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SUMMARY

Glia, the non-neuronal cells of the nervous system, were long considered second-
ary cells only necessary for supporting the functions of their more important
neuronal neighbors. Work by many groups over the past two decades has
completely overturned this notion, revealing the myriad and vital functions of
glia in nervous systemdevelopment, plasticity, and health. The largest population
of glia outside the brain is in the enteric nervous system, a division of the auto-
nomic nervous system that constitutes a key node of the gut-brain axis. Here,
we review the latest in the understanding of these enteric glia in mammals with
a focus on their putative roles in human health and disease.

INTRODUCTION

Themammalian enteric nervous system (ENS) is a complex network of neurons and glial cells organized into

two interconnected plexuses that span the entire length of the alimentary tract in some capacity (Figure 1).

ENS circuits operate both autonomously and in collaboration with the central nervous system (CNS) to

regulate virtually every aspect of gut function including motility, epithelial turnover, fluid secretion, and

mucosal immunity (Furness, 2012; Furness et al., 2014; Rao and Gershon, 2016; Sharkey et al., 2018; Spencer

and Hu, 2020). In humans, the ENS is composed of more than 100 million neurons in the small intestine

alone, which is at least as many as are in the spinal cord and much more than in all other peripheral ganglia

combined (Furness, 2006). Glial cells outnumber neurons in the ENS by approximately 4-fold in mice and

6-fold in humans (Gabella and Trigg, 1984; Hoff et al., 2008), suggesting a major role in gut physiology.

Despite the abundance of these cells in mammals, enteric glia have been far less studied than their coun-

terparts in the CNS, and much remains to be discovered about their underlying biology.

The CNS contains 3 main types of glia: astrocytes and oligodendrocytes, both of which derive from neuro-

ectoderm, and microglia, macrophage-like cells of distinct developmental origin that express the chemo-

kine receptor CX3CR1. Similarly, in the gut, there is a large population of enteric glia derived from neural

crest as well as developmentally distinct populations of tissue-resident macrophages, many of which are

CX3CR1+. The roles of these enteric macrophages have been well reviewed elsewhere (Muller et al.,

2020; Moreira Lopes et al., 2020), and therefore, here, we focus our attention exclusively on enteric glia,

which most closely associate with enteric neurons. We describe the development and diversification of

enteric glia, their homeostatic functions, potential interactions with gut microbiota, and contributions to

the progression of disease states along the gut-brain axis. Aiming to understand the aspects of enteric glial

biology most directly relevant to human health, we focus this review on studies in human tissue and

mammalian model organisms. Some nonmammalian vertebrates, such as zebrafish, do not have a dual

plexus ENS structure and have relatively fewer enteric glia (Mccallum et al., 2020; Kuil et al., 2020). Thus,

here, we discuss key advances in human enteric glial biology, placed in context of what has been shown

in murine counterparts, and highlight the many knowledge gaps that make a compelling case for further

study of these fascinating cells.

ENTERIC GLIAL MORPHOLOGY AND ULTRASTRUCTURE – EVIDENCE FOR DISTINCT

SUBTYPES?

From their first description by Russian anatomist Alexandre Dogiel in 1899 (Dogiel, 1899), glia in the gut

were considered to be analogous to Schwann cells, the dominant population of glia in the extraenteric pe-

ripheral nervous system (PNS). Many Schwann cells myelinate nerve fibers and, like enteric glia, are neural

crest-derived. Detailed studies of ENS ultrastructure by electron microscopy (EM), however, showed that

while glia in both rodent and human intestines partially ensheathed axons, no evidence of myelin-like
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Figure 1. The enteric nervous system and its glial components

(A) The human alimentary tract extending from the esophagus to the rectum contains an intrinsic network of neuro-glial circuits termed the enteric nervous

system (ENS).

(B) The bowel is visualized in cross-section (here the small intestine) to illustrate the location of the two major enteric plexuses in relation to the laminar

structure of the bowel. The larger plexus, the myenteric plexus, is located in between the outer longitudinal and inner circular layers of the muscularis

propria. The smaller submucosal plexus is situated in the submucosa, in between the mucosa and the muscularis propria.

(C) Schematic of higher magnification view of small bowel cross-section illustrating that while neuronal cell bodies are largely restricted to the enteric

plexuses (gray), enteric glial cells (EGCs) are distributed more widely across all the lamina. Mucosal EGCs (Type III), located closest to the intestinal lumen,

are multipolar with long branches. Intraganglionic EGCs (Type I), located within both the submucosal and myenteric plexuses, are extensively branched.

EGCs within nerve fibers that connect ganglia of the same type are elongated and less extensively branched (Type II), and intramuscular EGCs located along

small nerve fibers in the muscle layers are bipolar in morphology (Type IV). Glia have been detected in all layers of the human bowel wall, and while the

morphological subtypes shown here have been established in rodent models, emerging evidence supports similar morphologies in humans.
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structures could be found (Cook and Burnstock, 1976; Dvorak et al., 1980; Gabella, 1981; Ferri et al., 1982).

Intestinal glia also did not structurally resemble Remak Schwann cells, the nonmyelinating glia in peripheral

nerves that support small-diameter, unmyelinated axons (Harty and Monk, 2017). Gabella was the first to

label glia in the gut ‘‘enteric glial cells’’ (EGCs), in recognition that they were phenotypically distinct

from Schwann cells (Gabella, 1981). He and others showed that many EGCs had small central perikarya

and stellate processes, more similar in ultrastructure to astrocytes than Schwann cells (Gabella, 1971; Ko-

muro et al., 1982). These morphological studies combined with the discovery that enteric glia expressed

S100B and glial fibrillary acidic protein (GFAP) (Ferri et al., 1982; Jessen and Mirsky, 1983), molecular

markers characteristic of astrocytes, led to the idea that enteric glia were the ‘‘astroglia’’ of the gut. This

paradigm defined the expected functions of enteric glia for many decades, and S100B and GFAP were

long used interchangeably to identify glial cells in the intestine.

Recent work has challenged the notion that all EGCs are analogous to astrocytes, showing that GFAP

protein expression is not universal among enteric glia, reflecting phenotypic plasticity and/or functional

heterogeneity (Boesmans et al., 2015; Rao et al., 2015). Similarly, Aldh1L1, a widely utilized marker of astro-

cytes, is restricted to a subset of mouse EGCs and is more widely expressed by nonglial cell types in the gut

(Boesmans et al., 2014). As a group, the transcriptional profile of enteric glia is actually more similar to that

of myelinating glia than astrocytes (Rao et al., 2015), further indication that they differ from astrocytes in

meaningful ways. Consistent with this, SOX10 and PLP1, two proteins important for the development

and function of myelinating glia, including Schwann cells and oligodendrocytes, are widely expressed

by enteric glia and are now recognized, along with S100B, as among the best markers of EGCs in themurine

intestine (Young et al., 2003; Hoff et al., 2008; Rao et al., 2015). Recent single-cell sequencing studies sug-

gest that human enteric glia also express a similar mix of astrocyte and oligodendrocyte molecular markers

at the transcript level (Kinchen et al., 2018; Smillie et al., 2019; Drokhlyansky et al., 2020), evidence that EGC
2 iScience 24, 102863, August 20, 2021



Figure 2. Enteric glial diversity and distribution in the mouse small intestine

Immunohistochemical staining of a cross section of small intestine from an adult PLP1-eGFP mouse in which green

fluorescent protein (GFP) expression marks all enteric glia illustrates the extensive glial network in the gut. Neurons are

immunoreactive for PGP9.5 (red), and their somas are visible in the myenteric (MP) and submucosal (SMP) plexuses. The

muscular propria consists of the longitudinal (LM) and circular (CM) muscle layers. Scale bar = 25mm.
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biology is unique in the nervous system and likely conserved across species. Further work rigorously

comparing EGCs to other populations of nonmyelinating glia such as olfactory ensheathing cells, support-

ing cells of the inner ear, perisynaptic Schwann cells, and satellite glia, as was recently done for splenic glia

(Lucas et al., 2021), would be illuminating.

Enteric glia are widely distributed throughout the gut, and their vastly different local microenvironments

and morphologies hint that heterogeneity in molecular marker expression reflects functional diversity

(Figure 2). The ENS is organized into two main networks of ganglia, clusters of neurons and glia, found

in distinct locations along the radial (serosa-to-lumen) axis of the bowel wall (Figure 1B). Submucosal

ganglia are located closest to the gut lumen, just beneath the mucosa, and are found throughout the small

and large intestines. Submucosal ganglia are rare in the esophagus and relatively sparse in the stomach

(Furness, 2006). Myenteric ganglia, in contrast, are found in between the circular and longitudinal smooth

muscle layers throughout the digestive tract. Nerve fiber tracts connect individual ganglia within each layer,

forming the two plexuses. The submucosal and myenteric plexuses are extensively interconnected with
iScience 24, 102863, August 20, 2021 3
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each other as well as with extrinsic nerves. Isolated neuronal soma and very small ganglia have also been

reported within the gut mucosa of rats, pigs and humans (Newson et al., 1979; Balemba et al., 1998; Wedel

et al., 1999). This more diminutive network of mucosal ganglia has not been as well characterized. Unlike

enteric neurons, glia are found both within and outside ENS ganglia (Figure 1C, Figure 2). Intraganglionic

glia are present within bothmyenteric and submucosal ganglia in close association with neuronal soma and

are presumed to have similar functions in both locations. Extraganglionic glia are found both along nerve

fibers in the smooth muscle layers (intramuscular glia) and distributed throughout the mucosa (mucosal

glia), and they have been much less studied. Each of these spatial niches presents very different stimuli

and interaction partners, suggesting that each of these EGC groups might have very different homeostatic

functions.

In concert with their varying microenvironments, enteric glia also vary dramatically in cellular morphology.

A study that used horseradish peroxidase injections into individual cells of the guinea pig small intestine to

visualize morphology was the first to show that EGCs, even just within the myenteric plexus, were morpho-

logically diverse. The investigators described extensively branched ‘‘protoplasmic’’ EGCs within myenteric

ganglia and less branched, more elongated ‘‘fibrous’’ EGCs in nerve fiber tracts between ganglia (Hanani

and Reichenbach, 1994). These were classified as Type I and Type II EGC types, respectively. This morpho-

logical classification was later broadened to 4 types including multipolar glia with a limited number of

branches that are found mostly in the mucosa (Type III) and glia with small central soma that extend

long, thin, bipolar projections, mostly found along small nerve fibers in themuscle layers (Type IV) (Gulbran-

sen and Sharkey, 2012). More recent genetic labeling studies in mice have elegantly illustrated this

morphological diversity (Boesmans et al., 2015) and suggested that a combinatorial code of molecular

markers may define at least one of these morphological types (Type IV intramuscular glia) (Rao et al., 2015).

Fewer studies have examined glial morphologies and molecular marker expression patterns in the esoph-

agus, which differs from the stomach and intestines in that it has a squamous epithelial lining, incorporates

both striated and smooth muscle, lacks a submucosal plexus, and is more extensively innervated by the va-

gus nerve. S100B- and GFAP-immunoreactive glia are present in the esophageal myenteric plexus of ro-

dents and humans (Chadi et al., 2004; Raab and Neuhuber, 2004; Gao et al., 2006; Nascimento et al.,

2010). A recent study used genetic reporters and immunohistochemistry to characterize expression of

PLP1, GFAP, andmyelin basic protein in themouse esophagus in detail. It found that all four morphological

types of glia were detectable in the esophagus and that they shared similarities with their counterparts in

the intestines, such as presence of GFAP expression in myenteric glia and absence of GFAP in Type IV intra-

muscular glia (Kapitza et al., 2021). Many esophageal glia expressed both PLP1 and GFAP, but overall, PLP1

expression was much more widespread. An important exception was a perivascular population of GFAP+

cells with elongated soma and variable PLP1 expression that the authors proposed could be a fifthmorpho-

logical type of esophageal glia.

The majority of studies to date characterizing glial morphology and ultrastructure have focused on rodent

models. The accurate depiction of EGC morphology in the human gut is an ongoing endeavor. Recent ad-

vances in tissue preparation and imaging that have enabled 3-dimensional (3D) visualization of glial net-

works in whole gut segments have delivered fresh insights. As in mice, the calcium-binding protein

S100B is relatively specific to glia in the healthy human intestine (Gonzalez-Martinez et al., 2003), and its

immunoreactivity is useful for visualizing glial morphology. Immunohistochemical labeling of S100B in hu-

man colon resection specimens followed by optical clearing revealed that mucosal EGCs closely associate

with lymphatic channels at the bases of colonic glands and with blood vessels at the apex (Liu et al., 2013).

Mucosal EGC processes appear to orient differently depending on the cell’s location, traversing longitu-

dinally near the crypt base and axially closer to the lumen (Liu et al., 2013). Another study using similar

approaches visualized myenteric and intramuscular glia in human colons and showed that these cells

resembled their counterparts in rodent tissues (Graham et al., 2020).

In contrast to morphological studies of human EGCs that have preferentially surveyed the colon, EM

studies have focused on the small intestine. These studies have largely described EGCs incidentally as a

consequence of their association with axons, the primary focus of these reports. Moreover, virtually all

the ultrastructural analyses of rodent and human EGCs have focused on the myenteric plexus. A single

study described putative EGCs in the mucosa of the mouse small intestine coming into close contact

with enteroendocrine cells, specialized sensory epithelial cells that release hormones and
4 iScience 24, 102863, August 20, 2021
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neurotransmitters (Bohorquez et al., 2014). The putative EGCs that were visualized, however, were not im-

munolabeled and there was limited evidence confirming that they were glia. Mucosal glia are situated as

individuals amidst a dense collection of many other cell types in the lamina propria, and genetic labeling

approaches in combination with immuno-EM will be helpful to identify them more definitively. Overall, the

ultrastructural features of submucosal, mucosal, and intramuscular glia and their interactions with neigh-

boring cells are almost completely unknown in mice and humans. Evidence to date suggests that the

morphological features of EGCs are conserved among mammals; however, the relationships between glial

structure and function are yet to be fully defined.
DEVELOPMENT AND DIVERSIFICATION OF ENTERIC GLIA

Enteric glia derive from neural crest cells that originate in the vagal and sacral levels of the neural tube and

migrate into the developing bowel to give rise to the ENS (Rao andGershon, 2018; Kang et al., 2021). These

crest-derived progenitors are bipotential, giving rise to both neurons and glia, first in myenteric ganglia

and then submucosal ganglia in an ‘‘outside-in’’ fashion (Pham et al., 1991; Wallace and Burns, 2005).

This developmental program results in a topological organization of clonally related cells in columns along

the radial axis (Lasrado et al., 2017). In mice, the first S100B-expressing cells are detected in the ENS as early

as embryonic day 14.5 (E14.5) (Rothman et al., 1986; Young et al., 2003; Lake and Heuckeroth, 2013). GFAP

expression is detectable shortly afterward at E16 (Rothman et al., 1986). Human EGCs are also detectable in

enteric ganglia during prenatal development. A survey of human fetal tissue recognized neural crest-

derived cells at locations characteristic of the submucosal and myenteric plexuses by 8–11 postconceptual

weeks (PCWs) in multiple segments along the gastrointestinal (GI) tract (Wallace and Burns, 2005). At least

some of these precursors seem to have committed to either neurogenic or gliogenic programs by this time

point because distinct glial and neuronal precursor transcriptional profiles are detectable (Fawkner-Cor-

bett et al., 2021). S100B-expressing cells are present in every segment of the human GI tract in the myen-

teric and submucosal ganglia by 12 and 15 PCWs, respectively. In contrast to mice, human EGCs do not

express GFAP in any gut segment until after birth (Grundmann et al., 2019). Recent transcriptional profiling

studies show that the majority of colonic EGCs in the healthy, adult human bowel express S100B and PLP1

but little to no GFAP (Kinchen et al., 2018; Drokhlyansky et al., 2020), suggesting that GFAP may not be a

robust marker for human EGCs at any age. GFAP levels fluctuate in other glial types with stress, and it is

possible that environmental conditions and low baseline transcript levels account for these observed dif-

ferences, rather than species-specific biology. Spatial proteomic approaches to studying ENS develop-

ment could offer additional insights.

Bipotential ENS progenitors that give rise to glia must downregulate neurogenic programs, including

expression of RET receptor tyrosine kinase, while maintaining expression of the transcription factor

SOX10, known to be important for glial differentiation in the CNS and extraenteric PNS (Paratore et al.,

2001; Bondurand and Sham, 2013). A number of other molecules, including transcription factor TBX3 (Lo-

pez et al., 2018), the orphan nuclear receptor NR2F1 (Charrier and Pilon, 2017), and the Notch and Hedge-

hog signaling pathways (Taylor et al., 2007; Liu and Ngan, 2014) have all been implicated in mouse EGC

development and differentiation. It is unclear to what degree these pathways are conserved in the human

ENS or if they play a role in glial diversification. The majority of human EGCs across all layers in the ileum

and colon are immunoreactive for SOX10 (Hoff et al., 2008), suggesting that at least this transcription factor

is important for human EGC development as well. Mucosal EGCs derive from the same progenitors as

EGCs in other locations along the bowel wall (Kabouridis et al., 2015), but their development has some

unique features. These features are reviewed in detail in the subsequent section.

While enteric neuronal diversity has been studied in great detail, much less is known about the molecular

mechanisms that drive glial diversification and to what extent there are functionally distinct types of EGCs

in themature ENS. Recent single-cell sequencing studies have started to address these gaps. A study of the

juvenile nervous system at postnatal day 21 (P21) profiled glia in the small intestinal myenteric plexus of

transgenic reporter mice and reported seven transcriptionally distinct enteric glial subtypes, one of which

had a proliferative signature (Zeisel et al., 2018). Drokhlyansky et al developed new methods to isolate

intact cell nuclei from gut tissues of mice and humans and utilized them to transcriptionally profile the adult

colonic ENS (Drokhlyansky et al., 2020). In mice, they identified 3 transcriptionally distinct populations of

colonic EGCs that could be distinguished based on expression of the membrane receptor Gfra2, the

monoamine transporter Slc18a2 (also identified as a cluster marker by Zeisel et al., 2018), and the neuro-

tensin receptor Ntsr1. In humans, they found that glia derived from colonic muscularis propria isolated
iScience 24, 102863, August 20, 2021 5
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from cancer-adjacent resection specimens segregated into 3 main subsets. There were 3 additional cell

clusters that were patient-specific, perhaps reflecting disease-specific phenotypes. All of these muscularis

EGC populations were found to be transcriptionally distinct from mucosal EGCs, profiled in a previous

study by the same group (Smillie et al., 2019). Surprisingly, all had relatively low S100B expression. The

genes enriched in a cluster-specificmanner were not similar betweenmurine and human EGCs in this study,

hinting at divergence, but no formal comparative analysis was done analogous to that done in neurons

(Drokhlyansky et al., 2020; May-Zhang et al., 2021). Furthermore, it remains unclear how these transcrip-

tional groups relate to the known diversity in EGC spatial niches and morphological types.

Another study using spatial transcriptomics to analyze human fetal tissue described five transcriptionally

distinct glial populations in the small and large intestines that emerged over the developmental period

examined, defined by shared expression of both SOX10 and S100B (Fawkner-Corbett et al., 2021). This

study is an exciting resource for exploring developmental diversification of glia, but the labels assigned

to the EGC populations in this study need to be interpreted with some caution. At 8–10 PCWs, a cluster

of ‘‘glial progenitors’’ dominated and was distinguished by low levels of mature glial gene expression, early

appearance during development, and expression of PHOX2B. While mature glia are known to have

reduced PHOX2B expression in comparison to neurons (Corpening et al., 2008), they still express robust

levels, and no clear threshold of PHOX2B expression has been defined to distinguish glia from neurons.

Thus, some cells assigned to this group may be mature glia rather than progenitors. The next two clusters

to emerge were classified as ‘‘submucosal’’ and were groups of cells expressing TGFB1 and genes associ-

ated with regulating epithelial cell proliferation. These groups presumably represented mucosal glia in the

lamina propria and not glia in the submucosal plexus. One of these two groups showed relatively lower

expression of ‘‘submucosal’’ EGC genes and simultaneous expression of HAND2, a transcription factor

important for ENS development, and was thus designated as containing ‘‘submucosal precursors.’’ The

two clusters that emerged latest in development were those characterized as ‘‘intraganglionic’’ and

‘‘lymphoid-associated.’’ EGCs marked by ENTPD2 expression were categorized as ‘‘intraganglionic’’; how-

ever, earlier studies have shown that while intramuscular EGCs do not express ENTPD2, many other extra-

ganglionic EGCs, including mucosal EGCs, express robust levels, so ENTPD2 expression is not specific to

intraganglionic EGCs (Rao et al., 2015; Grubisic et al., 2019). ‘‘Lymphoid-associated’’ EGCs expressed high

levels of genes involved in immune cell function and TGF-b receptors (TGFBR3), and they were the most

transcriptionally distinct from the other groups. Supporting their designation, these cells expressed several

genes previously shown to be important for development of Peyer’s patches, small aggregates of lymphoid

tissue in the small intestine (Veiga-Fernandes et al., 2007).

There is growing evidence in mammalian and nonmammalian systems that the ENS is populated not just by

neural crest-derived progenitors, but also by Schwann cell precursors (SCPs) associated with extrinsic pe-

ripheral nerves that innervate the bowel (Uesaka et al., 2015; Soret et al., 2020; El-Nachef and Bronner,

2020). These SCPs give rise to a relatively small population of submucosal neurons in the small intestine

but contribute nearly 20% of all neurons in the mouse colon (Uesaka et al., 2015). Neurogenic SCPs do

not seem to pass through a bipotential state (Uesaka et al., 2015), and therefore, it is less clear to what

extent they contribute to enteric glial populations at steady state. Regardless, SCPs express both

SOX10 and PLP1, and thus, at least some proportion of cells identified as EGCs based on these twomarkers

are probably neurogenic SCPs. SCPs express many molecular markers in common with EGCs, and discrim-

inating these two cell populations in order to interrogate their relative proportions and contributions will

be challenging. Recent single-cell transcriptional profiling data suggest that expression of Dhh, Mal, and

Mpz genes may distinguish SCPs from EGCs, at least in the muscular layers of the embryonic and perinatal

mouse intestine (Zeisel et al., 2018; Morarach et al., 2021).

In summary, enteric glia in mice and humans arise from neural crest and mature into phenotypes with

distinct morphologies, spatial niches, and transcriptional signatures. Much work remains to determine

the molecular mechanisms that generate this diversity, how differences in gene expression relate to phys-

ical features or locations of EGCs, and to what extent any of this diversity reflects the existence of distinct

subtypes with different homeostatic functions. There have been substantial advances in describing human

EGCs at the gene expression level, and these data suggest some fundamental differences between human

and rodent EGCs. The evaluation of these differences is currently limited by our understanding of enteric

glial biology and the ways in which these gene products might support EGC function.
6 iScience 24, 102863, August 20, 2021
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ENTERIC GLIA AND THE GUT MICROBIOME

Enteric glia, particularly those in the mucosa, are auspiciously located for effective, if not direct, interaction

with microbes in the gut lumen. The first evidence of functional interactions between EGCs and microbes

was the observation that glia in germ-free (GF) mice fail to fully populate the mucosa of the small intestine,

despite normal appearance of glia in the myenteric and submucosal plexuses (Kabouridis et al., 2015). The

authors of this study found that mucosal EGCs were largely undetectable during normal fetal development

and seemed to populate the mucosa in the postnatal period in tandemwith the maturation of the intestinal

microbiome. These observations indicated that mucosal EGCs are developmentally distinct from other

EGCs and require the presence of microbes to establish a normal population. Lineage tracing experiments

showed that the small intestinal mucosa in adult mice is continuously repopulated by glia that arise from

Sox10- andGfap-expressing progenitors located in the myenteric plexus and migrate into the mucosa (Ka-

bouridis et al., 2015). Administration of broad-spectrum antibiotics to mice raised in standard conditions

caused diminished mucosal EGCs in the small intestine with no effect on myenteric EGCs, similar to

what was seen in GF mice. These findings raised the exciting possibility that gut microbes are necessary

not just to establish a normal mucosal EGC population but also to continuously maintain it. Consistent

with this possibility, restoring gut microbiota to GF mice completely rescued the deficit in mucosal

EGCs. This study did not probe the effects of microbial depletion in the colon, where the microbial burden

is orders of magnitude higher and might have even greater influence.

Subsequent studies have both challenged and supported these initial observations on EGC-microbe inter-

actions. De Vadder et al. found that microbial recolonization of GF mice increased S100B immunoreactivity

in the myenteric plexus of the colon but not the number of SOX10+ cells, suggesting that there may be mi-

crobial effects on myenteric glial phenotypes but not number (De Vadder et al., 2018). A recent preprint

manuscript reports on the results of broad-spectrum antibiotic treatment of PLP1-eGFP reporter mice

and suggests that microbial depletion has minimal effects on EGCs in the small and large intestines,

with no defects observed in mucosal glia at all (Vicentini et al., 2020). Instead, they report a small deficit

in glial number only in the ileal myenteric plexus. The relevance of microbes to human EGC development

and migration is even less clear. A spatial transcriptomics study detected SOX10+/S100B+ cells located

outside the muscularis propria in presumptive mucosa in human fetal tissue (Fawkner-Corbett et al.,

2021), suggesting that human EGCs migrate out of the myenteric plexus early in fetal development. In

accordance, S100B-immunoreactive glia are present in the human gut mucosa prior to birth (Inlender

et al., 2021). Interestingly, these investigators found that while native S100B+ mucosal EGCs in mice

were vulnerable to broad-spectrum antibiotic treatment, S100B+ mucosal EGCs in human fetal gut ex-

plants transplanted into the same mice were not vulnerable (Inlender et al., 2021). There may be important

species- and/or microbe-specific differences leading to these differing observations. Study of human

mucosal EGCs in situ, potentially in tissues isolated from patients treated with antibiotics compared to

those from untreated controls, would help provide clarity.

While the role of microbes in EGC development remains to be clarified, there is strong evidence that

mucosal EGCs are well poised to respond to microbes both directly and indirectly. Mucosal EGCs in

mice closely approach blood vessel endothelial cells (Savidge et al., 2007b), lymphatic endothelial cells

(Liu et al., 2013), immune effector cells (Grubisic et al., 2020), and enteroendocrine cells (Bohorquez

et al., 2014), all of which can be affected by the presence or absence of microbiota. Furthermore, EGCs

in mice and humans express toll-like receptors (TLRs), proteins capable of detecting microbe-associated

molecular patterns (Turco et al., 2014; Esposito et al., 2014). Human EGCs in the mucosa and ganglia

also express major histocompatibility complex class II (MHC-II), a class of molecules critical in presentation

of foreign protein to immune effector cells in inflammatory disease states including infection (Hirata et al.,

1986; Koretz et al., 1987; Geboes et al., 1992; Da Silveira et al., 2011). These data combine to suggest roles

for EGCs in microbial detection, antigen presentation, and immune modulation that remain to be defined.

One molecular mechanism that EGCs might use to modulate gut function in response to microbial cues is

the secretion of neurotrophic factors, such as those belonging to the glial-derived neurotrophic factor

(GDNF) family of ligands (GFLs). GFLs are secreted proteins that signal through the RET receptor tyrosine

kinase to support the growth and survival of neurons in the context of development, homeostasis, and

injury. In the gut, GFL signaling is critical for normal development of the ENS and Peyer’s patches

(Schuchardt et al., 1994; Veiga-Fernandes et al., 2007). The roles of this signaling in gut homeostasis are

still being determined. The GFLs include GDNF, neurturin, artemin (ARTN), and persephin
iScience 24, 102863, August 20, 2021 7
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(Airaksinen and Saarma, 2002). At least two of these ligands have been detected in EGCs: GDNF expres-

sion localizes to EGCs in the mature ENS (Bar et al., 1997) as well as gut smooth muscle (Brun et al., 2015;

Han et al., 2015); ARTN is detectable in EGCs, at least at the transcript level, in human fetal tissues (Fawk-

ner-Corbett et al., 2021). Conversely, RET is expressed by myriad cell types in the mature gut including

Type 3 innate lymphoid cells (ILCs) in which RET signaling modulates expression of IL-22, a secreted factor

important for epithelial reactivity and repair (Ibiza et al., 2016). Interfering with either RET expression in

ILC3s or the immune adaptor protein MYD88 in Gfap-expressing cells impairs ILC3-derived IL-22 release

and increases susceptibility to gut inflammation. These observations indicate that EGCs might sense mi-

crobial molecules and release GFLs to modulate ILC3 functions via RET signaling. Type 2 ILCs also express

RET, but its role in these cells is yet undetermined. Enteric glial MYD88 has also been shown in a recent

preprint manuscript to modulate the response to a high-fat diet (Liu et al., 2020), a condition known to alter

the gut microbiome (Hildebrandt et al., 2009). EGCs of mice fed a high-fat diet assumed a reactive pheno-

type and increased production of S100B and GFLs, including GDNF and ARTN. This response was atten-

uated in mice lacking MYD88 in GFAP+ cells. Diet may alter the intestinal microbiome, in turn eliciting an

immune response that is partly integrated by EGCs and their signaling mechanisms. A potential limitation

of both of these studies is the use of the Gfap promoter to drive gene deletion in enteric glia as this pro-

moter may be active in nonglial cells that also can modulate immune functions (Rao et al., 2017).

A smaller number of studies have investigated the behavior of human EGCs in response to microbes or

microbial products. Primary cultures of human myenteric plexus EGCs exposed to bacterial lipopolysac-

charide upregulate a variety of transcripts for proinflammatory cytokines (Linan-Rico et al., 2016). Similar

cultures exposed to enteroinvasive Escherichia coli increased their expression of MHC-II, S100B, and

TLRs (Turco et al., 2014). These cultured cells also released nitric oxide (NO), a proinflammatory antimicro-

bial molecule, in response to enteroinvasive E. coli. In contrast, exposure to the probiotic Lactobacillus

paracasei did not increase production of either S100B or NO, implying selectivity of response. Gut inflam-

mation might prime this response because mucosal EGCs isolated from patients with ulcerative colitis, a

type of inflammatory bowel disease (IBD), have higher levels of S100B and TLR4 compared to mucosal

EGCs isolated from healthy controls (Esposito et al., 2014). Similar to proposed mechanisms in mice, hu-

man EGCs may respond to changes in gut microbial composition, such as the arrival of pathogens, through

specialized recognition proteins and secretion of proinflammatory molecules.
ENTERIC GLIAL FUNCTIONS IN GASTROINTESTINAL HOMEOSTASIS AND DISEASE

EGCs are considered to enable a number of physiological functions of the gut, and one of the first functions

to be attributed to themwasmaintenance of the intestinal epithelial barrier (IEB). In IBD and other digestive

disorders, dysregulation of this barrier is thought to play a major part in disease progression (Odenwald

and Turner, 2017). In an animal model enabling inducible ablation ofGfap-expressing cells upon ganciclo-

vir administration (GfapHSV�Tk), loss of enteric glia was associated with severe inflammation in the distal

small intestine (Bush et al., 1998), suggesting that enteric glia were necessary to prevent gut inflammation.

Subsequent studies of this model and others that employed the Gfap promoter to target glia showed that

depleting EGCs was associated with increased IEB permeability, impaired epithelial cell proliferation, and

immune cell invasion into enteric ganglia (Cornet et al., 2001; Aube et al., 2006; Neunlist et al., 2007; Sa-

vidge et al., 2007a). These and other in vitro studies in mice supported the idea that EGCs influence the

integrity of the IEB and that EGC dysfunction contributes to inflammatory GI disease (Sharkey, 2015;

Pochard et al., 2018).

A number of recent studies have questioned this dogma on glial-epithelial interactions. When a strictly cell-

autonomous approach was used to target Plp1-expressing cells for genetic ablation, for example, there

was no resulting intestinal inflammation in the small or large intestines, even when mice were challenged

with the inflammatory agent dextran sodium sulfate (DSS) (Rao et al., 2017). IEB function remained intact,

both in terms of permeability to macromolecules and microbes as well as its ultrastructure. Rare epithelial

cells in the distal small intestine express GFAP, and the ganciclovir-derived antimetabolite generated

within HSV-Tk-expressing cells can affect neighboring cells, two features of the GfapHSV�Tk mouse model

that could both contribute to off-target effects (Rao et al., 2017). Subsequent work using intermittent gan-

ciclovir dosing to deplete glia with fewer off-target effects in the GfapHSV�Tk model or using the inducible

diphtheria toxin receptor system as an alternative means to target Gfap- or Plp1-expressing cells added

further evidence that glial loss does not cause or exacerbate intestinal inflammation (Yuan et al., 2020).

Similarly, neither disruption of EGC function by ATP depletion (Nasser et al., 2006) nor by ablation of
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connexins important for EGC communication (Grubisic and Gulbransen, 2017) provokes inflammation. In

summary, there is clear evidence that EGCs secrete signaling molecules that can alter IEB permeability

and epithelial proliferation in vitro, but in vivo, glia seem to be dispensable for these epithelial functions,

and their depletion is not sufficient to cause intestinal inflammation in mice.

Given the challenges in identifying the role of EGCs in the pathogenesis of inflammation in mice, it is not

surprising that their role in human IBD, such as ulcerative colitis and Crohn’s disease, is even less clear.

There is some evidence that EGCs in patients with IBD may be increased in number and phenotypically

distinct, at least at the transcriptional level. Cell circuit analysis of single-cell transcriptional profiling

data from human colonic tissue isolated from ulcerative colitis patients compared to controls implies

that EGCs might serve to repress expansion of CD8+IL-17+ T-cells, a major source of the potent inflamma-

tory cytokine IL-17 in patients with ulcerative colitis (Smillie et al., 2019). GFAP elevation is a hallmark of

reactive astrocytes in the CNS, and intestinal biopsies from patients with IBD have higher levels of GFAP

protein relative to controls (Cornet et al., 2001; von Boyen et al., 2011). This difference could also reflect

the increased number of EGCs identified in the submucosa of both the small and large intestines of

patients with IBD (Villanacci et al., 2008; Bassotti et al., 2009; Li et al., 2018b). If there are ‘‘reactive’’

EGCs associated with IBD, it is unclear if they contribute to disease pathogenesis or repair, or if their reac-

tivity is simply a reflection of the disease.

Just as CNS glia can have both proinflammatory and anti-inflammatory effects in neurological disorders,

there is growing evidence that EGC activities can be helpful as well as harmful in inflammatory GI condi-

tions. For example, the EGC-derived factor S-nitrosoglutathione restored epithelial defects caused by

Shigella infection in human colonic mucosa in vitro (Flamant et al., 2011). Similarly, colonic biopsies from

Crohn’s disease patients secreted less of the polyunsaturated fatty acid metabolite 15-hydroxyeicosate-

traenoic acid (15-HETE) relative to those from controls, and application of 15-HETE to immortalized cell

lines bolstered cell membrane integrity by reducing permeability across the epithelium (Pochard et al.,

2016). These findings indicate that human EGCs can secrete molecules that promote intestinal barrier func-

tion and repair in vitro. Regardless of the extent to which glia and these factors are necessary for maintain-

ing IEB function in vivo, stimulating EGC secretion of molecules that drive epithelial repair could represent

a promising therapeutic strategy for IBD.

EGCs not only secrete key signals but also receive them from neighboring cells. One important mode of

communication from enteric neurons to EGCs is via pannexin-mediated release of purines (Gulbransen

et al., 2012; Boesmans et al., 2019). In mice with inflammatory colitis, this purinergic signaling activates

EGCs to increase NO and ATP release, driving neuroinflammation and cell death (Gulbransen et al.,

2012; Brown et al., 2016; Delvalle et al., 2018a). While the extent of neuronal loss in human IBD is still being

established, the role of glia in this process clearly merits further investigation.

Whatever the myriad roles of EGCs are in neuronal injury during inflammation, there is exciting new work

suggesting that they may participate in restoring homeostasis by contributing to neurogenesis. In zebra-

fish, EGCs readily function as neuronal progenitors in vivo (Mccallum et al., 2020). Mouse EGCs differentiate

into neurons in vitro but seem less likely to do so in vivo, except in rare cases when chemical injury drives

neuronal loss and presumably stimulates EGCs to replace them (Laranjeira et al., 2011; Joseph et al., 2011).

In a mouse model of inflammatory colitis, however, lineage tracing revealed that neuronal loss in enteric

ganglia was associated with generation of new neurons from Plp1-and Sox2-expressing cells (Belkind-

Gerson et al., 2017). Consistent with this finding, in colonic tissue isolated from patients with Clostridium

difficile-associated colitis or ulcerative colitis, enteric neurons positive for SOX2, a marker of EGCs, were

markedly increased (Belkind-Gerson et al., 2017). Another study, however, found that while Gfap-express-

ing cells gave rise to new glia, especially when stimulated by injury, there was no evidence that they gave

rise to neurons in a slew of physiological or pathophysiological conditions (Joseph et al., 2011). It may be

that the enteric neuronal progenitors most relevant to homeostasis are Schwann cell precursors (Uesaka

et al., 2015; Soret et al., 2020) or Nestin-positive nonglial cells (Azan et al., 2011; Kulkarni et al., 2017), rather

than EGCs. Overall, it is evident that adult neurogenesis occurs in the ENS in at least some contexts, and

mammalian EGCs, among other candidates, may be one potential source of new neurons (Jonscher and

Belkind-Gerson, 2019). Glia seem capable of stimulating both neuronal death and generation in the

ENS, suggesting that their net effects in inflammatory disease may be context-dependent or potentially

subtype-specific.
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Figure 3. Enteric glia-associated human diseases along the gut-brain axis

Proteinopathies (green box) involve misfolded proteins that may travel from the gastrointestinal (GI) system to the brain,

and these include Parkinson’s disease and transmissible prion disease. Enteric glial cells (EGCs) may be involved in

transmission of these proteins. Neuroinflammatory conditions of the enteric nervous system (blue box) can be induced by

dysregulation of the gut microbiome or infection, and these states may be mediated in part by EGCs. A host of functional

GI disorders (red box) may be associated with enteric glial dysfunction, largely affecting the colon. Groups of EGC-

associated conditions may exacerbate or influence each other (blue arrows): neuroinflammatory disorders may cause

dysmotility and bowel dysfunction, and dysmotility may promote neuroinflammation; neuroinflammation may allow

easier transmission of misfolded proteins, and aggregates of misfolded protein may in turn promote neuroinflammation.
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While the understanding of EGCs in promoting and resolving inflammation is still evolving, one aspect of

intestinal health in which they have a clear role is GI motility. Virtually, every mouse model of EGC ablation

or disruption exhibits GI dysmotility (Aube et al., 2006; Nasser et al., 2006; Mcclain et al., 2014). Interest-

ingly, one model showed a highly sex-dependent defect in colonic transit upon glial loss (Rao et al.,

2017), suggesting that EGC dysfunction might have links to the prominent sex differences in functional

GI disorders. A series of studies in mice using conditional gene deletion and chemogenetics has revealed

that calcium signaling in EGCs is critical for their function in intestinal motility (Broadhead et al., 2012;

Mcclain et al., 2014; Mcclain et al., 2015). EGC activity may influence motility through the release of signals,

such as the neurotransmitter GABA (Fried et al., 2017) or by influencing neuronal activity in response to

detection of neurotransmitters such as acetylcholine, ATP, and 5-HT (Boesmans et al., 2013; Delvalle

et al., 2018b). Astrocytes in the brain refine synapses between neurons, facilitating synapse growth and

elimination. Rodent EGCs cocultured with enteric neurons also promote synapse formation (Le Berre-Scoul

et al., 2017), suggesting yet another mechanism by which EGC activity could influence enteric circuits

important for motility.

EGC changes in human tissues, particularly alterations in cell number, have been observed in multiple GI

motility disorders (Figure 3). Hirschsprung disease is a developmental disorder characterized by congenital

absence of enteric ganglia (aganglionosis) in a segment of bowel, typically the distal colon. Patients pre-

sent with severe constipation, and even functional bowel obstruction, caused by lack of peristalsis in their

affected bowel segments. Standard treatment is resection of the affected segment, but many patients

experience lingering postoperative symptoms including dysmotility (Menezes et al., 2006). Patients with

Hirschsprung disease exhibit more EGC precursors in ganglia of nonaffected portions of the GI tract

than controls (Tani et al., 2017), raising the possibility that altered ENS composition in ganglionic bowel
10 iScience 24, 102863, August 20, 2021
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is linked to the chronic GI dysmotility in patients following surgery. The most life-threatening complication

of Hirschsprung disease is severe enterocolitis, an inflammatory condition with a risk that is undiminished

by surgery and that remains poorly understood (Demehri et al., 2013). Intriguingly, the major susceptibility

gene for Hirschsprung disease is RET (Angrist et al., 1996; Amiel et al., 2008), discussed above as playing a

potential role in EGC signaling in gut inflammation. The possible contributions of EGCs to the inflamma-

tory and motility-related complications of Hirschsprung disease clearly deserve further exploration.

EGC deficits are also linked to idiopathic slow-transit constipation (STC). Small intestinal and colonic

ganglia of patients with STC contain fewer EGCs than those of control patients (Bassotti et al., 2006a,

2006b). Additional conditions that involve constipation such as obstructed defecation, Chagasic megaco-

lon, and idiopathic megacolon all are similarly linked to fewer EGCs in colonic ganglia (Bassotti et al., 2007;

Iantorno et al., 2007). Chronic intestinal pseudo-obstruction (CIPO) is a rare condition characterized by se-

vere dysmotility leading to signs of bowel obstruction without any identifiable occlusion (Downes et al.,

2018). Not only did patients with CIPO possess fewer EGCs in enteric ganglia, but a case series identified

the presence of JC virus, known to cause fatal infections in the immunosuppressed, within EGCs in a ma-

jority of patients with CIPO (Selgrad et al., 2009).

A common acquired cause of GI dysmotility is postoperative ileus (POI), impaired intestinal transit that can

follow both abdominal and extra-abdominal surgery. A model of POI elicited by intestinal manipulation in

mice demonstrated that the immune adaptor protein MYD88 as well as the inflammatory signaling mole-

cule IL-1R1 is important in the progression of POI (Stoffels et al., 2014). Intramuscular EGCs express IL-1R1,

signifying that EGCs may be involved in triggering POI through this inflammatory pathway. Subsequent

work has found ATP release to be involved in eliciting a reactive EGC phenotype in the same mouse model

(Schneider et al., 2021). In this study, human intestinal tissue retrieved from surgery and mechanically

manipulated also exhibited reactive EGC phenotypes, and human EGCs in culture released the inflamma-

tory signalingmolecule IL-6 upon stimulation with ATP. All together, these findings indicate that ATP-medi-

ated EGC responses may contribute to POI in both rodents and humans.

As detailed above, animal models have revealed a clear role for enteric glia in the regulation of gut

transit, and changes in EGC number as well as phenotypes are linked to a variety of human disorders

of GI motility. EGC functions in immune communication may influence motility when infectious organ-

isms are involved, such as in Chagas disease (Trypanosoma cruzi) and CIPO (JC virus). Similar to the rela-

tionship between EGC changes and inflammatory GI disease, the EGC deficits reported in motility dis-

orders could also result because they are targets or innocent bystanders of the disease process rather

than the cause. Further basic and translational studies combining animal models and human tissue

will help to tease apart these causalities and uncover the roles of enteric glia in regulating GI motility

in both health and disease.

Glial functions in both motility and inflammation may play a role in irritable bowel syndrome (IBS), a func-

tional GI disorder characterized by abdominal pain and altered stool patterns that affects 5–10% of the

population worldwide (Black and Ford, 2020). IBS lacks the overt inflammatory histological findings of

IBD but often manifests after GI infections, and its pathophysiology is poorly understood. EGC changes,

such as reduced S100B immunoreactivity, have been observed in colonic mucosal biopsies of patients

with IBS (Lilli et al., 2018). A subset of patients with IBS exhibit visceral hypersensitivity, defined by dimin-

ished thresholds for pain in response to colorectal distention (Ritchie, 1973; Zhou and Verne, 2011), and

EGCs may participate in this aspect of IBS pathophysiology. Nerve growth factor (NGF) has been impli-

cated in promoting visceral hypersensitivity in patients with IBS (Dothel et al., 2015) and is upregulated

in the colon in a rat model of IBS (Xu et al., 2013). In this rat model, NGF colocalized with GFAP, suggesting

that EGCs may promote visceral hypersensitivity via NGF secretion (Long et al., 2018). In mice, EGCs are

involved in mediating communication between enteric neurons and the spinal afferent nerve endings

that signal visceral pain (Delvalle et al., 2018a). Disruption of connexin-43 signaling in Sox10-expressing

cells, which include EGCs, abolishes the visceral hypersensitivity caused by chronic inflammatory colitis

(Grubisic et al., 2020). EGCs, along with satellite glia and Schwann cells that associate with visceral afferent

neurons outside the bowel, are thus likely to play a role in disorders of visceral hypersensitivity such as IBS.

In addition to inflammatory and functional GI disorders, the other group of digestive disorders in which

EGCs have been implicated is cancer. Patients with multiple endocrine neoplasia type 1 (MEN1) are prone
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to developing gastrin-secreting neuroendocrine tumors, gastrinomas, in the duodenum (Anlauf et al.,

2005). In mouse models of MEN1, gastrin-expressing EGCs accumulate in the duodenum, and gastrinomas

from patients with MEN1 express glial markers including GFAP and S100B (Sundaresan et al., 2017). These

data highlight the possibility that gastrinomas in patients with MEN1 originate from duodenal EGCs. A

more common tumor entity associated with EGCs is colorectal carcinoma (CRC). Both human EGCs and

EGC cell lines promote expansion of tumor number and size from a CRC stem cell line (Vales et al.,

2019). This effect requires bidirectional communication between EGCs and tumor cells, mediated by pros-

taglandin E2 and epidermal growth factor signaling. In vivo, mice injected with tumor stem cells and EGCs

had higher tumor burdens than those injected with tumor stem cells alone, further supporting a tumori-

genic role for EGCs (Vales et al., 2019). Consistent with this possibility, genetic depletion of EGCs in vivo

in mice was associated with a lower tumor burden in the azoxymethane-DSS model of inflammatory CRC

(Yuan et al., 2020). The data on EGCs in human CRC pathology, however, are sparse and conflicting. EGCs

are intimately associated with colorectal tumors in human tissue, suggesting that they are a component of

the tumor microenvironment (Vales et al., 2019). Arguing against a protumorigenic role, however, GFAP

content is diminished in higher grade, more proliferative tumors, and elevated in lower grade tumors (Tar-

tea et al., 2017). This observation could reflect a tumor effect on EGC expression of GFAP and/or fewer tu-

mor-associated EGCs in patients with more aggressive tumors. Nevertheless, the studies to date suggest

that EGCs are part of the tumor microenvironment, and their role in CRC pathogenesis needs to be

unraveled.
ROLES FOR ENTERIC GLIA IN NEUROLOGICAL DISEASE

The ENS participates in bidirectional communication with the CNS, and when hijacked, this axis may serve

as a route for the progression of disease from the gut to the brain (Figure 3). One such disease is Parkinson’s

disease (PD), where the ENS has been proposed to be a conduit of PD pathology to the CNS. Lewy bodies,

hallmark aggregates of misfolded a-synuclein typically identified within CNS neurons of patients with PD,

were first noticed in the ENS in postmortem esophageal tissue (Qualman et al., 1984) and subsequently

shown throughout the GI tract (Kupsky et al., 1987; Wakabayashi et al., 1988). Braak et al. showed that de-

posits of a-synuclein were distributed in the stomach both in submucosal and myenteric ganglia of human

patients with PD at various stages of disease progression (Braak et al., 2006). They proposed that a putative

pathogenic insult to the stomach could induce misfolding of a-synuclein within enteric neurons, which then

transmit protein aggregates to the CNS through synaptic connections with vagal nerve fibers. A number of

studies in rodents have since established the proof-of-concept that administration of pathogenic proteins

into the gut wall is sufficient to cause ascending pathology that propagates from the GI tract to the brain

(Holmqvist et al., 2014; Kim et al., 2019; Challis et al., 2020).

EGCs are altered in patients with PD, but it is unclear to what extent this reflects a role in disease pathogenesis.

Colonic biopsies from patients with PD contain higher levels of GFAP transcripts and protein relative to bi-

opsies from controls (Devos et al., 2013; Clairembault et al., 2014). These increased GFAP levels correlate

with expression of a variety of proinflammatory cytokines including IL-1b, IL-6, IFN-g, and TNF-a (Devos

et al., 2013). Reactive EGCs in patients with PD may contribute to a proinflammatory environment that facili-

tates misfolding of a-synuclein, igniting a fuse that drives pathology from the gut to the brain.

GImotility symptoms are common inpatientswithPD (Gallagher et al., 2010; Pfeiffer, 2011), and inmanypatients,

they precede the somatic motor symptoms characteristic of the disease (Abbott et al., 2001). Given the evident

role of EGCs in regulating GI motility, their activity may influence the development of motility symptoms in pa-

tients with PD regardless of a role in facilitating a-synuclein aggregation. Postmortem assessment of the ENS

in patients with PD did not reveal neuronal loss anywhere along theGI tract from stomach to rectum, suggesting

that dysmotility is not secondary to EGC effects on neuronal survival, at least in the myenteric plexus (Annerino

et al., 2012). Further studies are needed to determine whether there might be deficits in synapse formation or

disruptions in glial interactions with non-neuronal cells important for motility, such as muscularis macrophages,

that could contribute to dysmotility in PD. Lewy body aggregation affects several autonomic ganglia separate

from the ENS, including those that innervate the GI tract (Beach et al., 2010). Alterations at these sites could

also act in concert with EGC dysfunction to disrupt motility.

As detailed previously, mucosal EGCs interact at least indirectly with the gut microbiome, integrating sig-

nals to and from the immune system. These interactions may promote PD pathology, especially if microbial

changes are involved in the pathogenesis of PD. Numerous studies have documented altered composition
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of the GI microbiome in patients with PD, although without concordance in specific taxonomies (Lubomski

et al., 2019). It is unclear whether this dysbiosis is the cause or consequence of PD progression. Although

there is evidence that microbiome changes precede PD onset (Heintz-Buschart et al., 2018), GI dysmotility

is a symptom that often precedes diagnosis and can alter gut microbiota. The ways human EGCs might

integrate microbial signals to influence PD or PD-associated dysmotility are far from understood, but an-

imal models have started to provide insights. In the rotenone model, administration of the pesticide rote-

none to rodents reproduces abnormal brain and behavioral findings of PD, mimicking chronic pesticide

exposure as a risk factor for the disease (Betarbet et al., 2000). Mice treated with rotenone exhibited GI dys-

biosis before the onset of motor symptoms (Yang et al., 2017), and mice lacking TLR4 demonstrated atten-

uation of motor symptoms in this model (Perez-Pardo et al., 2019). TLR4 expression is by no means

restricted to EGCs, but given the links between microbes and mucosal glia, TLR4 signaling in EGCs could

link GI dysbiosis to neuronal pathology and dysmotility in PD.

Analogous to PD, prion diseases are also associated with misfolded proteins that accumulate in the brain.

Prion diseases are characterized by rapidly progressive and fatal neurological decline, and there are no

effective treatments. Most cases of prion disease are either genetic or sporadic (of unclear etiology), but

some are of transmissible origin, beginning with ingestion of abnormally folded protein. In these cases,

transmissible prions are likely to travel from enteric neurons to vagal neurons that innervate the gut and

the brain (Mcbride and Beekes, 1999; Sigurdson et al., 2001). Intriguingly, a number of sporadic and genetic

cases also exhibit prion deposition in the vagus nerve (Kresl et al., 2019), raising the possibility that the ENS

plays a role in nontransmissible as well as transmissible prion disease. Propagation of prions requires

expression of normally folded protein PrPc by the host, which misfolds upon coming into contact with

the infectious isoform PrPsc. In addition to the brain, a variety of mammalian tissue types express PrPc,

including the heart, lung, intestine, and kidney (Oesch et al., 1985; Peralta and Eyestone, 2009). PrPc is ex-

pressed in the human and rodent ENS, by both EGCs and neurons in both plexuses of the small and large

intestines (Shmakov et al., 2000; Albanese et al., 2008). Thus, PrPc reservoirs in EGCs could participate in the

transmission of misfolded prions from the gut to the brain.

Enteric glia may be both protagonists and victims of neurological disease. In multiple sclerosis (MS), an

autoimmune disorder characterized by demyelinating lesions in the CNS (Levinthal et al., 2013), many pa-

tients experience GI symptoms. New evidence suggests that EGCs may be peripheral targets in MS. There

is increased GFAP immunoreactivity in the myenteric ganglia of patients with MS, suggestive of gliosis

(Wunsch et al., 2017). The experimental autoimmune encephalomyelitis (EAE) model of MS in which

mice are immunized with myelin antigens, however, has shown conflicting results. One group reported

increased GFAP in the small intestinal myenteric plexus, while another reported a decrease in the colon

(Wunsch et al., 2017; Spear et al., 2018). Nevertheless, both groups found clear evidence of GI dysmotility

in EAEmice. Circulating autoantibodies to enteric neurons and glia were identified in EAEmice, and a small

subset of patients with MS was found to have antibodies to one of the identified antigens, apolipoprotein

A-I (Wunsch et al., 2017). Consistent with these observations, antibodies from the serum of patients with MS

colocalized with S100B and HuD in the guinea pigmyenteric plexus (Spear et al., 2018), indicating that both

enteric glia and neurons could be targets of the autoimmune process in MS.
CONCLUSIONS

The brain-gut axis is a two-way highway by which the CNS modulates many gut functions from motility to

fluid secretion, and the gut, in turn, transmits a great deal of information about the host’s environment,

nutrient state, and gut microbial composition to the brain. The ENS and its major constituents, EGCs,

are key components of this axis. It is now evident that while EGCs share features of glia in other parts of

the nervous system, they are highly unique and without direct analogy. Presumably, at least one reason

for this unique biology is because they are embedded in the distinct and complex microenvironment of

the GI tract where they are in close contact with myriad cell types including blood vessel endothelial cells,

lymphatic endothelial cells, immune effector cells, enteric neurons, extrinsic nerve fibers, and intestinal

epithelial cells. This makes EGCs well positioned to receive, integrate, and transmit information between

the nervous, immune, and endocrine systems to regulate GI homeostasis. Less advantageously, this may

perpetuate miscommunication or maladaptive responses in the context of disease (Figure 3).

There have been major advances in the understanding of EGCs over the last several decades, but in almost

every aspect of their biology, fundamental questions remain. A pressing question is to what degree there
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are functionally distinct subtypes of enteric glia. Recent single-cell genomics studies have added to the un-

derstanding of EGC diversity, and these will undoubtedly provide an important foundation for determining

the functional significance of different EGC populations in both homeostasis and disease. The majority of

studies to date have focused on glia in the myenteric plexus, andmuch more work is needed to understand

the biology of submucosal, mucosal, and intramuscular EGCs. Similarly, glial biology in the upper GI tract,

particularly the stomach and esophagus, is largely unexplored.

Studies in animal models have been and will continue to be essential for defining the fundamental biology

of EGCs, especially because these cells are at the nexus of multiple systems that interact to determine host

physiology. Nevertheless, to determine the relevance of these observations to human disease it is also

necessary to understand which EGC attributes are conserved across species. New approaches such as hu-

man tissue explants into rodent hosts (Nagy et al., 2018), intestinal organoids that incorporate ENS cells

(Schlieve et al., 2017), and transplantation of neural crest stem cells derived from human-induced pluripo-

tent stem cells into animal models in vivo or human intestinal explants in vitro (Workman et al., 2017; Li

et al., 2018a) are all promising ways to examine human EGC behavior in physiologically relevant

environments.

Studies in animal models and human tissues have already revealed a role for EGCs in intestinal inflamma-

tion, colonic dysmotility, and colorectal cancer. The understanding of EGC roles in neurodegenerative

disorders is still in its infancy, and potential roles in neurodevelopmental disorders are almost completely

unexplored. Human tissue studies that are limited to analysis of glia in paraffin tissue sections or mucosal

biopsies ultimately sample a vanishingly small number of cells, which may be one reason why they some-

times lead to conflicting findings. The advent of 3D approaches to visualizing glial networks throughout the

gut wall will enable more effective sampling and detection of ENS pathology in human disorders.

Conversely, dedicated ultrastructural analyses of human EGCs and the nature of their intercellular interac-

tions will also reveal new insights on human EGC biology.

Regardless of their roles in the pathogenesis of various disorders, the ability of EGCs to secrete factors that

influence neurons, immune cells, and the intestinal epithelium means that they could be highly valuable

targets for treating human disease. The accumulating evidence that systemic inflammation has a role in

CNS pathology means that enteric glia-based therapies could be considered not just for digestive disor-

ders but also for neurological disorders such as PD. Further exploration of both the fundamental biology

and human pathology of enteric glia will be vital for all of these efforts.
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