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Abstract
Spatial	synchrony	is	a	common	characteristic	of	spatio‐temporal	population	dynam‐
ics	 across	many	 taxa.	While	 it	 is	 known	 that	 both	dispersal	 and	 spatially	 autocor‐
related	environmental	variation	(i.e.,	the	Moran	effect)	can	synchronize	populations,	
the	 relative	 contributions	of	 each,	 and	how	 they	 interact,	 are	 generally	 unknown.	
Distinguishing	these	mechanisms	and	their	effects	on	synchrony	can	help	us	to	bet‐
ter	understand	spatial	population	dynamics,	design	conservation	and	management	
strategies,	and	predict	climate	change	impacts.	Population	genetic	data	can	be	used	
to	 tease	 apart	 these	 two	 processes	 as	 the	 spatio‐temporal	 genetic	 patterns	 they	
create	are	expected	to	be	different.	A	challenge,	however,	 is	 that	genetic	data	are	
often	collected	at	a	single	point	in	time,	which	may	introduce	context‐specific	bias.	
Spatio‐temporal	sampling	strategies	can	be	used	to	reduce	bias	and	to	improve	our	
characterization	of	the	drivers	of	spatial	synchrony.	Using	spatio‐temporal	analyses	
of	genotypic	data,	our	objective	was	to	identify	the	relative	support	for	these	two	
mechanisms	 to	 the	 spatial	 synchrony	 in	 population	 dynamics	 of	 the	 irruptive	 for‐
est	insect	pest,	the	spruce	budworm	(Choristoneura fumiferana),	in	Quebec	(Canada).	
AMOVA,	cluster	analysis,	isolation	by	distance,	and	sPCA	were	used	to	characterize	
spatio‐temporal	genomic	variation	using	1,370	SBW	larvae	sampled	over	four	years	
(2012–2015)	and	genotyped	at	3,562	SNP	loci.	We	found	evidence	of	overall	weak	
spatial	genetic	structure	that	decreased	from	2012	to	2015	and	a	genetic	diversity	
homogenization	among	the	sites.	We	also	found	genetic	evidence	of	a	long‐distance	
dispersal	event	over	>140	km.	These	results	indicate	that	dispersal	is	the	key	mecha‐
nism	 involved	 in	 driving	population	 synchrony	of	 the	outbreak.	 Early	 intervention	
management	strategies	that	aim	to	control	source	populations	have	the	potential	to	
be	 effective	 through	 limiting	dispersal.	However,	 the	 timing	of	 such	 interventions	
relative	to	outbreak	progression	is	likely	to	influence	their	probability	of	success.
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Box 1 
The	processes	underlying	 large‐scale	 spatial	 synchrony	 in	outbreaks	of	 forest	 insect	pests	have	 fascinated	population	ecologists	 for	
centuries.	Two	central	hypotheses	have	been	proposed	to	describe	these	dynamics:	(a)	synchrony	due	to	dispersal	(i.e.,	the	“epicenter	
hypothesis”);	or	(b)	synchrony	due	to	spatially	correlated	environmental	conditions	(i.e.,	the	Moran	effect).	Distinguishing	between	these	
two	processes	can	help	us	to	better	understand	the	spatial	dynamics	of	population	irruptions	and	is	needed	to	develop	effective	early	
intervention	strategies	to	mitigate	the	negative	effects	of	pest	outbreaks.
Spatio‐temporal	analysis	of	geo‐referenced	molecular	markers	offers	a	powerful	tool	to	assess	the	relative	weight	of	the	two	processes	
and	to	infer	population	dynamics	over	extensive	geographic	and	temporal	scales.	This	objective	is	nonetheless	challenging	because	both	
the	epicenter	process	and	the	Moran	effect	can	lead	to	similar	spatial	genetic	patterns	when	an	outbreak	is	at	or	near	its	peak.	Given	the	
temporal	contingency	of	outbreaks	and	the	genetic	patterns	within	and	among	populations,	spatio‐temporal	approaches	to	analyzing	spa‐
tial	genetic	structure	are	required	to	assess	the	relative	strength	of	these	two	processes	in	driving	spatial	synchrony.	Here,	we	illustrate	
the	hypothesized	development	of	synchronous	spatial	genetic	structure	under	these	two	processes.
The	upper	panel	illustrates	the	development	genetic	structure	under	the	epicenter	hypothesis,	and	the	lower	panel	illustrates	the	devel‐
opment	genetic	structure	under	the	Moran	effect,	in	a	chronological	order	from	the	initiation	of	the	outbreak	to	the	peak	phase	(from	
left	to	right).	Panel	a1	(“epicenter”)	shows	three	distinct	populations,	one	of	which	is	increasing	in	population	density	and	spatial	extent.	
The	other	two	populations	remain	at	a	low	density.	In	this	case,	we	expect	genetic	structure	to	manifest	as	a	gradient	extending	from	the	
source	population	(i.e.,	the	epicenter,	panels	b1	&	c1)	and	significant	isolation	by	distance.	This	rapidly	spreading	epicenter	population	can	
then	subsume	the	other	sites,	effectively	swamping	out	their	genetic	variation	(d1)	and	leading	to	eventual	panmixia	(panel	e1).
In	contrast,	panel	a2	(“Moran	effect”)	shows	three	distinct	populations	that	are	each	increasing	in	density	and	extent,	presumably	in	response	to	
regionally	synchronous	environmental	conditions.	Because	each	population's	growth	is	independent	and	does	not	rely	on	dispersal	from	other	
populations,	we	expect	the	development	of	patchy	genetic	differentiation	(panels	b2,	c2	&	d2).	Boundaries	between	populations	become	less	
clear	as	the	outbreak	progresses	as	a	result	of	both	the	spatial	expansion	of	the	populations	and	dispersal	among	them	(panel	d2),	leading	to	high	
levels	of	genetic	admixture	between	populations	(panel	e2)	and	eventual	panmixia.	Genetic	diversity	at	panmixia	due	to	the	Moran	effect	is	(panel	
e2)	expected	to	be	higher	than	that	due	to	the	epicenter	hypothesis	(e1),	due	to	the	genetic	contributions	of	multiple,	versus	a	single,	populations.
Using	this	framework,	collection	and	analysis	of	spatial	genetic	data	from	multiple	years	can	be	used	to	distinguish	between	the	processes	
underlying	outbreak	synchrony.	However,	successful	identification	of	the	dominant	process	requires	that	sampling	occurs	early	enough	
during	the	outbreak,	before	panmixia	is	reached.	After	panmixia	is	reached	(i.e.,	panels	e1	and	e2),	the	genetic	legacy	of	the	previous	
outbreak	collapse	may	no	longer	be	detectable.	The	specific	rate	at	which	these	historical	 legacies	in	spatial	genetic	structure	fade	is	
likely	a	function	of	multiple	demographic	parameters	such	as	effective	population	size,	dispersal	capacity,	and	genetic	diversity	within	the	
population	of	interest.	The	precise	roles	of	these	factors	remain	to	be	further	investigated.
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1  | INTRODUC TION

Spatial	synchrony	is	the	tendency	of	geographically	separated	pop‐
ulations	 to	 fluctuate	 in	 unison	 over	 large	 areas	 (Liebhold,	Koenig,	
&	Bjornstad,	2004)	and	 is	a	common	characteristic	of	spatio‐tem‐
poral	 population	 variability	 in	 many	 taxa	 (e.g.,	 insects,	 Peltonen,	
Liebhold,	Bjornstad,	&	Williams,	2002;	Pollard,	1991;	or	mammals,	
Elton,	1942;	Gouveia,	Bjørnstad,	&	Tkadlec,	2016).	Quantifying	spa‐
tial	 synchrony	 and	 the	mechanisms	 underlying	 it	 is	 important	 for	
improving	our	understanding	of	spatio‐temporal	population	dynam‐
ics	(Liebhold	et	al.,	2004),	designing	conservation	strategies	(Earn,	
Levin,	&	Rohani,	2000),	informing	management	strategies	that	aim	
to	mitigate	outbreaks	of	pest	(Régnière	et	al.,	2001),	and	predicting	
the	impacts	of	future	climate	change	(Cornulier	et	al.,	2013).

Two	main	 contrasting	 theories	 have	 been	 proposed	 to	 explain	
synchrony	in	dynamics	of	spatially	disjunct	populations.	In	one	the‐
ory,	dispersal	maintains	regional	synchrony	owing	to	population	flow	
from	 areas	with	 relatively	 high	 population	 density	 to	 surrounding	
areas	with	low	population	density	(Bjornstad,	Ims,	&	Lambin,	1999;	
Liebhold	et	al.,	2004).	A	second	theory	attributes	spatial	synchrony	
to	 spatially	 correlated	environmental	 fluctuations	 across	 the	 land‐
scape	 (i.e.,	 the	Moran	 effect)	 (Bjornstad	 et	 al.,	 1999;	 Liebhold	 et	
al.,	 2004;	Moran,	 1953).	 These	 two	mechanisms	 are	 not	mutually	
exclusive,	 and	 their	 relative	 importance	has	been	 suggested	 to	be	
scale	dependant	(Paradis,	Baillie,	Sutherland,	&	Gregory,	2000),	with	
dispersal	being	the	dominant	mechanism	at	the	local	scale	and	envi‐
ronmental	stochasticity	prevailing	at	larger	scales	(Ranta,	Kaitala,	&	
Lundberg,	1998).	Despite	extensive	empirical	and	theoretical	works	
on	spatial	synchrony	(Liebhold	et	al.,	2004),	teasing	apart	the	rela‐
tive	importance	of	these	two	processes	can	be	difficult	because	they	
can	both	result	in	very	similar	patterns	of	spatial	population	dynam‐
ics	 (Kendall,	Bjornstad,	Bascompte,	Keitt,	&	Fagan,	2000;	Myers	&	
Cory,	2013;	Okland,	Liebhold,	Bjornstad,	Erbilgin,	&	Krokene,	2005;	
Royama,	MacKinnon,	 Kettela,	 Carter,	 &	Hartling,	 2005).	 Although	
dispersal	is	most	often	identified	as	the	most	likely	explanation	for	
synchrony	 (Franklin,	 Myers,	 &	 Cory,	 2014;	 Noren	 &	 Angerbjorn,	
2014;	Schwartz,	Mills,	McKelvey,	Ruggiero,	&	Allendorf,	2002),	the	
Moran	effect	has	also	been	implicated	(Peltonen	et	al.,	2002).

Dispersal	is	the	more	difficult	of	the	two	mechanisms	to	directly	
quantify	(Ims	&	Andreassen,	2005).	Indirect	approaches	using	popu‐
lation	genetic	information	are	increasingly	used	to	measure	dispersal	
(Broquet	&	Petit,	2009).	Spatial	analyses	of	geo‐referenced	molec‐
ular	markers	 can	 be	 used	 to	 assess	 genetic	 connectivity	 between	
populations	and	quantify	the	strength,	spatial	scale,	and	effective‐
ness	of	dispersal	 (Baguette,	Blanchet,	Legrand,	Stevens,	&	Turlure,	
2013).	Significant	genetic	differentiation	between	populations	indi‐
cates	low	levels	of	gene	flow	and	limited	dispersal.	In	contrast,	the	
absence	of	genetic	differentiation	indicates	high	levels	of	gene	flow	
and	a	high	degree	of	effective	dispersal	between	populations.

In	demographically	complex	outbreaking	populations	 (i.e.,	pop‐
ulations	with	rapid	change	in	population	density),	the	strength	and	
spatial	scale	of	population	genetic	structure,	as	well	as	the	inferences	
one	can	make	regarding	dispersal	and	spatial	synchrony,	can	depend	

on	the	ecological	context	 in	which	the	data	were	collected	 (James	
et	al.,	2015).	Here,	ecological	context	can	 include	standard	drivers	
of	spatial	population	genetic	variation	such	as	effective	population	
size,	generation	time,	and	dispersal	capacity	 (Charlesworth,	2009).	
Context	can	also	 include	when	during	 the	outbreak	cycle	 samples	
are	collected.	Samples	collected	during	the	endemic	phase	of	an	out‐
break,	where	distant	populations	experience	limited	genetic	connec‐
tivity,	are	likely	to	express	relatively	strong	genetic	spatial	structure.	
In	contrast,	samples	collected	near	the	peak	of	an	outbreak	may	see	
their	original	 structure	muted	owing	 to	 the	dominant	 signature	of	
individuals	immigrating	from	high‐density	populations	(James	et	al.,	
2015).	Temporally	explicit	approaches	to	measuring	spatial	genetic	
structure	are	needed	to	better	understand	the	spatial	dynamics	of	
outbreaking	populations.

Although	 the	 two	 synchrony‐inducing	mechanisms	 referred	 to	
above	can	be	difficult	to	distinguish	on	the	basis	of	spatial	patterns	
alone,	we	expect	their	spatio‐temporal	patterns	to	be	unique	 (Box	
1).	 Spatio‐temporal	 strategies	 that	monitor	 changes	 in	 genetic	 di‐
versity	 (Devillard,	 Santin‐Janin,	 Say,	&	Pontier,	 2011)	 and	evaluate	
how	genetic	differentiation	between	populations	changes	 through	
time	 (Hoffman,	 Schueler,	 &	 Blouin,	 2004)	 can	 be	 used	 to	 help	 us	
understand	 the	 underlying	 processes.	 When	 dispersal	 is	 driving	
synchrony,	one	expects	to	observe	the	spatial	spread	resulting	in	a	
genetic	gradient.	When	the	Moran	effect	is	driving	synchrony,	one	
expects	patchy	genetic	differentiation	as	a	result	of	the	independent	
growth	of	each	population,	with	the	boundaries	among	populations	
becoming	less	clear	as	the	outbreak	progresses	(Box	1).	Thus,	an	ex‐
plicitly	temporal	approach	allows	one	to	overcome	the	limitations	of	
the	single	snap‐shot	approach	commonly	used	in	population	genet‐
ics	(Draheim,	Moore,	Fortin,	&	Scribner,	2018;	Tessier	&	Bernatchez,	
1999).	However,	spatio‐temporal	population	genetics	studies	of	 ir‐
ruptive	populations	remain	scarce	in	the	literature	(but	see	Berthier,	
Charbonnel,	 Galan,	 Chaval,	 &	 Cosson,	 2006;	 Rikalainen,	 Aspi,	
Galarza,	Koskela,	&	Mappes,	2012).
The	spruce	budworm	(SBW;	Choristoneura fumiferana	Clemens)	pro‐
vides	an	excellent	example	of	spatially	synchronous	population	dy‐
namics.	The	SBW	is	a	univoltine	native	lepidopteran	that	periodically	
outbreaks	 (every	~35	years)	and	defoliates	 large	areas	 (>106	ha)	of	
balsam	fir	(Abies balsamea	(L.)	Mill)	and	spruce	(Picea	spp.)	forests	in	
North	America	(Royama,	1984).	SBW	populations	exhibit	both	local	
epicentric	 growth	 (Greenbank,	 Schaefer,	 &	 Rainey,	 1980;	 Hardy,	
Lafond,	&	Hamel,	 1983)	 and	 regional‐scale	 synchronization	 (up	 to	
500,000	km2)	during	outbreaks	(Royama,	1984).	The	resulting	eco‐
nomic	 consequences	 for	 forest	 industries	 and	 forestry‐dependent	
communities	are	severe	(Chang,	Lantz,	Hennigar,	&	MacLean,	2012).

Large‐scale	 spatial	 synchrony	 of	 SBW	outbreaks	 is	 a	 common	
feature	 in	North	American	 forests,	particularly	 in	 the	eastern	part	
of	its	range	(Blais,	1983;	Pureswaran,	Johns,	Heard,	&	Quiring,	2016;	
Williams	&	Liebhold,	2000).	However,	despite	a	century	of	research,	
there	 remains	opportunity	 to	 improve	our	understanding	of	 these	
large‐scale	 population	 processes,	 including	 how	 dispersal	 contrib‐
utes	 to	spatial	 synchrony	 (Anderson	&	Sturtevant,	2011;	 James	et	
al.,	2015;	Myers	&	Cory,	2013;	Pureswaran	et	al.,	2016).
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In	 this	 paper,	we	use	multi‐year	 spatial	 genetic	 data,	 covering	
the	extent	of	an	ongoing	SBW	outbreak,	to	investigate	the	spatial	
processes	involved	in	synchronous	outbreak	dynamics.	Specifically,	
we	investigate	whether	outbreaking	populations	are	synchronized	
as	a	 result	of	 (a)	exposure	to	a	common	regional	disturbance	 (i.e.,	
the	Moran	effect,	Moran,	1953;	Royama	et	al.,	2005)	 resulting	 in	
demographically	 independent	populations	and	thus,	high	 levels	of	
population	genetic	differentiation	(Box	1);	or	(b)	dispersal	of	adults	
moths	(i.e.,	the	"epicenter	hypothesis,"	Hardy	et	al.,	1983;	Peltonen	
et	al.,	2002;	Williams	&	Liebhold,	2000)	leading	to	low	genetic	dif‐
ferentiation	 among	 populations	 (Box	 1).	We	 also	 assess	 how	 the	
relative	 support	 for	 these	 two	hypotheses	 evolved	over	 a	 4‐year	
period.	Distinguishing	between	the	epicenter	and	Moran	hypothe‐
ses	is	critical	for	large‐scale	forest	management	strategies	against	
the	SBW	in	Canada	and	the	United	States	(Pureswaran	et	al.,	2016).

2  | MATERIAL S AND METHODS

2.1 | Study area

The	 study	 was	 conducted	 in	 the	 boreal	 and	 mixed‐boreal	 for‐
est	 (Rowe,	 1972)	 in	 Quebec,	 Canada	 (398,000	 km2,	 Figure	 1).	 In	

2006,	a	new	outbreak	was	detected	on	the	north	shore	of	the	Saint	
Lawrence	River	in	Quebec	(Bouchard	&	Auger,	2014).	Since	then,	the	
area	affected	has	increased	to	>8.2	million	ha	in	Quebec	(Ministère	
des	Forêts,	de	la	Faune	et	des	Parcs	[MFFP],	2018)	and	is	currently	
moving	toward	other	jurisdictions	(e.g.,	New	Brunswick	and	Maine,	
where	larvae	densities	are	still	 low)	to	the	south.	Spruce	budworm	
larvae	were	collected	over	a	2‐week	period	 in	June,	from	25	 loca‐
tions	in	2012	(n	=	527),	14	locations	in	2013	(n	=	420),	17	locations	in	
2014 (n	=	260),	and	10	locations	in	2015	(n	=	163).	In	2012,	sites	were	
selected	to	cover	all	the	outbreak	patches.	Not	all	sites	were	identi‐
cal	from	one	year	to	the	next.	Some	sites	were	discarded	due	to	low	
larvae	density	or	trouble	accessing	the	site,	but	close	(i.e.,	<10	km)	
replacement	 sites	 were	 selected	 when	 possible.	When	 substitute	
sites	were	 selected,	we	considered	 the	original	 and	 the	 substitute	
site	to	be	a	single	site	through	time	(Table	S1).

Each	year,	we	sampled	only	larvae	(no	moths)	from	all	defoliated	
zones	to	ensure	that	all	 individuals	were	associated	with	their	site	
and	 the	possibility	of	migrants	 from	outside	 the	study	area	would	
not	affect	 the	results.	Many	sites	were	sampled	successively	 in	all	
years,	whereas	some	were	sampled	for	only	a	single	year	(Figure	1).	
Larvae	were	collected	on	live	foliage	from	branch	tips	(Dobesberger	
&	Lim,	1983)	on	both	spruce	and	fir	when	they	were	both	present	at	

F I G U R E  1  Spruce	budworm	distribution	range,	study	area,	and	sampling	sites.	Sites	sampled	in	(a)	2012;	(b)	2013;	(c)	2014;	and	(d)	2015	
are	represented	by	points	whose	size	is	proportional	to	the	site's	sample	size	(n).	Spruce	budworm	distribution	range	(adapted	from	Picq	et	
al.,	2018)	is	displayed	in	orange,	and	defoliation	areas	observed	the	year	of	sampling	are	represented	in	gray
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the	site.	Multiple	branches	from	multiple	trees	were	sampled	from	
each	 site	 to	 reduce	 the	probability	 of	 sampling	 related	 individuals	
from	the	same	clutch.	Larvae	were	transported	on	branches	in	paper	
bags	and	were	reared	in	the	laboratory	on	synthetic	diet	(McMorran,	
1965)	until	moth	eclosion.	Emerging	moths	were	placed	into	1.5‐mL	
tubes	and	stored	at	−80°C	until	DNA	extraction.	Genomic	DNA	was	
extracted	from	6	to	33	individuals	per	site	(total	of	1,370	individuals)	
using	the	Qiagen	DNA	Blood	and	Tissue	Kit.

2.2 | Sequencing

All	 DNA	 samples	 were	 prepared	 for	 genotyping‐by‐sequencing	
(GBS,	Elshire	et	al.,	2011)	using	the	methods	described	in	Brunet	
et	 al.	 (2017).	 PstI‐MspI	 GBS	 libraries	 (96	 plex)	 were	 prepared	
by	 the	 Institut	 de	Biologie	 Intégrative	 et	 des	 Systèmes	 (IBIS)	 at	
Université	Laval	(Quebec	City,	QC)	using	the	protocol	of	Poland,	
Brown,	Sorrells,	and	Jannink	(2012).	Following	final	amplification	
of	 the	 pooled,	 adapter‐ligated	 restriction	 fragments,	 600	 ng	 of	
each	 amplified	 library	was	 normalized	 to	 remove	 the	 repetitive	
fraction	 by	 treatment	 with	 duplex‐specific	 nuclease	 (Zhulidov	
et	al.,	2004).	Finally,	an	additional	PCR	step	using	a	selective	re‐
verse	primer	extending	a	single	base	(C)	 into	the	 insert	past	the	
3′	 restriction	 site	 was	 used	 to	 selectively	 amplify	 one‐quarter	
of	 the	 total	 number	 of	 fragments,	 thereby	 increasing	 the	 read	
depth	 of	 sequenced	 fragments	 (Sonah	 et	 al.,	 2013).	 Single‐end	
sequencing	(100	bp	reads)	of	these	libraries	was	then	performed	
with	an	Illumina	HiSeq2000	(McGill	University‐Génome	Québec	
Innovation	Centre,	Montreal,	QC).

Bioinformatic	 processing	 of	 reads	 was	 performed	 using	 the	
Fast‐GBS	pipeline	(Torkamaneh,	Laroche,	Bastien,	Abed,	&	Belzile,	
2017).	 The	 Fast‐GBS	 pipeline	 includes	 demultiplexing,	 trimming,	
mapping,	 and	 variant	 calling	 steps	 to	 process	 genotyping‐by‐se‐
quencing	 samples	 and	 provide	 highly	 accurate	 genotyping.	 This	
pipeline	has	been	 shown	 to	 yield	 the	highest	 accuracy	 compared	
to	the	other	pipelines	(Torkamaneh,	Laroche,	&	Belzile,	2016).	After	
demultiplexing	and	adapter	 trimming,	 reads	 less	 than	50	bp	were	
discarded.	A	total	of	4.162	gigabases	of	reads	were	aligned	on	the	
spruce	 budworm	 reference	 genome	 (bw6	 version,	 Dupuis	 et	 al.,	
2017;	Picq	et	al.,	2018).	Alignment	of	3.141	gigabases	of	reads	was	
performed	using	the	Burrows–Wheeler	Aligner	(BWA,	Li	&	Durbin,	
2010)	 with	 the	mem	 algorithm	 and	 yielded	 a	 75%	 mapping	 suc‐
cess.	SNP	calls	were	made	as	part	of	 the	Fast‐GBS	pipeline	using	
Platypus	(v0.8.1,	Rimmer	et	al.,	2014).	Minimum	read	depth	was	set	
to	eight	reads.	Only	bi‐allelic	SNPs,	with	a	maximum	of	50%	missing	
genotypes	throughout	all	samples,	were	retained.	Individuals	with	
more	than	50%	missing	genotypes	were	removed.	Finally,	as	some	
methods	cannot	handle	missing	data,	missing	genotypes	were	 im‐
puted	using	the	software	BEAGLE	(v3.3.2,	Browning	&	Browning,	
2016)	which	replaces	missing	genotypes	with	the	most	frequently	
observed	 genotype	 associated	 with	 proximal	 SNP	 loci.	 Variants	
with R2	(i.e.,	imputation	accuracy)	<.4	were	removed	as	advised	by	
Browning	and	Browning	(2016).

2.3 | Filtering SNP loci

SNPs	with	a	minor	allele	frequency	(MAF)	<5%	were	removed	to	ex‐
clude	putative	sequencing	errors	and	keep	only	the	most	informative	
SNPs	(Marees	et	al.,	2018).	Similarly,	SNPs	in	high	linkage	disequilib‐
rium	(LD)	at	a	threshold	of	r2	≥	 .2	were	discarded	to	remove	highly	
correlated	 variants	 that	 add	 minimal	 extra	 information	 and	 could	
overly	influence	some	methods	(Price	et	al.,	2008;	Zou,	Lee,	Knowles,	
&	Wright,	2010),	using	the	snpgdsLDpruning	function	of	the	SNPRelate 
package	(Zheng	et	al.,	2012)	in	R	(R	Core	Team,	2017).	SNPs	showing	
deviation	from	expected	Hardy–Weinberg	equilibrium	(HWE)	in	more	
than	15%	of	the	sites	were	also	removed	as	deviation	from	HWE	can	
be	indicative	of	genotyping	errors	(Anderson,	Epperson,	et	al.,	2010;	
Anderson,	 Pettersson,	 et	 al.,	 2010),	 null	 alleles	 (Brookfield,	 1996),	
or	 selection	 (Wittke‐Thompson,	 Pluzhnikov,	 &	 Cox,	 2005).	 HWE	
was	calculated	using	the	hw.test	function	of	the	pegas	package	in	R	
(Paradis,	2010)	and	using	a	Bonferroni	correction	for	multiple	com‐
parisons.	Finally,	as	our	aim	was	to	quantify	the	neutral	evolutionary	
process	of	gene	flow,	we	removed	all	SNPs	identified	as	potentially	
under	selection	(Beaumont	&	Nichols,	1996)	using	the	pcadapt	func‐
tion	of	the	pcadapt	package	in	R	(Luu,	Bazin,	&	Blum,	2017).

2.4 | Genetic diversity

For	 each	 site	 and	 for	 each	 year,	we	 calculated	 observed	 (Ho)	 and	
expected	 (He,	 heterozygosity	 expected	 under	 Hardy–Weinberg	
equilibrium	that	accounts	for	both	the	number	and	the	evenness	of	
alleles)	 heterozygosity,	 rarefied	 allelic	 richness	 (Ar,	 El	Mousadik	&	
Petit,	1996),	inbreeding	coefficient	(Fis),	and	total	number	of	alleles	
(n.all)	using	the	hierfstat	R	package	(Goudet	&	Jombart,	2015).	The	
degree	of	structuring	between	subpopulations	 (Fst)	was	computed	
within	each	year	also	using	hierfstat.

2.4.1 | Inter‐individual genetic distances

We	calculated	inter‐individual	genetic	distances	using	principal	com‐
ponents	 analysis	 (PCA).	We	 first	 created	multiple	 principal	 compo‐
nents	(PC)	using	a	matrix	of	allele	occurrence	(0,	1,	or	2)	using	adegenet 
(Jombart,	2008)	and	then	derived	a	distance	matrix	from	the	Euclidean	
distances	between	individuals	in	the	multidimensional	space	created	
by	the	first	64	PC	axes	(Shirk,	Landguth,	&	Cushman,	2017).

2.5 | Spatio‐temporal genetic variation

To	examine	 the	effects	of	 space	 (sampling	sites)	and	 time	 (year	of	
sampling)	 on	 patterns	 of	 genetic	 variation,	 we	 conducted	 a	 per‐
mutation‐based	 multivariate	 analysis	 of	 variance	 using	 the	 func‐
tion adonis	 of	 the	vegan	 package	 (Oksanen	et	 al.,	 2017)	 in	R.	This	
method	partitions	sum	of	squares	for	distance	matrices	in	a	manner	
similar	to	AMOVA,	but	allows	for	both	nested	and	crossed	factors.	
We	 tested	 for	 the	effects	of	 space	 (sampling	 sites)	 and	 time	 (year	
of	sampling)	as	crossed	factors	on	the	matrix	of	 individual	genetic	



1936  |     LARROQUE Et AL.

distances.	Statistical	significance	was	assessed	using	9,999	permuta‐
tions.	Given	the	signal	of	temporal	variability	observed	(see	Results),	
subsequent	analyses	were	done	for	each	year	separately.

As	 the	number	of	sites	and	the	number	of	 individuals	sampled	
per	site	varied	among	years,	we	performed	a	rarefied	bootstrap	to	
standardize	for	the	minimum	number	of	sites	per	year	and	the	mini‐
mum	number	of	individuals	per	site	to	ensure	that	there	was	no	bias	
due	to	the	unbalanced	sampling.	We	subsampled	the	data	keeping	
only	10	sites	per	year	and	8	individuals	per	site	and	performed	the	
AMOVA.	We	repeated	this	procedure	9,999	times.

2.6 | Clustering

If	populations	are	not	connected,	their	growth	will	be	independent	
as	it	does	not	rely	on	dispersal	from	other	populations.	In	this	case,	
we	 expect	 individuals	 to	 cluster	 into	 genetic	 groups	 that	 corre‐
spond	to	geographic	provenance.	We	searched	for	genetic	groups	
using	 discriminant	 analysis	 of	 principal	 components	 (DAPC)	 im‐
plemented	 in	 the	adegenet	 (Jombart,	 2008)	 package	 in	R.	DAPC	
maximizes	differences	among	clusters	while	minimizing	variation	
within.	 DAPC	 does	 not	 rely	 on	 a	 particular	 population	 genetic	
model,	 such	as	Hardy–Weinberg	equilibrium,	which	 is	unrealistic	
for	outbreaking	populations	 (Whitlock,	1992).	For	each	year,	we	
applied	the	function	find.clusters	to	determine	the	number	of	po‐
tential	 clusters.	Minimization	of	a	Bayesian	 information	criterion	
(BIC)	was	used	to	 identify	 the	most	probable	number	of	clusters	
(K)	present	in	the	data.	DAPC	provides	membership	probabilities	
to	these	clusters	for	each	individual,	which	we	examined	for	geo‐
graphic	structure.

2.7 | Isolation by distance

If	 populations	 are	 connected	 through	 dispersal,	 then	 the	 genetic	
similarity	between	two	populations	is	a	function	of	the	geographical	
distance	between	them.	Consequently,	genetic	and	geographic	dis‐
tances	are	expected	to	be	correlated	(i.e.,	isolation	by	distance,	IBD;	
Wright,	1943).	We	tested	for	IBD	by	testing	the	correlation	between	
genetic	distance	and	the	geographic	Euclidean	distance	between	all	
pairs	of	individuals.	Significance	of	the	correlation	between	the	two	
distance	matrices	was	assessed	by	carrying	out	a	Mantel	test	using	
the mantel.randtest	 function	of	 the	ade4	 (Dray	&	Dufour,	 2007)	R	
package	with	9,999	permutations.

2.8 | Cryptic spatial structure

When	populations	exchange	individuals,	they	tend	to	become	ge‐
netically	similar.	The	 integration	of	geographic	and	genetic	 infor‐
mation	 can	 improve	 our	 ability	 to	 identify	weakly	 differentiated	
populations	and	can	provide	accurate	spatial	 locations	of	cryptic	
clusters	or	genetic	barriers	 (Storfer	et	al.,	2007).	Given	the	weak	
overall	structure	(i.e.,	clusters	and	IBD;	see	below),	we	also	tested	
for	cryptic	spatial	genetic	structure	within	each	year	using	spatial	
principal	component	analysis	(sPCA;	Jombart,	Devillard,	Dufour,	&	
Pontier,	2008).	This	spatially	explicit	multivariate	method	employs	
Moran's	index	(I)	of	spatial	autocorrelation	(Moran,	1948)	to	detect	
global	 structures	 (Jombart	 et	 al.,	 2008).	We	used	 the	 spca	 func‐
tion	implemented	in	the	adegenet	(Jombart	et	al.,	2008)	R	package.	
We	used	the	 inverse	distance	method	for	weighting	connectivity	
in	the	network,	given	that:	(a)	Sampling	sites	were	unevenly	spread	
over	the	study	area;	(b)	we	had	no	a	priori	hypothesis	about	their	
connectivity.	 Significance	 was	 assessed	 using	 permutation	 test	
(n	 =	 9,999)	 (Jombart	 et	 al.,	 2008).	 The	 individuals’	 scores	 of	 the	
first	principal	component	were	geographically	mapped	and	 inter‐
polated	to	reveal	spatial	patterns	of	interest.

3  | RESULTS

3.1 | Genotyping

Sequence	 processing	 through	 the	 fast‐GBS	 pipeline	 (Torkamaneh	
et	 al.,	 2017)	 resulted	 in	 73,960	 high‐quality	 SNPs	 (mean	 read	
depth	±	SD	=	3,018	±	19,214	–	range:	8–1,352,493,	mean	fraction	of	
missing	genotype	per	SNP	±	SD	=	0.68	±	0.32).	These	SNPs	were	identi‐
fied	using	1,228	individual	larvae	(n2012	=	464,	n2013	=	386,	n2014	=	223,	
n2015	 =	 155)	 that	 satisfied	 the	 missing	 genotype	 criterion	 (<50%;	
mean	fraction	of	missing	genotype	per	individual	±	SD	=	0.22	±	0.19).	
Most	 SNPs	 (73,489;	 99.4%)	 had	 at	 least	 one	 missing	 genotype	
which	 was	 then	 imputed	 (mean	 fraction	 of	 missing	 genotype	 per	
SNP	±	SD	=	0.17	±	0.15;	 range	=	0–0.49;	Figure	S1)	and	0.7%	 (480)	
of	 imputed	 SNPs	 were	 removed	 when	 filtering	 for	 R2.	 Many	 SNPs	
(69,045;	94%)	were	discarded	when	filtering	for	MAF	and	LD.	Of	the	
remaining	SNPs,	4.1%	(182)	deviated	from	HWE	in	more	than	15%	of	
the	sampling	sites.	About	16%	(691)	of	the	remaining	SNPs	were	de‐
tected	as	potentially	under	selection	and	removed.	In	total	3,562	SNPs	
met	our	strict	selection	criteria	and	were	retained	for	final	analysis.

TA B L E  1  Annual	summary	of	sampling	sites.	Annual	(±SD)	sample	size	(n),	observed	heterozygosity	(Ho),	expected	heterozygosity	(He),	
allelic	richness	(Ar),	total	number	of	alleles	(n.all),	and	inbreeding	coefficient	(Fis)	averaged	over	all	sites	of	a	given	year. Global Fst and mean 
inter‐site	Euclidean	distance	(Dintersite	in	km)	computed	for	each	year	are	also	shown

Year n Ho He Ar n.all Fis Fst Dintersite

2012 464 0.168	±	0.013 0.207	±	0.011 1.721	±	0.040 6,705	±	352 0.168	±	0.022 0.0046 273	±	241

2013 386 0.184	±	0.016 0.217	±	0.007 1.762	±	0.016 7,039	±	58 0.148	±	0.045 0.0020 299	±	250

2014 223 0.169	±	0.007 0.211	±	0.009 1.736	±	0.026 6,645	±	159 0.170	±	0.012 0.0023 285	±	230

2015 155 0.171	±	0.006 0.216	±	0.007 1.752	±	0.015 6,794	±	107 0.180	±	0.016 0.0022 424	±	262
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3.2 | Genetic diversity

Over	the	four	years	of	sampling,	average	observed	heterozygosity	
(Ho)	was	0.172	 (±0.013)	and	average	expected	heterozygosity	 (He)	
was	 0.211	 (±0.011),	 with	 a	mean	 allelic	 richness	 per	 locus	 (Ar)	 of	
1.738	(±0.033).	The	total	number	of	alleles	(n.all)	was	6,774	(±274),	
and	the	 inbreeding	coefficient	 (Fis)	was	0.166	 (±0.028).	He,	Ho,	Ar,	
n.all, and Fis	varied	through	time	(Table	1,	Figure	S2).	Global	Fst re‐
mained	low	for	all	years	examined	(0.002–0.0046;	Table	1).	Detailed	
information	 per	 year	 and	 per	 sampling	 site	 can	 be	 found	 in	 the	
Supporting	Information	(Table	S1).

We	 found	 that	He	 varied	 spatially	 and	 temporally	 (Figure	 2).	 In	
2012,	western	sites	showed	low	He	values	while	eastern	sites	showed	

a	mix	between	high	and	low	He	values	(Figure	2a).	From	2013	to	2015,	
He	was	higher	and	more	homogeneously	distributed	(Figure	2a–d).

3.3 | Spatio‐temporal genetic variation partitioning

Using	 a	 permutation‐based	 multivariate	 analysis	 of	 variance,	 we	
found	 a	 significant	 interaction	 effect	 among	 years	 and	 sites	 (F25,	
1,162	=	1.32,	p	<	10

–4;	Table	2)	on	spruce	budworm	genetic	variation.	
The	 rarefied	bootstrap	approach	showed	that	with	a	standardized	
number	of	sites	per	year	and	number	of	individuals	per	site,	the	ef‐
fect	of	the	year	and	the	site	were	significant	in	100%	of	the	9,999	
replications.	The	effect	of	the	interaction	was	significant	in	70%	of	
the	replications.	This	indicates	that	the	processes	generating	spatial	

F I G U R E  2  Expected	heterozygosity	(He)	for	each	sampling	site	in	(a)	2012;	(b)	2013;	(c)	2014;	and	(d)	2015.	Heterozygosity	generally	
increased	as	the	outbreak	progressed	(Table	1).	The	color	gradient	is	proportional	to	the	He	level	with	the	lowest	values	in	blue	and	the	
highest	in	red
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 df SS MS F value R2 p

Year 3 1518 505.89 15.11 .034 <10–4

Site 37 2,149 58.09 1.73 .049 <10–4

Year	×	site 25 1,106 44.25 1.32 .025 <10–4

Residuals 1,162 38,917 33.49    

Total 1,227 43,691     

Abbreviations:	MS,	mean	square;	SS,	sum	of	squares.

TA B L E  2  Permutation‐based	
multivariate	analysis	of	variance	to	
determine	the	percentage	of	variance	
explained	by	the	effects	of	sampling	sites,	
year	of	sampling	and	their	interaction	on	
the	matrix	of	PCA‐based	genetic	distance.	
Significance	was	assessed	using	9,999	
permutations
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genetic	 structure	were	 dynamic,	 rather	 than	 static,	 over	 the	 four	
years	 we	 analyzed.	 Consequently,	 analyses	 were	 undertaken	 for	
each	year	separately	(Figures	2,	4,	and	5).

3.4 | Clustering

Using	DAPC,	a	BIC	minimum	was	observed	for	K	=	2	for	2012	sup‐
porting	two	genetic	clusters	(Figure	S3).	Genetic	structure	between	

these	two	clusters	was	weak	(Fst	=	0.007)	but	significant	(p	<	10–3).	
The	two	clusters	initially	identified	in	2012	were	no	longer	present	
from	2013	to	2015;	instead,	K	=	1	had	the	greatest	support	(Figure	
S3).	We	 found	some	evidence	 for	geographic	 structure	within	 the	
two	 clusters	 in	 2012	 (Figure	 3b).	 Southwestern	 sites	were	mostly	
composed	 of	 individuals	 belonging	 to	 the	 same	 genetic	 cluster,	
whereas	northeastern	sites	were	composed	of	a	mixture	of	individu‐
als	assigned	to	both	clusters.	Using	a	subsample	of	150	individuals	

F I G U R E  4   Isolation	by	distance	
(IBD)	plots	for	each	year.	Scatterplots	
show	the	relationship	between	inter‐
individual	genetic	distances	(PCA‐based	
genetic	distance,	Shirk	et	al.,	2017)	
and	geographic	distances	to	test	for	
the	presence	of	IBD	in	(a)	2012;	(b)	
2013;	(c)	2014;	and	(d)	2015.	Colors	
represent	the	relative	density	of	points,	
with	warmer	colors	indicating	higher	
densities,	while	the	dashed	line	shows	
the	linear	regression	between	the	two	
distance	matrices.	The	Mantel	coefficient	
of	correlation	between	geographic	
and	genetic	distances,	as	well	as	the	
associated	p‐value,	is	shown	for	each	year
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F I G U R E  3   (a)	Assignment	of	2012	
(the	only	year	with	a	clear	signal	for	K	=	2)	
individuals	by	the	discriminant	analysis	of	
principal	components	(DAPC)	to	the	two	
(blue	and	gray)	genetic	clusters	(pairwise	
Fst	=	0.007)	and	(b)	map	of	sampling	
sites	illustrating	membership	to	the	two	
identified	genetic	clusters.	Sampling	sites	
less	than	40	km	apart	were	merged	to	
increase	visibility	(original	figure	can	be	
found	in	Figure	S7)
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that	had	been	sexed,	we	verified	that	the	clustering	was	not	based	
on	sex	(not	shown).

3.5 | Isolation by distance

For	all	years	examined,	we	found	no	evidence	for	significant	individ‐
ual‐level	IBD	(all	p	=	1,	Figure	4).	The	point	density	for	2012	showed	
two	clusters	of	individuals	with	the	same	level	of	genetic	differen‐
tiation,	suggesting	the	presence	of	two	populations	that	seemed	to	
be	genetically	distinct	(Figure	4a),	which	supports	our	clustering	re‐
sult	described	above.	These	clusters	were	no	 longer	present	 from	
2013	to	2015	(Figure	4b–d)	and	the	variance	of	the	genetic	distance	
decreased,	 suggesting	 a	 genetic	 homogenization	 as	 the	 outbreak	
progressed.

3.6 | Cryptic spatial structure

We	 identified	 significant	 global	 cryptic	 spatial	 structure	 for	 each	
year (all p	≤	.01).	However,	the	first	positive	eigenvalue,	which	repre‐
sents	global	spatial	genetic	structure,	decreased	in	magnitude	from	

2012	to	2015	compared	to	the	other	eigenvalues	(Figure	S4),	 indi‐
cating	a	genetic	homogenization	over	the	years.	The	scores	of	the	
first	positive	eigenvalue	have	been	interpolated	and	displayed	on	the	
area	map	(Figure	5).

In	 2012,	 our	 results	 regarding	 global	 structure	 indicated	 that	
individuals	belonged	to	two	genetically	homogeneous	clusters,	one	
large	cluster	distributed	all	over	 the	study	area,	and	a	second	one	
only	present	at	 the	northeast	 (Figure	5a).	 Individuals	on	the	south	
shore	of	the	Saint	Lawrence	River	belonged	to	the	more	extensive	
genetic	cluster	and	were	different	from	the	nearest	individuals	of	the	
north	shore.	In	2013	(Figure	5b),	we	found	clinal	variation	from	west	
to	east,	with	the	notable	exception	of	a	group	of	individuals	at	the	
east	that	were	similar	to	some	western	individuals.	In	2014,	the	first	
positive	eigenvalue	 revealed	a	 complex	pattern.	Two	genetic	 clus‐
ters	were	found	with	no	clear	geographical	delimitation	(Figure	5c).	
One	cluster	was	spread	all	over	the	study	area	while	the	smaller	one	
showed	a	patchy	distribution,	with	most	of	its	individuals	located	in	
the	center	and	east	of	the	study	area.	Individuals	on	the	south	shore	
of	the	Saint	Lawrence	River	were	assigned	to	both	clusters.	The	pat‐
tern	found	in	2015	was	similar	to	that	of	2014	(Figure	5d).

F I G U R E  5   Interpolated	spatial	genetic	structure	through	time,	based	on	sPCA.	Spatial	interpolation	of	individual	scores	according	to	the	
first	positive	eigenvalue	of	the	sPCA	in	(a)	2012;	(b)	2013;	(c)	2014;	and	(d)	2015.	Significance	was	assessed	using	9,999	permutations.	The	
color	gradient	indicates	the	degree	of	difference	between	individuals.	Maximum	differentiation	is	between	dark	blue	and	red.	The	extent	of	
the	interpolated	region	was	defined	as	the	concave	hull	polygon	encompassing	all	the	sampling	sites	for	a	given	year	with	an	external	buffer	
of	5	km.	Sampling	sites	are	represented	by	points	whose	size	is	proportional	to	the	site's	sample	size	(n)
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4  | DISCUSSION

Spatial	 synchrony	 is	 a	 fundamental	but	poorly	understood,	 com‐
ponent	 of	 spatial	 population	 dynamics.	 Regionally,	 synchronous	
population	 fluctuations	 can	 be	 caused	 by	 dispersal	 or	 spatially	
correlated	 environmental	 conditions	 (Moran,	 1953;	 Peltonen	 et	
al.,	2002;	Ranta,	Kaitala,	Lindstrom,	&	Helle,	1997;	Ranta,	Kaitala,	
Lindstrom,	 &	 Linden,	 1995;	 Royama,	 1984),	 although	 in	 general,	
we	do	not	know	the	relative	importance	of	each	of	these	factors	
and	how	they	vary	through	space	and	time	(Liebhold	et	al.,	2004).	
Distinguishing	 these	mechanisms	and	 their	effects	on	synchrony	
can	help	us	to	better	understand	spatial	population	dynamics,	de‐
sign	conservation,	and	management	strategies,	and	predict	climate	
change	impacts.

In	2006,	a	new	SBW	outbreak	was	detected	on	the	north	shore	
of	 the	Saint	Lawrence	River	 that	has	since	spread	 to	over	8	mil‐
lion	 hectares	 in	 size.	Using	4	 years	 of	 genetic	 data	 covering	 the	
majority	 of	 the	 outbreak	 area	 (i.e.,	 398,000	 km2),	we	 quantified	
temporal	 changes	 in	 spruce	 budworm	 spatial	 genetic	 structure	
and	 estimated	 gene	 flow	 through	 space	 and	 time.	Our	 goal	was	
to	use	spatial	genetic	 information	to	better	understand	the	rela‐
tive	importance	of	dispersal	to	spatial	outbreak	synchrony	(Box	1)	
and	to	contribute	to	improved	budworm	management.	We	found	
evidence	for	fast	genetic	admixture,	 long‐distance	dispersal,	and	
increases	 in	genetic	diversity.	Together,	 these	 findings	suggest	a	
more	 important	 role	of	dispersal	 relative	 to	autocorrelated	envi‐
ronmental	variation	in	the	spatial	synchrony	of	this	species	during	
an	outbreak.

4.1 | Spatio‐temporal connectivity in SBW

Disentangling	the	effects	of	epicenter	and	Moran	processes	on	spa‐
tially	synchronous	SBW	population	dynamics	is	challenging	because	
both	processes	can	 lead	 to	similar	genetic	patterns	when	 the	out‐
break	is	at	or	near	its	peak	(Box	1).	We	found	greater	support	for	the	
epicenter	hypothesis	for	the	period	covered	by	this	study.	In	2012,	a	
single	genetic	cluster	was	found	over	the	entire	study	area	whereas	
a	 second	 one	was	 restricted	 to	 a	 smaller	 region	 in	 the	 northeast,	
overlapping	with	the	first	cluster	(Figures	3‒5).	We	interpret	these	
results	to	indicate	that	an	isolated	population,	possibly	the	legacy	of	
the	previous	outbreak	collapse	 (James	et	al.,	2015)	 (i.e.,	 the	 larger	
cluster),	expanded	to	encompass	a	second	population	(i.e.,	the	sec‐
ond,	 smaller	 cluster).	 This	 process	 of	 an	 initial	 isolated	 population	
expanding	via	dispersal	fits	the	pattern	expected	from	an	epicentric	
population	dynamic	(Box	1).

We	 cannot	 entirely	 reject	 the	 possibility	 that	 the	 first	 cluster	
may	have	been	present	before	 the	outbreak	and	 the	 small	 cluster	
represents	 immigrants	 from	 outside	 the	 study	 area.	However,	we	
collected	samples	 from	all	defoliation	zones	 (Figure	1)	 to	minimize	
the	possibility	that	migrants	from	outside	the	study	area	could	affect	
our	 results.	 Additionally,	 temporal	 patterns	 in	 defoliation	 surveys	
(Figures	S6	and	S8,	Ministère	des	Forêts,	de	 la	Faune	et	des	Parcs	
[MFFP]	2018),	and	the	spatial	extent	of	historical	defoliation	support	

the	first	of	our	proposed	explanations	(Brown,	1970).	That	is,	defo‐
liation	was	first	observed	in	the	western	part	of	Quebec,	further	in‐
dicating	that	dispersal	from	this	area	to	the	east	may	account	for	the	
observed	topological	complexity	 in	spatial	genetic	structure.	 If	the	
Moran	effect	was	the	dominant	processes	 in	the	outbreak	spread,	
eastern	and	western	populations	would	have	grown	simultaneously	
(Box	1)	and	one	would	expect	eastern	individuals	to	form	a	distinct	
group.	Instead,	eastern	individuals	are	found	together	with	western	
individuals	in	the	east.	This	suggests	that	individuals	dispersed	from	
the	western	part	of	the	province	at	the	beginning	of	the	outbreak,	
that	is,	the	outbreak	epicenter,	and	settled	in	the	east,	providing	sup‐
port	 for	 the	epicenter	hypothesis.	Such	directional	dispersal	could	
have	 significant	 effects	 on	 the	 development	 and	 persistence	 of	
spatial	genetic	structure	of	highly	mobile	species	such	as	the	SBW,	
although	little	is	known	about	how	to	accurately	capture	spatial	ge‐
netic	patterns	generated	in	this	way.

The	decline	 in	the	strength	of	spatial	genetic	structure	from	
2012	to	2015	(Figure	5,	Figures	S3	and	S4)	also	supports	the	im‐
portance	of	dispersal	to	outbreak	synchrony.	The	important	role	
of	dispersal	is	also	illustrated	by	rapid	homogenization	of	genetic	
diversity	 (e.g.,	He).	Although	He	was	spatially	clustered	 in	2012,	
from	 2013	 to	 2015	 He	 became	 increasingly	 homogeneously	
distributed.

4.2 | Long‐distance dispersal

Rapid	change	 in	SBW	genetic	composition	on	the	south	shore	be‐
tween	 2012	 and	 2014	 indicates	 long‐distance	 dispersal	 and	 suc‐
cessful	 establishment;	 that	 is,	 the	 eggs	 laid	 by	 dispersing	 females	
successfully	 hatched	 (Figure	 5).	 Previous	 studies	 have	 shown	 that	
SBW	moths	 can	 disperse	 up	 to	 20	 km	with	 a	maximum	 recorded	
passive	dispersal	distance	of	450	km	(Greenbank	et	al.,	1980).	More	
recently,	Boulanger	et	al.	(2017)	documented	a	mass	dispersal	over	
more	 than	 200	 km	 in	 2013	 from	 the	 north	 to	 the	 south	 shore	 of	
the	 Saint	 Lawrence	 River	 using	 weather	 surveillance	 radar	 data.	
Although	 our	 ability	 to	 infer	 source	 populations	 and	 dispersal	 ca‐
pacity	is	somewhat	constrained	by	the	limited	genetic	structure	we	
observed	(Muirhead	et	al.,	2008),	we	have	demonstrated	for	the	first	
time	that	long‐distance	dispersal	events	result	 in	successful	estab‐
lishment,	and	hence	can	be	considered	as	effective	dispersal.

Long‐distance	 dispersal	 is	 common	 in	 Lepidoptera	 (Showers,	
1997)	and	has	a	disproportionately	high	influence	on	gene	flow	and	ge‐
netic	structure	(Clobert,	Baguette,	Benton,	Bullock,	&	Ducatez,	2012;	
Jordano,	 2017).	 It	 can	 connect	 disparate	 populations,	 allowing	 for	
genetic	connectivity	and	range	expansion	 (Baguette	&	Schtickzelle,	
2006;	 Ronce,	 2007;	 Trakhtenbrot,	 Nathan,	 Perry,	 &	 Richardson,	
2005).	Comparative	 studies	 suggest	 that	 species	 that	 can	disperse	
farther	 tend	 to	 be	 synchronized	 over	 larger	 areas	 (Paradis,	 Baillie,	
Sutherland,	&	Gregory,	 1999;	 Sutcliffe,	 Thomas,	&	Moss,	 1996).	 In	
SBW,	 several	 long‐distance	mass	 exodus	 flights	 of	millions	 of	 indi‐
viduals	have	been	observed	(Boulanger	et	al.,	2017;	Dickison,	1990;	
Greenbank	et	al.,	1980;	Sturtevant	et	al.,	2013).	Such	events	have	the	
potential	to	initiate	new	epicenters	(Clark,	1979)	and	to	synchronize	
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the	 dynamics	 of	 different	 SBW	 populations	 over	 large	 geographic	
areas	(Muenkemueller	&	Johst,	2008;	Peltonen	et	al.,	2002).	In	their	
study,	Bouchard,	Régnière,	and	Therrien	 (2017)	suggested	that	dis‐
persal	may	play	 a	prevalent	 role	 in	SBW	outbreak	 synchrony	once	
outbreak	 levels	have	been	 reached.	Through	 the	growing	phase	of	
the	outbreak,	long‐distance	dispersal	events	may	have	contributed	to	
the	observed	genetic	admixture	and	may	still	be	contributing	to	the	
spread	of	the	outbreak	over	a	large	territory	in	Quebec	and	adjacent	
provinces	and	U.S.	states	(e.g.,	New	Brunswick	and	Maine).

4.3 | The challenge of cyclic populations

The	 application	 of	 population	 genetic	 approaches	 to	 the	 study	 of	
cyclic	 species	 is	 challenging	 because	 of	 frequent	 deviations	 from	
theoretical	predictions	due	to	highly	variable	population	dynamics	
and	dependence	on	ecological	context	(James	et	al.,	2015).	The	ob‐
served	 decline	 in	 spatial	 genetic	 structure	 through	 time	with	 out‐
break	spread	fits	well	with	the	predictions	of	James	et	al.	(2015)	that	
spatial	genetic	structure	decreases	as	the	outbreak	spreads	and	con‐
nectivity	increases.	These	results	indicate	that	temporal	approaches	
are	needed	to	characterize	the	role	of	population	periodicity	on	the	
spatial	patterns	in	neutral	genetic	variation	(Box	1).

Spatial	 patterns	 of	 genetic	 diversity	 are	 the	 result	 of	 multiple	
factors	 that	 interact	 through	 space	 and	 time.	 Molecular	 studies	
usually	 present	 a	 single	 snap‐shot	 description	 of	 spatial	 genetic	
structure,	assuming	temporal	stability	(Draheim	et	al.,	2018;	Tessier	
&	Bernatchez,	1999).	It	is	increasingly	recognized	that	temporal	as‐
pects	matter	 in	population	genetics	but	also	 in	 landscape	genetics	
studies	 (Anderson,	 Epperson,	 et	 al.,	 2010;	 Anderson,	 Pettersson,	
et	 al.,	 2010;	 Martensen,	 Saura,	 &	 Fortin,	 2017;	 Skoglund,	 Sjodin,	
Skoglund,	 Lascoux,	 &	 Jakobsson,	 2014).	 However,	 the	 utility	 of	
temporal	 approaches	 in	molecular	 studies	 of	wild	 populations	 has	
mostly	 been	 limited	 to	 the	 comparison	 of	 historical	 and	 contem‐
porary	samples	(Ruggeri	et	al.,	2012).	We	have	demonstrated	here	
that	temporal	sampling	can	be	used	to	 identify	the	relative	 impor‐
tance	of	dispersal	 and	Moran	effect	 in	 the	 regulation	of	outbreak	
synchrony.	However,	the	spatial	genetic	structure	of	noncyclic	pop‐
ulations	 can	 also	quickly	 evolve	 in	 connection	with	 the	 functional	
connectivity	as	landscape	and	environmental	conditions	change.	For	
instance,	Watts	et	al.	(2015)	showed	that	a	decrease	in	snowpack	is	
associated	with	 reduced	colonization	and	 less	 gene	 flow	 in	boreal	
chorus	frogs	(Pseudacris maculata).	Time‐structured	data	thus	offer	
a	new	dimension	of	information	that	enables	identification	and	bet‐
ter	understanding	of	demographic	changes.	Such	temporal	analysis	
can	also	highlight	the	risks	of	failing	to	consider	temporal	variability	
when	 inferring	 population	 demographic	 parameters	 (e.g.,	 disper‐
sal	 capacity)	on	 the	basis	of	 a	 static	 assessment	of	 spatial	 genetic	
structure.	 Temporal	 investigations	 of	 the	 spatial	 genetic	 structure	
of	cyclic	and	noncyclic	species	could	be	instructive	in	improving	our	
understanding	of	how	their	dynamics	are	influenced	by	changes	in	
functional	 connectivity,	 that	 is,	 by	 changes	 in	 their	 habitat	 condi‐
tions,	an	increasingly	important	issue	given	the	fast	environmental	

changes	induced	by	global	warming	and	the	loss	and	fragmentation	
of	habitat	(Fahrig,	2003).

4.4 | Conclusion

Through	novel	 spatio‐temporal	 analysis	 of	 genetic	 data,	we	 found	
support	 for	 the	 epicenter	 hypothesis	 as	 the	 central	 driver	 of	 syn‐
chronous	 SBW	 dynamics	 in	Quebec.	We	 also	 found	 evidence	 for	
long‐distance	dispersal	(>140	km),	which	indicates	that	SBW	moths	
can	not	only	travel	large	distances	(e.g.,	Greenbank	et	al.,	1980),	but	
can	also	successfully	reproduce	at	 landing	sites.	Knowledge	of	the	
importance	of	effective	dispersal	to	outbreak	synchrony	is	essential	
to	the	development	and	implementation	of	“early	intervention”	for‐
est	management	strategies	(Régnière	et	al.,	2001)	that	aim	to	miti‐
gate	forest	losses	due	to	defoliation.

In	 Quebec,	 SBW	 populations	 are	 currently	 well	 connected	
and	exhibit	genetic	panmixia.	Such	panmixia	poses	a	challenge	to	
forest	managers	seeking	to	contain	the	spread	of	SBW	outbreaks	
from	Quebec	 into	other	areas,	such	as	Atlantic	Canada.	Early	 in‐
tervention	strategies	(Pureswaran	et	al.,	2016)	entail	suppressing	
global	 population	 growth	by	 finding	 and	 treating	 emerging	 local	
“hot	 spots.”	One	 of	 the	 key	 factors	 contributing	 to	 hot	 spots	 in	
currently	 unaffected	 areas	 is	 moths’	 dispersal	 from	 Quebec.	
Using	 genetic	 data,	 our	 study	 further	 confirms	 that	 SBW	moths	
can	 disperse	 very	 long	 distances	 (e.g.,	 Boulanger	 et	 al.,	 2017;	
Greenbank	et	al.,	1980).	In	addition,	we	also	demonstrate	that	this	
dispersal	 contributes	 to	 local	 population	 growth;	 that	 is,	 disper‐
sal	is	“effective.”	However,	it	remains	to	be	seen	whether	the	de‐
mographic	impact	of	dispersers	can	overwhelm	control	efforts	in	
areas,	especially	in	relatively	low	density	areas	where	populations	
have	yet	to	establish.	Characterization	of	dispersal	and,	in	partic‐
ular,	 the	 frequency	distribution	of	 the	dispersal	 distances,	 could	
help	 to	better	delineate	 the	 range	and	distribution	of	dispersing	
moths	throughout	a	region,	which	could	help	to	guide	survey	ef‐
forts	for	both	population	studies	and	control	efforts.

Our	ability	to	distinguish	between	different	drivers	of	outbreak	
synchrony	will	vary	depending	on	the	characteristics	of	the	species	
being	studied.	For	example,	our	approach	may	be	sensitive	to	spe‐
cies‐specific	 factors	 such	 as	 effective	 population	 size,	 generation	
time,	dispersal	capacity,	outbreak	frequency,	and	landscape	hetero‐
geneity,	as	all	of	 these	 factors	 influence	 the	spatial	distribution	of	
genetic	variation	(Gauffre	et	al.,	2015;	Landguth	et	al.,	2010;	Row,	
Wilson,	&	Murray,	2016).	Further	exploration	of	the	temporal	dynam‐
ics	of	 spatial	 genetic	 structure	during	population	outbreaks	under	
different	contexts	remains	a	promising	avenue	for	future	research.	
Simulation‐based	 approaches	 using	 spatially	 explicit	 demo‐genetic	
models	(e.g.,	Nemo,	Guillaume	&	Rougemont,	2006;	or	CDMetaPOP,	
Landguth,	Bearlin,	Day,	&	Dunham,	2017)	hold	great	promise	to	iso‐
late	and	quantify	 the	 relative	effects	of	 these	different	 factors	on	
the	development	of	spatial	genetic	structure	and	spatial	synchrony,	
and	to	refine	our	understanding	of	what	drives	these	large‐scale	spa‐
tial	ecological	phenomena.
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