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Fengkai Xu* and Di Ge*

Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

To figure out the molecular mechanism in the esophageal squamous carcinoma (ESCC)
with the discrepancy in the tissue-resident microbiota, we selected clinical features,
RNA sequences, and transcriptomes of ESCC patients from The Cancer Genome Atlas
(TCGA) website and detailed tissue-resident microbiota information from The Cancer
Microbiome Atlas (n = 60) and explored the infiltration condition of particular microbiota
in each sample. We classified the tissue-resident micro-environment of ESCC into
two clusters (A and B) and built a predictive classifier model. Cluster A has a higher
proportion of certain tissue-resident microbiota with comparatively better survival, while
Cluster B has a lower proportion of certain tissue-resident microbiota with comparatively
worse survival. We showed traits of gene and clinicopathology in the esophageal
tissue-resident micro-environment (ETM) phenotypes. By comparing the two clusters’
molecular signatures, we find that the two clusters have obvious differences in gene
expression and mutation, which lead to pathway expression discrepancy. Several
pathways are closely related to tumorigenesis. Our results may demonstrate a synthesis
of the infiltration pattern of the esophageal tissue-resident micro-environment in ESCC.
We reveal the mechanism of esophageal tissue-resident microbiota discrepancy in
ESCC, which may contribute to therapy progress for patients with ESCC.

Keywords: esophageal squamous carcinoma, tissue-resident flora, esophageal tissue-resident micro-
environment, LASSO analysis, R language software

INTRODUCTION

Esophageal cancer (EC) was a commonly seen upper gastrointestinal tract malignant tumor which
was responsible for an estimated 572,034 new cases (3.2% of all) and 508,558 deaths (5.3% of
total cancer death) in 2018. EC ranked sixth on the cause of death from cancer worldwide (Abnet
et al., 2018). Esophageal squamous carcinoma (ESCC) is different from esophageal adenocarcinoma
(EADC) in geographic patterns, etiologies, and time trends, which account for nearly 90% of the
cases of EC in East Asia (Bray et al., 2018). The prognosis for ESCC was poor, and there are limited
options for ESCC patients who have sensitive responses to the risk of relapse after surgical removal
(Park et al., 2018).

The occurrence of EC is significantly correlated with nutritional status and eating habits. The
number of gastrointestinal microbiota of different types is also affected by the above factors
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(Hooper et al., 2001). The human body can provide an ecosystem
for the survival of 10–100 trillion microorganisms (Neish,
2009). The human gastrointestinal microbiota were reported
to be not only closely related to multiple local diseases of
the gastrointestinal tract disease, such as inflammatory bowel
disease, reflux-related esophagitis, and Barrett’s esophagus, but
also some systemic diseases such as diabetes, non-alcoholic
fatty liver disease (NAFLD), and some cancers (Cani et al.,
2008; Henao-Mejia et al., 2012; Parkes et al., 2012; Gao
et al., 2015). Comprehensively, gastrointestinal microbiota refer
to the microbial environment in the human digestive tract,
including the esophagus.

Increasing researchers have demonstrated that the
esophageal tissue-resident microbiota have an important
role in carcinogenesis and the pathophysiology of cancers. The
type and proportion of esophageal tissue-resident microbiota
might be of great value in predicting the genetic and prognosis
of EC, which is not well explored yet. In this study, we analyzed
the esophageal tissue-resident microbiota and multi-omics
data of esophageal squamous cell carcinoma (SCC) from The
Cancer Genome Atlas (TCGA) and The Cancer Microbiome
Atlas (TCMA) databases. We attempted to explore the internal
relationship and molecular mechanism between them. We hope
our results can build a reliable model for predicting the survival
and prognosis of patients with ESCC.

MATERIALS AND METHODS

Proportion of Esophageal
Tissue-Resident Microbiota
The esophageal tissue-resident microbiota data we used
were from TCMA after comparing and integrating data
from multiple next-generation sequencing (NGS) platforms
and various sample types. TCMA database isolated and
experimentally validated the tissue-resident component of these
datasets, thus producing a public resource of computationally
decontaminated microbial profiles in TCGA tissue samples.
The TCMA database has various classified tissue-resident
microbiota data, and esophageal microbiota information
is separated from other tissues. TCMA directly provided
the proportion of certain microbiota in each sample. The
data special for esophageal microbiota can be found at
https://tcma.pratt.duke.edu [main Streamlit (duke.edu)]
(Dohlman et al., 2021). We found the TCMA database and
detailed information about how the microbiota data are
normalized in Method details in this paper: Dohlman et al.
(2021). We removed normal tissue data and kept the tumor
tissue data. We matched serial number of each sample in
TCMA and TCGA, which was realized by using the R dplyr and
tidyverse package.

Expression of Esophageal Squamous
Carcinoma Datasets
RNA-seq gene expression, nucleotide variation, copy
number variation (CNV), miRNA expression, survival,

and clinical information datasets of patients with ESCC
(n = 60) were retrieved from TCGA data portal and
UCSC Xena Browser. All data were downloaded from
https://xenabrowser.net/datapages/?cohort=TCGA%20Esophage
al%20Cancer%20(ESCA)&removeHub=https%3A%2F%2Fxena.
treehouse.gi.ucsc.edu%3A443 or UCSC Xena1 or Esophageal
Cancer—Patient Version—National Cancer Institute. We
removed patients with insufficient or unavailable clinical and
survival information. We used the R tidyverse package for data
processing (Colaprico et al., 2015).

Consensus Groups for Esophageal
Tissue-Resident Micro-Environment
Infiltration, Esophageal Tissue-Resident
Microbiota, and Heatmaps
We performed the unsupervised consensus clustering based
on esophageal tissue-resident microbiota proportion. The
most appropriate k value was found to be 2 after checking out
the heatmaps of the consensus matrices and the CDF plot.
Heatmaps are based on hierarchical clustering of β-values using
Euclidean distance and Ward’s algorithm (R package gplots).
We used the proportion of ambiguously clustered pairs (PAC)
to determine the optimal clustering number. The parameter
of reps was set by 1,000 times in Consensus Cluster Plus.
Therefore, clustering trees were bootstrapped 1,000 times to
ensure the robustness of clustered nodes. The code can be found
in https://www.linkedin.com/pulse/how-use-pac-measure-
consensus-clustering-yasin-%C5%9Fenbabao%C4%9Flu. The
pheatmap package was used to plot the five esophageal
tissue-resident microbiota clustering patterns from
different patients.

Differentially Expressed Genes Analysis
Differentially expressed genes and miRNAs in different cluster
groups were identified by the package limma, which implements
the Benjamini and Hochberg (BH) method to compute gene
expression changes with moderated t-test and adjust the P-value
as a false discovery rate (FDR) (Ritchie et al., 2015). The
cutoff criteria were an absolute value of log fold change
(FC) > 1 but adjusted P < 0.05 for differential expression.
We choose log (FC) > 1 is that multiple researchers had
chosen log (FC) > 1 as a standard to distinguish upregulated
genes, while log (FC) < -1 means downregulated genes (de
Abreu Neto et al., 2017; Praz et al., 2018). The cluster Profiler
package was used for analyzing the functional enrichment of
the detected DEGs. The cutoff for Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) terms was
adjusted P-value < 0.05 and FDR < 0.05. We have improved
our data processing with the combat algorithm in the SVA
package in R to wipe out batch effects. To decrease the FDR,
Benjamini–Hochberg procedure, based on 10,000 permutations,
was used to calculate and adjust the enrichment p-values for
multiple testing.

1xenabrowser.net
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Differentially Mutated Genes Analysis
The simple nucleotide variation data were stratified into
two groups, and their mutational patterns were investigated
separately. Differentially mutated genes were detected using
Fisher’s exact test and visualized by the maftools package. Besides,
mutational load and CNV were calculated for every patient, and
the differences between the two groups were explored.

Construction of the Predictive Model
After taking the intersection of the DEGs and 137 genes, we
obtained 10 DEGs (IF-DEGs). Based on the DEGs, we further
performed gene selection using the least absolute shrinkage and
selection operator (LASSO) with fivefold cross-validation linear
regression (Tibshirani, 1996; Vasquez et al., 2016) implemented
in R glmnet package. This method uses an L1 penalty to
shrink the regression coefficients for unimportant genes to
zero. This results in a parsimonious model where only the
genes with the strongst associations with the outcome will be
selected. Genes were selected from the LASSO linear regression
models with the optimal value of lambda from leave-one-out
cross-validation at each taxonomic level. Covariates included
in the traditional linear regression model were controlled in
the LASSO taxa selection process. Subsequent binary logistic
regression analysis is also performed using a p-value of 0.05
as a threshold for statistical significance. Model selection was
repeated using a stepwise forward and backward approach
to assess whether the variables included in the final model
were influenced by the approach for the multivariate analysis
(sensitivity analysis). The models were compared using a receiver
operating characteristic curve (ROC) analysis to determine the
most predictive model. The model is used to predict whether
ESCC patients mutualize specific esophageal tissue-resident
micro-environment.

Data Processing
All statistical analyses were conducted in R software (version
4.0.3). The comparison of the clinical features of the ESCC
patients between the two clusters was made, of which categorical
variables were compared by Chi-square test or Fisher’s exact
test when Student’s t-test compared appropriate and continuous
variables. Student’s t-test was also used to compare continuous
variables such as the mutational load, and log-rank test was used
to compare overall survival between the two groups in the
Kaplan–Meier survival analysis. All the tests used in our study
were two-sided, and the significance threshold of the p-value
was set as 0.05.

RESULTS

the Landscape of the Esophageal
Tissue-Resident Microbiota Clustering in
Esophageal Squamous Carcinoma
The design of this study is shown in Figure 1A. We matched
60 patients from TCMA with TCGA. We used the proportion
of esophageal tissue-resident microbiota to show each sample’s

relevant abundance by unsupervised consensus clustering, which
can systematically show the characteristic of each ESCC patient’s
esophageal tissue-resident microbiota clustering phenotype. We
conducted the clustering procedure by the proportion of the
esophageal tissue-resident microbiota subsets with PAC to choose
the optimal and stable cluster number (Figure 1B). The cluster
of k-means ensured we gained the optimal sequestration by
dichotomizing the training cohort, separating the 60 patients
into two groups called cluster I (n = 31) and cluster II
(n = 29). The result also showed the most enriched five kinds
of esophageal tissue-resident microbiota, namely, Bacteroidetes,
Proteobacteria, Firmicutes, Fusobacteria, and Actinobacteria.
The samples were divided into two clusters according to the
distribution of these five kinds of esophageal tissue-resident
microbiota in each sample. Cluster I had a high proportion
of Proteobacteria, Firmicutes, and Actinobacteria and a low
proportion of Bacteroidetes and Fusobacteria, while cluster
II had a low proportion of Proteobacteria, Firmicutes, and
Actinobacteria and a high proportion of Bacteroidetes and
Fusobacteria (Figure 1C). We found out that Bacteroidetes and
Fusobacteria belong to Bacillus, while Proteobacteria, Firmicutes,
and Actinobacteria are not. Cluster I and Cluster II can also
be entitled to the low Bacillus proportion cluster and the high
Bacillus proportion cluster. We also compared the esophageal
tissue-resident microbiota in the patients with primary tumor
or solid normal tissue (Figure 1D). There is a significant
difference between the two cluster groups in OS (p = 0.029;
Figure 2A). The “hot area,” cluster I, was infiltrated with a
high proportion of the three kinds of esophageal tissue-resident
microbiota, so we selected the color red to show the activated
distribution in these esophageal tissue-resident microbiota. In
contrast, the “cold area” had a relatively tenuous proportion
of the three kinds of esophageal tissue-resident microbiota.
Thus, we used the color blue to designate tenuous esophageal
tissue-resident microbiota proportion. We drew the Kaplan–
Meier curve under the circumstances of the esophageal tissue-
resident microbiota subsets. The results demonstrated that
patients with a high proportion of Proteobacteria, Firmicutes,
and Actinobacteria had better OS (p = 0.014, 0.017, and
0.036). In comparison, patients with a high proportion of
Bacteroidetes and Fusobacteria had worse OS (p = 0.011 and
0.0048) (Figure 2B).

Clinical Features of the Esophageal
Tissue-Resident Microbiota Clustering in
Esophageal Squamous Carcinoma
Concerning baseline traits, we studied the age, sex, BMI, smoking
or not, TNM stages, and stage distribution of the clustering
groups (Table 1). The median data of the diagnosis age were
63.7 years in cluster I, but 64 years in cluster II (Chi-square,
p = 0.837). The median data of the BMI were 25.2 in cluster
I, but 22.1 in cluster II (p = 0.023). There was no significant
difference in staging (Fisher’s, p = 0.392) or TNM stage (Fisher’s,
p = 0.5, 0.648, and 0.222) between the two groups, nor in sex
or whether smoking (p = 0.457 and 0.826), which showed that
the distribution in the cluster groups is independent of age, sex,
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FIGURE 1 | (A) Construction of the study. (B) Consensus matrixes of all sample cohorts for each k (k from 2 to 5) demonstrate the stability of clustering through
2000 HYPERLINK “javascript” hierarchical clustering. (C) All-randomized clustering of esophageal-tissue resident microbiota for 60 samples from both TCGA and
TCMA. (D) Proportion of the most significant esophageal tissue-resident microbiota in the primary tumor and solid normal tissue according to the best clustering
(Table 1). Basic characteristics of the ESCC patients in the two infiltration groups from the TCGA database.

smoking, TNM stage, and stage, but the distribution in the cluster
groups may be related to BMI. In order to remove the effect of the
cofounder BMI on the microbiota of the identified two clusters,

we performed multivariate Cox regression analysis. The result
showed that the OS does not correspond to the BMI [HR ratio
and 95% CI: 1(0.94–1.07), P = 0.945].
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FIGURE 2 | (A) Kaplan-Meier curves for overall survival (OS) of cluster groups in the discovery cohort. (B) Kaplan-Meier curves for overall survival (OS) based on
esophageal tissue-resident microbiota.

Frontiers in Microbiology | www.frontiersin.org 5 May 2022 | Volume 13 | Article 859352

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-859352 April 26, 2022 Time: 12:7 # 6

Yang et al. Esophageal Tissue Resident Microenvironment Discrepancy

TABLE 1 | Clinical features of the two clusters.

1 2 p.overall

N = 21 N = 22

sex: 0.457

female 5 (23.8%) 3 (13.6%)

male 16 (76.2%) 19 (86.4%)

age 63.7 (10.3) 64.0 (13.1) 0.937

age_median: 1.000

older 12 (57.1%) 13 (59.1%)

younger 9 (42.9%) 9 (40.9%)

BMI 25.2 (21.8;32.5) 22.1 (20.2;24.2) 0.023

smoke: 0.826

No 15 (71.4%) 14 (63.6%)

Yes 6 (28.6%) 8 (36.4%)

T: 0.500

T1 6 (28.6%) 2 (9.09%)

T2 3 (14.3%) 5 (22.7%)

T3 11 (52.4%) 13 (59.1%)

T4 1 (4.76%) 2 (9.1%)

N: 0.648

N0 12 (57.1%) 11 (50.0%)

N1 5 (23.8%) 9 (40.9%)

N2 2 (9.52%) 1 (4.55%)

N3 2 (9.52%) 1 (4.55%)

M: 0.222

M0 15 (71.4%) 18 (81.8%)

M1 0 (0.00%) 1 (4.55%)

M1a 3 (14.3%) 1 (4.55%)

MX 3 (14.3%) 2 (9.1%)

stage2: 0.392

I 5 (25.0%) 2 (9.52%)

II 9 (45.0%) 11 (52.4%)

III 6 (30.0%) 6 (28.6%)

IV 0 (0.00%) 2 (9.52%)

OS: 0.240

0 19 (90.5%) 16 (72.7%)

1 2 (9.52%) 6 (27.3%)

OS.time 13.4 (12.8;23.5) 12.7 (5.12;18.5) 0.123

Differentially Expressed Genes and
Functional Annotation
We analyzed the expression profiles for DEGs to describe the
biological characteristics in two cluster groups. In total, 63 genes
such as NELL2, PRL39L, GRHL3, and IGFL1 were upregulated
(all adjusted p < 0.01) and 70 were downregulated in cluster
II, including CLDN15, MOGAT2, and SMPD3 (Figure 3A). The
pheatmap also demonstrated that the two clusters had a distinct
expression of DEGs considering sex, age, and stages (Figure 3B).
We used the R cluster profile package to analyze the enrichment
of GO and KEGG in the 133 DEGs and the pathways related
to tumorigenesis and intraepithelial neoplasia in cluster II. We
found that epithelial cellular biological behavior correlated with
tumorigenesis and intraepithelial neoplasia corresponded to the
discrepant proportion of esophageal tissue-resident microbiota

in cluster II (Figures 4A–C). In cluster I, several classic metabolic
pathways ranked top.

Tumor Genomic Alterations Associated
With Cluster Groups
Previously reported findings showed that the number of
somatic genomic mutations may be related to the response to
tumorigenesis and intraepithelial neoplasia. We then explored
the distribution patterns of somatic mutations and the variety
of copy numbers in the two cluster groups. The median of
somatic variants per sample was 98 and calculated in clusters I
and II, respectively. The most mutated genes in cluster I were
CSMD3, TP53, LAMA1, DNAH5, PCLO, and TENM4 (97, 94,
87, 84, 81, and 81%, respectively; Figure 3C). Missense mutation
overwhelmed the majority in the variant classification. Variant
type mainly was single nucleotide polymorphism, and the SNV
class was C changing to T (Figures 3D,F). The most mutated
genes in cluster II were TP53, CSMD3, FLG, DNAAH5, and
PIK3CA (96, 86, 83, 83, and 83%, respectively; Figure 3E).
Variant classification, variant type, and SNV class were similar
to cluster I. In ESCC, TP53 is the essential tumoral driver
gene. However, TP53 was slightly higher in cluster I with no
meaningful difference in mutational frequencies of the cluster
groups. The most significant DMGs were compared and listed
(Figure 3G). The result showed nine DMGs such as PIK3CA
(74% in cluster I, 83% in cluster II), LHCGR (65% in cluster I,
65% in cluster II), and DNAH10 (71% in cluster I, 59% in cluster
II). Cluster I had more DMGs than cluster II. Only FLG was listed
(Figure 3H). Based on the data, we can describe the scenario of
cluster groups more comprehensively and reveal the complicated
relationship between individual somatic mutation and the impact
of discrepant esophageal tissue-resident microbiota on the tumor.

Prognostic Value of Cluster Groups
The optimal parameter λ of LASSO analysis was set as the
smallest partial likelihood of deviance (Figure 5A). A panel
of 10 DEGs including SNX3, AKIRIN2, TMEM87B, STEAP3,
PPME1, LGALS7B, ARFRP1, STX11, RP11-295P9.3, and
RP11-434D12.1 were employed. Subsequently, we conducted
the binary logistic regression analysis to get the coefficients
of each item. The predictive model could be demonstrated
as the following formula: score = (0.1566 × expression
level of SNX3) + (0.0265 × expression level of
AKIRIN2) + (−0.0127 × expression level of TMEM87B)
+ (−0.329 × expression level of STEAP3) +

(0.0315 × expression level of PPME1) + (0.0363 × expression
level of LGALS7B)+ (−0.0721× expression level of ARFRP1)+
(0.0133 × expression level of STX11) + (−0.0878 × expression
level of RP11-295P9.3) + (−0.1081 × expression level of
RP11-434D12.1). ROC demonstrated that the cutoff value of this
model was 0.008, and the area under the curve (AUC) was 0.940
(Figure 5B). When the score is less than 0.008, the ESCC patient
is more likely to have a high proportion of the three esophageal
tissue-resident microbiota, classified into cluster I. If the score
is higher than 0.008, the patient is more likely to have a low
proportion of the three esophageal tissue-resident microbiota,
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classified into cluster II. The sensitivity and specificity of this
model were 0.818 and 0.955, respectively.

DISCUSSION

Gastrointestinal microbiota are reported to have a significant
impact on tumorigenesis. One research reveals that active
estrogen is thought to regulate endogenous estrogen metabolism
through enterohepatic circulation by the enzymatic activity
of bacterial β-glucosidase, thereby affecting circulating and

excreted estrogen levels which is a critical risk of breast cancer
(Dabek et al., 2008). Ling et al. showed that the microbiota
composition (beta diversity) remained distinctive. A few bacteria
were different in abundance among the patients compared with
controls despite completion of chemotherapy and presumed
restoration of normal health (Chua et al., 2020). These persistent
microbiota changes may have a role in the long-term well-being
of childhood cancer survivors. However, the impact of these
changes on subsequent health perturbations in these survivors
remains unexplored (Chua et al., 2020). Bernd et al. revealed
that the gastrointestinal microbiome contributes to the onset

FIGURE 3 | (Continued)
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FIGURE 3 | (Continued)
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FIGURE 3 | (A) The volcano plot demonstrates the DEGs of clusters A and B. (B) Unsupervised clustering of 44 ESCC patients from TCGA and TMCA.
Clinical-pathologic characteristics contain age, stage, smoking, and cluster groups. (C) The waterfall plots demonstrate the proportion of genomic mutations and
certain types of mutations in cluster I. (D) Detailed somatic genomic mutations and variations of copy number analysis of cluster I. (E) The waterfall plots
demonstrating the proportion of genomic mutations and certain types of mutations in cluster II. (F) Detailed somatic genomic mutations and variations of copy
number analysis of cluster II. (G) The waterfall plots demonstrate the genomic alterations including somatic genomic mutations and variations of copy number in the
two cluster cohorts. (H) The forest plot shows the value of each co-related genome of prognosis by corresponding hazard ratio (HR) and Odds ratio with 95% CI.

and progression of alcoholic liver disease and NAFLD and
mediates complications in end-stage liver disease (Schnabl and
Brenner, 2014). There appears to be an association between
gastrointestinal dysbiosis and liver disease in patients. Changes
in the gastrointestinal microbiome were found to cause liver
disease mostly in animal models. Few have been associated
with the metabolic and immunologic features of patients with
NAFLD and NASH (non-alcoholic steatohepatitis) (Schnabl
and Brenner, 2014). In addition, Pushalkar et al. (2018)
detected specific gastrointestinal and tumor microbiome in
murine models of pancreatic ductal adenocarcinoma, suggesting
potential bacterial translocation from the digestive tract into the
peritumoral milieu.

Each person can have 500–1000 unique microbial species
representing the digestive micro-environment of individuals.
Therefore, genetic analysis can measure the type and number
of gastrointestinal microbiota specific to an individual. The
disturbance of the gastrointestinal microbiota ecosystem can
affect human health. The difference in the expression level of
specific bacteria may be closely related to the occurrence of
related tumors. Analyzing individual gene differences can predict
the type and proportion of gastrointestinal microbiota. The
incidence and prognosis of EC can be predicted by analyzing the
proportion of gastrointestinal microbiota. Increasing researchers
have demonstrated that gastrointestinal microbiota have an
important role in carcinogenesis and the pathophysiology

of extraintestinal cancers. Yu et al. (2017) found significant
associations with several species, including Parvimonas micra
and Solobacterium. They identified 20 microbial genetic markers
used to distinguish colorectal cancer from controls and
validated four markers in the Danish cohort. These four genes
distinguished the CRC metagenome from the control group in
the French and Austrian cohorts, whose regions under the subject
operation curve (AUC) were 0.72 and 0.77, respectively. QPCR
measurements of these two genes accurately identified CRC
patients in an independent Chinese cohort, with AUC = 0.84 and
OR = 23. These genes are enriched in the microbiome of early (I–
II) patients, highlighting the potential of using fecal metagenomic
biomarkers for the early diagnosis of CRC (Yu et al., 2017).

Recent researchers have found that oral and esophagus
microbiota may contribute to the occurrence of ESCC (Yu
et al., 2017; Ren et al., 2019). However, few findings focused
on esophageal tissue-resident microbiota and the distribution
in ESCC patients. This study is the first report to reveal the
different esophageal tissue-resident microbiota proportions and
selected the most significant kinds of esophageal tissue-resident
microbiota. In order to explore and identify the molecular
mechanism in the ESCC micro-bio-environment and help
propel cancer prediction and inspection of ESCC, we assorted
ESCC patients into different cluster groups according to the
proportion of esophageal tissue-resident microbiota, trying to
put the genetic mutation, expression, and other differences into
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FIGURE 4 | (A) KEGG dot-plot of functional enrichment in co-related
pathways analysis of DEGs. (B) GO dot-plot of functional enrichment in
co-related pathways analysis of DEGs. (C) GO bar-plot of functional
enrichment in co-related pathways analysis of DEGs.

the in-depth analysis in this manuscript. We demonstrate the
cluster group as an independent prognostic factor for ESCC
patients. In our research, the prominent OS disparity might
relate to the different distribution of esophageal tissue-resident
microbiota between cluster groups. The overgrowth of various
kinds of bacteria is responsible for many cancers. According to
Robertson et al. (2017) and Magne et al. (2020) Firmicutes and
Bacteroidetes were primarily discovered in the gastrointestinal
microbiota. The classification scheme Firmicutes/Bacteroidetes
was used (Robertson et al., 2017; Magne et al., 2020). The
Firmicutes are one of the largest bacterial phyla with a thick
peptidoglycan layer. A single cytoplasmic membrane, covered
by teichoic or lipoteichoic acids, makes up monoderm envelope
(Megrian et al., 2020). Bacteroidetes primarily target steroids,

polysaccharides, and bile acids, which aid in polysaccharide
absorption and protein synthesis; it has also been proven to
boost regulatory T-cell growth and defend against inflammatory
reactions (Telesford et al., 2015). Obese animals and humans have
a larger ratio of Firmicutes/Bacteroidetes in their gastrointestinal
microbiota than normal-weight people according to a recent
study, and this ratio has been recommended as an ultimate
biomarker (Magne et al., 2020). On the contrary, a low
Firmicutes/Bacteroidetes ratio is commonly seen in some severe
inflammation diseases. A low-level inflammation reaction can
be observed with a high Firmicutes/Bacteroidetes ratio (Arneth
et al., 2019). Proteobacteria is Gram-negative, indicating the
presence of lipopolysaccharide in the outer membrane (Rizzatti
et al., 2017). Research has revealed that low-grade inflammation
is sustained by lipopolysaccharides (LPS). However, LSP is one of
the strongest TNF-α stimulators found in the outer membrane
of Gram-negative bacteria (Zhou et al., 2018). Actinobacteria
is also critical in the development of the immune system.
The main roles of commensal bacteria include the activation
of intraepithelial lymphocytes, the generation of mucosal
immunoglobulins, and promotion of a tolerogenic immune
response (Binda et al., 2018). Also, Actinobacteria can modulate
immune-inflammatory and autoimmune responses by inducing
regulatory T cells (O’Mahony et al., 2008). In animal models,
Actinobacteria in these mice stimulated the production of TNF-
α in lipopolysaccharide-stimulated macrophages, promoting an
oxidative burst that enhanced the phagocytosis of peritoneal
macrophages (Cano et al., 2013). In the present research, we
expect that the high concentration of TNF-α may contribute
to the immune defense in inhibiting tumorigenesis. Several
metagenomic sequencing studies have shown that increased
Fusobacteria abundance is positively associated with CRC
mortality (Kelly et al., 2018). For example, one study found
that CRC patients with high clostridium levels had significantly
lower overall survival than patients with average Fusobacteria
levels (P = 0.008) (Flanagan et al., 2014). Others found that
the abundance of Fusobacteria in CRC was significantly higher
than that in normal tissues adjacent to the tumor histology.
This difference was also evident in stool samples. Fusobacteria
enrichment was also observed in colorectal adenomas (McCoy
et al., 2013; Flanagan et al., 2014). In our result, Fusobacteria had
higher distribution in cluster II with worse OS. So, the proportion
of Fusobacteria may evolve into a predictive detection index in
ESCC patients to estimate the possible survival and prognosis.

After finding the different esophageal tissue-resident
microbiota classifications in the two cluster groups, we wanted
to explore the molecular mechanism, so we analyzed DEGs and
related pathways. We found that the energy metabolism pathway,
epidermis development pathway, and keratinization pathways
closely related to tumorigenesis and intraepithelial neoplasia
were enriched in cluster II. SCC can arise from more than one
epidermal population, including follicle enlargement squamous
cells, because overexpression of overactive KRAS mutants in
different epidermal lineages induces tumors with comparable
efficiency (Rognoni and Watt, 2018). The change in esophageal
tissue-resident microbiota distribution may lead to enrichment
in tumorigenesis pathways. Changes in tumor-associated
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FIGURE 5 | (A) Five-fold cross-validation for tuning parameter (λ) selection in the LASSO regression model. The partial likelihood deviance is plotted in log(λ), in
which vertical lines are shown at the optimal values by minimum criteria and 1-SE criteria. (B) Receiver operating characteristic curve (ROC) of the LASSO-binary
logistic regression model.

microbiota can lead to enrichment in C/N and Toll-like receptor
(TLR) signaling, which plays a critical role in gastrointestinal
tumor development. Selective activation occurs in tumor tissues
due to increased TLR expression in tumor cells and changes
in tumor-associated microbiota stratification. Changes in the
composition of the symbiotic microbiome are associated with
CRC development, and epithelial calcineurin regulates the
development of gastrointestinal tumors by controlling the
response of the epithelium changes in microbial composition
and stratification (Gang et al., 2019). The increased expression
of several kinds of functional pathways in cluster II may have a
connection with the disorder in the esophageal tissue-resident
microbiota proportion.

It is noteworthy that cluster II had an increased estrogen
pathway which may be concerned with a rise in PIK3CA
mutation. Patients with hormone receptor (HR)-positive, human
epidermal growth factor receptor 2 (HER2)-negative breast
cancer have PIK3CA mutations in about 40% of cases.
Alpelisib, a PI3Kα inhibitor, has shown anticancer efficacy in
preliminary investigations (André et al., 2019). Research has
found that bacteria may have a direct role in the occurrence
of oncogenic mutations. Pleguezuelos-Manzano et al. (2020)
revealed that E. coli carrying PKS virulence islands could
produce colibactin’s genetic toxin. Colibactin, produced by
gastrointestinal microbes, was found to cause genetic damage
(deficiency in single-base substitution and insertion) to human
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gastrointestinal stem cells (organoid) in vitro when injected into
them, which proved that metabolite created by gastrointestinal
microorganisms may directly cause genetic mutation, causing
cancer (Pleguezuelos-Manzano et al., 2020).

Our research has several limitations. First, the samples
of our findings are from TCGA and TCMA databases, and
the number is 60, which is not a very large sample size.
More samples are required for extensive RNA-sequence
and bioinformatics analysis. Second, the mechanism of how
esophageal tissue-resident microbiota may impact ESCC
occurrence remains uncertain. Third, we cannot investigate
the gene alteration in each gastrointestinal microbiota type
since bulk RNA-Seq only reflects the average expression of
whole cells in the sample. Fourth, the BMI between two
clusters shows a statistical difference, and we did not remove
the effect of the cofounder BMI on the microbiota of the
identified two clusters.

In conclusion, our research finds out that the use of esophageal
tissue-resident microbiota discrepancy may differentiate the
potential survival of patients with ESCC. The genomic differences
between two clusters also show significant differences which lead
to the discrepancy in expressions of the downstream pathways.
Our findings may serve as the exploratory research on how
abnormal micro-bio-environment may cause tumor formation,
thus providing new clinical treatment or diagnostic standards
for ESCC patients.
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