix of individual genetic 
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distances. Statistical significance was assessed using 9,999 permuta‐
tions. Given the signal of temporal variability observed (see Results), 
subsequent analyses were done for each year separately.

As the number of sites and the number of individuals sampled 
per site varied among years, we performed a rarefied bootstrap to 
standardize for the minimum number of sites per year and the mini‐
mum number of individuals per site to ensure that there was no bias 
due to the unbalanced sampling. We subsampled the data keeping 
only 10 sites per year and 8 individuals per site and performed the 
AMOVA. We repeated this procedure 9,999 times.

2.6 | Clustering

If populations are not connected, their growth will be independent 
as it does not rely on dispersal from other populations. In this case, 
we expect individuals to cluster into genetic groups that corre‐
spond to geographic provenance. We searched for genetic groups 
using discriminant analysis of principal components (DAPC) im‐
plemented in the adegenet (Jombart, 2008) package in R. DAPC 
maximizes differences among clusters while minimizing variation 
within. DAPC does not rely on a particular population genetic 
model, such as Hardy–Weinberg equilibrium, which is unrealistic 
for outbreaking populations (Whitlock, 1992). For each year, we 
applied the function find.clusters to determine the number of po‐
tential clusters. Minimization of a Bayesian information criterion 
(BIC) was used to identify the most probable number of clusters 
(K) present in the data. DAPC provides membership probabilities 
to these clusters for each individual, which we examined for geo‐
graphic structure.

2.7 | Isolation by distance

If populations are connected through dispersal, then the genetic 
similarity between two populations is a function of the geographical 
distance between them. Consequently, genetic and geographic dis‐
tances are expected to be correlated (i.e., isolation by distance, IBD; 
Wright, 1943). We tested for IBD by testing the correlation between 
genetic distance and the geographic Euclidean distance between all 
pairs of individuals. Significance of the correlation between the two 
distance matrices was assessed by carrying out a Mantel test using 
the mantel.randtest function of the ade4 (Dray & Dufour, 2007) R 
package with 9,999 permutations.

2.8 | Cryptic spatial structure

When populations exchange individuals, they tend to become ge‐
netically similar. The integration of geographic and genetic infor‐
mation can improve our ability to identify weakly differentiated 
populations and can provide accurate spatial locations of cryptic 
clusters or genetic barriers (Storfer et al., 2007). Given the weak 
overall structure (i.e., clusters and IBD; see below), we also tested 
for cryptic spatial genetic structure within each year using spatial 
principal component analysis (sPCA; Jombart, Devillard, Dufour, & 
Pontier, 2008). This spatially explicit multivariate method employs 
Moran's index (I) of spatial autocorrelation (Moran, 1948) to detect 
global structures (Jombart et al., 2008). We used the spca func‐
tion implemented in the adegenet (Jombart et al., 2008) R package. 
We used the inverse distance method for weighting connectivity 
in the network, given that: (a) Sampling sites were unevenly spread 
over the study area; (b) we had no a priori hypothesis about their 
connectivity. Significance was assessed using permutation test 
(n  =  9,999) (Jombart et al., 2008). The individuals’ scores of the 
first principal component were geographically mapped and inter‐
polated to reveal spatial patterns of interest.

3  | RESULTS

3.1 | Genotyping

Sequence processing through the fast‐GBS pipeline (Torkamaneh 
et al., 2017) resulted in 73,960 high‐quality SNPs (mean read 
depth ± SD = 3,018 ± 19,214 – range: 8–1,352,493, mean fraction of 
missing genotype per SNP ± SD = 0.68 ± 0.32). These SNPs were identi‐
fied using 1,228 individual larvae (n2012 = 464, n2013 = 386, n2014 = 223, 
n2015  =  155) that satisfied the missing genotype criterion (<50%; 
mean fraction of missing genotype per individual ± SD = 0.22 ± 0.19). 
Most SNPs (73,489; 99.4%) had at least one missing genotype 
which was then imputed (mean fraction of missing genotype per 
SNP ± SD = 0.17 ± 0.15; range = 0–0.49; Figure S1) and 0.7% (480) 
of imputed SNPs were removed when filtering for R2. Many SNPs 
(69,045; 94%) were discarded when filtering for MAF and LD. Of the 
remaining SNPs, 4.1% (182) deviated from HWE in more than 15% of 
the sampling sites. About 16% (691) of the remaining SNPs were de‐
tected as potentially under selection and removed. In total 3,562 SNPs 
met our strict selection criteria and were retained for final analysis.

TA B L E  1  Annual summary of sampling sites. Annual (±SD) sample size (n), observed heterozygosity (Ho), expected heterozygosity (He), 
allelic richness (Ar), total number of alleles (n.all), and inbreeding coefficient (Fis) averaged over all sites of a given year. Global Fst and mean 
inter‐site Euclidean distance (Dintersite in km) computed for each year are also shown

Year n Ho He Ar n.all Fis Fst Dintersite

2012 464 0.168 ± 0.013 0.207 ± 0.011 1.721 ± 0.040 6,705 ± 352 0.168 ± 0.022 0.0046 273 ± 241

2013 386 0.184 ± 0.016 0.217 ± 0.007 1.762 ± 0.016 7,039 ± 58 0.148 ± 0.045 0.0020 299 ± 250

2014 223 0.169 ± 0.007 0.211 ± 0.009 1.736 ± 0.026 6,645 ± 159 0.170 ± 0.012 0.0023 285 ± 230

2015 155 0.171 ± 0.006 0.216 ± 0.007 1.752 ± 0.015 6,794 ± 107 0.180 ± 0.016 0.0022 424 ± 262
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3.2 | Genetic diversity

Over the four years of sampling, average observed heterozygosity 
(Ho) was 0.172 (±0.013) and average expected heterozygosity (He) 
was 0.211 (±0.011), with a mean allelic richness per locus (Ar) of 
1.738 (±0.033). The total number of alleles (n.all) was 6,774 (±274), 
and the inbreeding coefficient (Fis) was 0.166 (±0.028). He, Ho, Ar, 
n.all, and Fis varied through time (Table 1, Figure S2). Global Fst re‐
mained low for all years examined (0.002–0.0046; Table 1). Detailed 
information per year and per sampling site can be found in the 
Supporting Information (Table S1).

We found that He varied spatially and temporally (Figure 2). In 
2012, western sites showed low He values while eastern sites showed 

a mix between high and low He values (Figure 2a). From 2013 to 2015, 
He was higher and more homogeneously distributed (Figure 2a–d).

3.3 | Spatio‐temporal genetic variation partitioning

Using a permutation‐based multivariate analysis of variance, we 
found a significant interaction effect among years and sites (F25, 
1,162 = 1.32, p < 10

–4; Table 2) on spruce budworm genetic variation. 
The rarefied bootstrap approach showed that with a standardized 
number of sites per year and number of individuals per site, the ef‐
fect of the year and the site were significant in 100% of the 9,999 
replications. The effect of the interaction was significant in 70% of 
the replications. This indicates that the processes generating spatial 

F I G U R E  2  Expected heterozygosity (He) for each sampling site in (a) 2012; (b) 2013; (c) 2014; and (d) 2015. Heterozygosity generally 
increased as the outbreak progressed (Table 1). The color gradient is proportional to the He level with the lowest values in blue and the 
highest in red
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  df SS MS F value R2 p

Year 3 1518 505.89 15.11 .034 <10–4

Site 37 2,149 58.09 1.73 .049 <10–4

Year × site 25 1,106 44.25 1.32 .025 <10–4

Residuals 1,162 38,917 33.49      

Total 1,227 43,691        

Abbreviations: MS, mean square; SS, sum of squares.

TA B L E  2  Permutation‐based 
multivariate analysis of variance to 
determine the percentage of variance 
explained by the effects of sampling sites, 
year of sampling and their interaction on 
the matrix of PCA‐based genetic distance. 
Significance was assessed using 9,999 
permutations
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genetic structure were dynamic, rather than static, over the four 
years we analyzed. Consequently, analyses were undertaken for 
each year separately (Figures 2, 4, and 5).

3.4 | Clustering

Using DAPC, a BIC minimum was observed for K = 2 for 2012 sup‐
porting two genetic clusters (Figure S3). Genetic structure between 

these two clusters was weak (Fst = 0.007) but significant (p < 10–3). 
The two clusters initially identified in 2012 were no longer present 
from 2013 to 2015; instead, K = 1 had the greatest support (Figure 
S3). We found some evidence for geographic structure within the 
two clusters in 2012 (Figure 3b). Southwestern sites were mostly 
composed of individuals belonging to the same genetic cluster, 
whereas northeastern sites were composed of a mixture of individu‐
als assigned to both clusters. Using a subsample of 150 individuals 

F I G U R E  4   Isolation by distance 
(IBD) plots for each year. Scatterplots 
show the relationship between inter‐
individual genetic distances (PCA‐based 
genetic distance, Shirk et al., 2017) 
and geographic distances to test for 
the presence of IBD in (a) 2012; (b) 
2013; (c) 2014; and (d) 2015. Colors 
represent the relative density of points, 
with warmer colors indicating higher 
densities, while the dashed line shows 
the linear regression between the two 
distance matrices. The Mantel coefficient 
of correlation between geographic 
and genetic distances, as well as the 
associated p‐value, is shown for each year
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F I G U R E  3   (a) Assignment of 2012 
(the only year with a clear signal for K = 2) 
individuals by the discriminant analysis of 
principal components (DAPC) to the two 
(blue and gray) genetic clusters (pairwise 
Fst = 0.007) and (b) map of sampling 
sites illustrating membership to the two 
identified genetic clusters. Sampling sites 
less than 40 km apart were merged to 
increase visibility (original figure can be 
found in Figure S7)
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that had been sexed, we verified that the clustering was not based 
on sex (not shown).

3.5 | Isolation by distance

For all years examined, we found no evidence for significant individ‐
ual‐level IBD (all p = 1, Figure 4). The point density for 2012 showed 
two clusters of individuals with the same level of genetic differen‐
tiation, suggesting the presence of two populations that seemed to 
be genetically distinct (Figure 4a), which supports our clustering re‐
sult described above. These clusters were no longer present from 
2013 to 2015 (Figure 4b–d) and the variance of the genetic distance 
decreased, suggesting a genetic homogenization as the outbreak 
progressed.

3.6 | Cryptic spatial structure

We identified significant global cryptic spatial structure for each 
year (all p ≤ .01). However, the first positive eigenvalue, which repre‐
sents global spatial genetic structure, decreased in magnitude from 

2012 to 2015 compared to the other eigenvalues (Figure S4), indi‐
cating a genetic homogenization over the years. The scores of the 
first positive eigenvalue have been interpolated and displayed on the 
area map (Figure 5).

In 2012, our results regarding global structure indicated that 
individuals belonged to two genetically homogeneous clusters, one 
large cluster distributed all over the study area, and a second one 
only present at the northeast (Figure 5a). Individuals on the south 
shore of the Saint Lawrence River belonged to the more extensive 
genetic cluster and were different from the nearest individuals of the 
north shore. In 2013 (Figure 5b), we found clinal variation from west 
to east, with the notable exception of a group of individuals at the 
east that were similar to some western individuals. In 2014, the first 
positive eigenvalue revealed a complex pattern. Two genetic clus‐
ters were found with no clear geographical delimitation (Figure 5c). 
One cluster was spread all over the study area while the smaller one 
showed a patchy distribution, with most of its individuals located in 
the center and east of the study area. Individuals on the south shore 
of the Saint Lawrence River were assigned to both clusters. The pat‐
tern found in 2015 was similar to that of 2014 (Figure 5d).

F I G U R E  5   Interpolated spatial genetic structure through time, based on sPCA. Spatial interpolation of individual scores according to the 
first positive eigenvalue of the sPCA in (a) 2012; (b) 2013; (c) 2014; and (d) 2015. Significance was assessed using 9,999 permutations. The 
color gradient indicates the degree of difference between individuals. Maximum differentiation is between dark blue and red. The extent of 
the interpolated region was defined as the concave hull polygon encompassing all the sampling sites for a given year with an external buffer 
of 5 km. Sampling sites are represented by points whose size is proportional to the site's sample size (n)
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4  | DISCUSSION

Spatial synchrony is a fundamental but poorly understood, com‐
ponent of spatial population dynamics. Regionally, synchronous 
population fluctuations can be caused by dispersal or spatially 
correlated environmental conditions (Moran, 1953; Peltonen et 
al., 2002; Ranta, Kaitala, Lindstrom, & Helle, 1997; Ranta, Kaitala, 
Lindstrom, & Linden, 1995; Royama, 1984), although in general, 
we do not know the relative importance of each of these factors 
and how they vary through space and time (Liebhold et al., 2004). 
Distinguishing these mechanisms and their effects on synchrony 
can help us to better understand spatial population dynamics, de‐
sign conservation, and management strategies, and predict climate 
change impacts.

In 2006, a new SBW outbreak was detected on the north shore 
of the Saint Lawrence River that has since spread to over 8 mil‐
lion hectares in size. Using 4  years of genetic data covering the 
majority of the outbreak area (i.e., 398,000 km2), we quantified 
temporal changes in spruce budworm spatial genetic structure 
and estimated gene flow through space and time. Our goal was 
to use spatial genetic information to better understand the rela‐
tive importance of dispersal to spatial outbreak synchrony (Box 1) 
and to contribute to improved budworm management. We found 
evidence for fast genetic admixture, long‐distance dispersal, and 
increases in genetic diversity. Together, these findings suggest a 
more important role of dispersal relative to autocorrelated envi‐
ronmental variation in the spatial synchrony of this species during 
an outbreak.

4.1 | Spatio‐temporal connectivity in SBW

Disentangling the effects of epicenter and Moran processes on spa‐
tially synchronous SBW population dynamics is challenging because 
both processes can lead to similar genetic patterns when the out‐
break is at or near its peak (Box 1). We found greater support for the 
epicenter hypothesis for the period covered by this study. In 2012, a 
single genetic cluster was found over the entire study area whereas 
a second one was restricted to a smaller region in the northeast, 
overlapping with the first cluster (Figures 3‒5). We interpret these 
results to indicate that an isolated population, possibly the legacy of 
the previous outbreak collapse (James et al., 2015) (i.e., the larger 
cluster), expanded to encompass a second population (i.e., the sec‐
ond, smaller cluster). This process of an initial isolated population 
expanding via dispersal fits the pattern expected from an epicentric 
population dynamic (Box 1).

We cannot entirely reject the possibility that the first cluster 
may have been present before the outbreak and the small cluster 
represents immigrants from outside the study area. However, we 
collected samples from all defoliation zones (Figure 1) to minimize 
the possibility that migrants from outside the study area could affect 
our results. Additionally, temporal patterns in defoliation surveys 
(Figures S6 and S8, Ministère des Forêts, de la Faune et des Parcs 
[MFFP] 2018), and the spatial extent of historical defoliation support 

the first of our proposed explanations (Brown, 1970). That is, defo‐
liation was first observed in the western part of Quebec, further in‐
dicating that dispersal from this area to the east may account for the 
observed topological complexity in spatial genetic structure. If the 
Moran effect was the dominant processes in the outbreak spread, 
eastern and western populations would have grown simultaneously 
(Box 1) and one would expect eastern individuals to form a distinct 
group. Instead, eastern individuals are found together with western 
individuals in the east. This suggests that individuals dispersed from 
the western part of the province at the beginning of the outbreak, 
that is, the outbreak epicenter, and settled in the east, providing sup‐
port for the epicenter hypothesis. Such directional dispersal could 
have significant effects on the development and persistence of 
spatial genetic structure of highly mobile species such as the SBW, 
although little is known about how to accurately capture spatial ge‐
netic patterns generated in this way.

The decline in the strength of spatial genetic structure from 
2012 to 2015 (Figure 5, Figures S3 and S4) also supports the im‐
portance of dispersal to outbreak synchrony. The important role 
of dispersal is also illustrated by rapid homogenization of genetic 
diversity (e.g., He). Although He was spatially clustered in 2012, 
from 2013 to 2015 He became increasingly homogeneously 
distributed.

4.2 | Long‐distance dispersal

Rapid change in SBW genetic composition on the south shore be‐
tween 2012 and 2014 indicates long‐distance dispersal and suc‐
cessful establishment; that is, the eggs laid by dispersing females 
successfully hatched (Figure 5). Previous studies have shown that 
SBW moths can disperse up to 20  km with a maximum recorded 
passive dispersal distance of 450 km (Greenbank et al., 1980). More 
recently, Boulanger et al. (2017) documented a mass dispersal over 
more than 200  km in 2013 from the north to the south shore of 
the Saint Lawrence River using weather surveillance radar data. 
Although our ability to infer source populations and dispersal ca‐
pacity is somewhat constrained by the limited genetic structure we 
observed (Muirhead et al., 2008), we have demonstrated for the first 
time that long‐distance dispersal events result in successful estab‐
lishment, and hence can be considered as effective dispersal.

Long‐distance dispersal is common in Lepidoptera (Showers, 
1997) and has a disproportionately high influence on gene flow and ge‐
netic structure (Clobert, Baguette, Benton, Bullock, & Ducatez, 2012; 
Jordano, 2017). It can connect disparate populations, allowing for 
genetic connectivity and range expansion (Baguette & Schtickzelle, 
2006; Ronce, 2007; Trakhtenbrot, Nathan, Perry, & Richardson, 
2005). Comparative studies suggest that species that can disperse 
farther tend to be synchronized over larger areas (Paradis, Baillie, 
Sutherland, & Gregory, 1999; Sutcliffe, Thomas, & Moss, 1996). In 
SBW, several long‐distance mass exodus flights of millions of indi‐
viduals have been observed (Boulanger et al., 2017; Dickison, 1990; 
Greenbank et al., 1980; Sturtevant et al., 2013). Such events have the 
potential to initiate new epicenters (Clark, 1979) and to synchronize 
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the dynamics of different SBW populations over large geographic 
areas (Muenkemueller & Johst, 2008; Peltonen et al., 2002). In their 
study, Bouchard, Régnière, and Therrien (2017) suggested that dis‐
persal may play a prevalent role in SBW outbreak synchrony once 
outbreak levels have been reached. Through the growing phase of 
the outbreak, long‐distance dispersal events may have contributed to 
the observed genetic admixture and may still be contributing to the 
spread of the outbreak over a large territory in Quebec and adjacent 
provinces and U.S. states (e.g., New Brunswick and Maine).

4.3 | The challenge of cyclic populations

The application of population genetic approaches to the study of 
cyclic species is challenging because of frequent deviations from 
theoretical predictions due to highly variable population dynamics 
and dependence on ecological context (James et al., 2015). The ob‐
served decline in spatial genetic structure through time with out‐
break spread fits well with the predictions of James et al. (2015) that 
spatial genetic structure decreases as the outbreak spreads and con‐
nectivity increases. These results indicate that temporal approaches 
are needed to characterize the role of population periodicity on the 
spatial patterns in neutral genetic variation (Box 1).

Spatial patterns of genetic diversity are the result of multiple 
factors that interact through space and time. Molecular studies 
usually present a single snap‐shot description of spatial genetic 
structure, assuming temporal stability (Draheim et al., 2018; Tessier 
& Bernatchez, 1999). It is increasingly recognized that temporal as‐
pects matter in population genetics but also in landscape genetics 
studies (Anderson, Epperson, et al., 2010; Anderson, Pettersson, 
et al., 2010; Martensen, Saura, & Fortin, 2017; Skoglund, Sjodin, 
Skoglund, Lascoux, & Jakobsson, 2014). However, the utility of 
temporal approaches in molecular studies of wild populations has 
mostly been limited to the comparison of historical and contem‐
porary samples (Ruggeri et al., 2012). We have demonstrated here 
that temporal sampling can be used to identify the relative impor‐
tance of dispersal and Moran effect in the regulation of outbreak 
synchrony. However, the spatial genetic structure of noncyclic pop‐
ulations can also quickly evolve in connection with the functional 
connectivity as landscape and environmental conditions change. For 
instance, Watts et al. (2015) showed that a decrease in snowpack is 
associated with reduced colonization and less gene flow in boreal 
chorus frogs (Pseudacris maculata). Time‐structured data thus offer 
a new dimension of information that enables identification and bet‐
ter understanding of demographic changes. Such temporal analysis 
can also highlight the risks of failing to consider temporal variability 
when inferring population demographic parameters (e.g., disper‐
sal capacity) on the basis of a static assessment of spatial genetic 
structure. Temporal investigations of the spatial genetic structure 
of cyclic and noncyclic species could be instructive in improving our 
understanding of how their dynamics are influenced by changes in 
functional connectivity, that is, by changes in their habitat condi‐
tions, an increasingly important issue given the fast environmental 

changes induced by global warming and the loss and fragmentation 
of habitat (Fahrig, 2003).

4.4 | Conclusion

Through novel spatio‐temporal analysis of genetic data, we found 
support for the epicenter hypothesis as the central driver of syn‐
chronous SBW dynamics in Quebec. We also found evidence for 
long‐distance dispersal (>140 km), which indicates that SBW moths 
can not only travel large distances (e.g., Greenbank et al., 1980), but 
can also successfully reproduce at landing sites. Knowledge of the 
importance of effective dispersal to outbreak synchrony is essential 
to the development and implementation of “early intervention” for‐
est management strategies (Régnière et al., 2001) that aim to miti‐
gate forest losses due to defoliation.

In Quebec, SBW populations are currently well connected 
and exhibit genetic panmixia. Such panmixia poses a challenge to 
forest managers seeking to contain the spread of SBW outbreaks 
from Quebec into other areas, such as Atlantic Canada. Early in‐
tervention strategies (Pureswaran et al., 2016) entail suppressing 
global population growth by finding and treating emerging local 
“hot spots.” One of the key factors contributing to hot spots in 
currently unaffected areas is moths’ dispersal from Quebec. 
Using genetic data, our study further confirms that SBW moths 
can disperse very long distances (e.g., Boulanger et al., 2017; 
Greenbank et al., 1980). In addition, we also demonstrate that this 
dispersal contributes to local population growth; that is, disper‐
sal is “effective.” However, it remains to be seen whether the de‐
mographic impact of dispersers can overwhelm control efforts in 
areas, especially in relatively low density areas where populations 
have yet to establish. Characterization of dispersal and, in partic‐
ular, the frequency distribution of the dispersal distances, could 
help to better delineate the range and distribution of dispersing 
moths throughout a region, which could help to guide survey ef‐
forts for both population studies and control efforts.

Our ability to distinguish between different drivers of outbreak 
synchrony will vary depending on the characteristics of the species 
being studied. For example, our approach may be sensitive to spe‐
cies‐specific factors such as effective population size, generation 
time, dispersal capacity, outbreak frequency, and landscape hetero‐
geneity, as all of these factors influence the spatial distribution of 
genetic variation (Gauffre et al., 2015; Landguth et al., 2010; Row, 
Wilson, & Murray, 2016). Further exploration of the temporal dynam‐
ics of spatial genetic structure during population outbreaks under 
different contexts remains a promising avenue for future research. 
Simulation‐based approaches using spatially explicit demo‐genetic 
models (e.g., Nemo, Guillaume & Rougemont, 2006; or CDMetaPOP, 
Landguth, Bearlin, Day, & Dunham, 2017) hold great promise to iso‐
late and quantify the relative effects of these different factors on 
the development of spatial genetic structure and spatial synchrony, 
and to refine our understanding of what drives these large‐scale spa‐
tial ecological phenomena.
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