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Abstract

The generality of a model for predicting tumor control probability from in vitro clonogenic survival considering of cancer stem-like
cells, the so-called integrated microdosimetric-kinetic model, is presented by comparing the model to public data on stereotactic body
radiation therapy for non-small cell lung cancer cells.

© 2024 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Radiation therapy allows for the eradication of solid
tumors in patients, and the curative effects are usually
evaluated using tumor control probability (TCP). From a
radiobiology standpoint, fractionation regimens are theo-
retically determined using a mathematical model to
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predict the relationship between the absorbed dose and
clonogenic survival." However, the clinically implemented
LQ model cannot reproduce patient TCP using the
parameters (o [Gy_l] and B [Gy_z]) provided by the in
vitro clonogenic surviving fraction. These parameters are
often obtained empirically by fitting patient TCP data.

To solve this problem, we developed an integrated
microdosimetric-kinetic (IMK) model that considers the
existence of cancer stem-like cells (CSCs).>” Using this
model, we successfully reproduced the clinical TCP of
patients with lung cancer after stereotactic body radiation
therapy (SBRT) using the parameters obtained after fitting
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Figure 1 The schematic of SFED concept. SFED is defined as the dose in a single dose equivalent to the cell survival
exhibited by the desired fraction. Abbreviations: IMK = integrated microdosimetric-kinetic; SFED = single fractionation

equivalent dose.

to experimental in vitro survival. Based on our previous
outcomes from a translational study of in vitro and clini-
cal curative effects, explicit consideration of the CSC frac-
tion plays a key role. The previous patient data were
obtained from a single institution. Therefore, a generality
assessment of the IMK model by comparing it with public
data are essential.

In this study, we systematically collected TCP data on
SBRT in patients with non-small cell lung cancer
(NSCLC) published in medical journals. When analyzing
previously published clinical TCP, the fractionation
scheme and prescribed dose were converted into a useful
indicator for SBRT, that is, the single fractionation equiv-
alent dose (SFED).*” By a comparison between the col-
lected TCP and IMK model estimation, we demonstrated
the importance of considering heterogeneous cell popula-
tions, particularly the existence of CSCs, when estimating
the TCP for lung cancer.

Methods and Materials

We reviewed 55 reports identified through a literature
search of the MEDLINE database through PubMed from
July to August 2022. The search term used were “NSCLC
SBRT,” and “NSCLC SABR,” and inclusion criteria were
“original article,” “article in English,” “accessibility to the
full article,” and “clinical trial.” Noted that we simply
searched for “clinical trial” to exclude retrospective stud-
ies because it may include published data. Among 55
studies, 13 studies”'” were identified using further inclu-
sion criteria, which were “including fractionation
scheme,” “including tumor control probability or local
control rate associated with a fractionation scheme,” and
“only primary NSCLC outcomes available.”

The fractionation schemes reported in the previous
reports” ' were converted to the SFED using model

parameters derived from the A549 cell line.* The SFED
represents a single fraction dose equivalent to the biologic
effect (ie, the cell-killing effect) induced by any dose frac-
tionation scheme (Fig. 1). The cell survival curve after sin-
gle (acute) or multiple fractionations (eg, 10 Gy/fraction
in Fig. 1) was calculated using the IMK model, as in our
previous report.” We focused on the relationship between
the fractionation scheme and local control; thus, patient
and tumor characteristics were not considered.

Results and Discussions

Table 1 summarizes the TCP data associated with vari-
ous fractionation schemes collected through the literature
search. The number of fractions was 1 to 10, and the frac-
tionated dose was 5 to 34 Gy, which was converted to
SFED using the IMK model in detail, 24 to 36 Gy. Figure 2
shows the relationship between SFED and TCP, in which
the TCP curves were depicted by the IMK model assum-
ing various CSC fractions within the tumor (Fig. 2A) and
a constant CSC fraction of 7.98% (Fig. 2B), which was
derived from the A549 cell line." In a previous study, the
IMK model successfully reproduced 3-, 5-, and 8-year
TCPs with identical cellular parameters. Similarly, the
IMK model successfully reproduced the public TCP data
regardless of the observation period (Fig. 2). This may be
because the TCP can be determined by the number of sur-
viving tumor cells with clonogenicity (regrowth ability).
Liu et al fitted pooled TCP for SBRT in NSCLC using 6
radiobiological models.'”” Among these, the model that
considered regrowth was in better agreement with the
TCP for various observation periods. Although it is an
important parameter for converting radiobiological mod-
els to the TCP model, regrowth associated with CSCs
should be considered for higher accuracy prediction in
future studies. Indeed, cell injection of the CSC fraction
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Table1 Summary of the TCP with various fractionation scheme
Authors Fractionation scheme TCP Patient no. SFED (Gy)
Bezjak et al,” 2019 10 Gy/5 fr 1-y 100%, 2-y 87.5%, 3-y 75% 8 27.51
11 Gy/5 fr 1-y 100%, 2-y 100%, 3-y 100% 7 28.60
11.5 Gy/5 fr 1-y 100%, 2-y 85.7%, 3-y 85.7% 14 29.68
12 Gy/5 fr 1-y 92.1%, 2-y 89.4%, 3-y 86.7% 38 30.76
10.5 Gy/5 fr 1-y 97%, 2-y 87.9%, 3-y 84.7% 33 31.83
Timmerman et al,” 2018 18 Gy/3 fr 2-y 96% 33 33.63
Martin et al,® 2016 18 Gy/3 fr 3-y 94% 22 33.63
Caivano et al,” 2018 15 Gy/3 fr 1-y 67%, 2-y 54% 22 28.76
Miyakawa et al,'’ 2017 12 Gy/4 fr 3-y 100%, 5-y 80% 6 28.08
12.5 Gy/4 fr 3-y 90%, 5-y 90% 51 29.04
17.3 Gy/ 4 fr 3-y 78%, 5-y 69% 14 32.55
Baba et al,'' 2010 12 Gy/4 fr 3-y 81% 85 28.08
17.3 Gy/4 fr 3-y 74% 37 32.55
Chang et al,'* 2008 12.5 Gy/4 fr Median follow-up 17 mo 27 29.04
(range, 6-40 mo) 100%
Shen et al,"” 2015 20 Gy/3 fr Median follow-up 35 mo 86% 50 36.87
Singh et al,"* 2019 30 Gy/1 fr 2-y 94.9% 48 29.01
20 Gy/3 fr 2-y 97.1% 40 36.87
Shibamoto et al,'> 2012 11 Gy/4 fr 3-y 100% 4 26.18
12 Gy/4 fr 3-y 86% 124 28.08
13 Gy/4 fr 3-y 73% 52 29.99
Matsuo et al,'® 2022 12.5 Gy/4 fr 2-y 95.2% 48 29.04
Videtic et al,'” 2019 34 Gy/1 fr 1-y 97% 39 32.74
12 Gy/4 fr 1-y 92.7% 45 28.08
Vahdat et al,"® 2010 14-20 Gy/3 fr 2-y 95% 20 32.01
The fractionation scheme is presented as fractionated dose (Gy)/number of fractions.
Abbreviations: fr = fraction; SFED = single fractionation equivalent dose; TCP = tumor control probability.

forms tumors with a higher efficiency than injection of the
noncancer stem cell fraction in animal experiments.”*”'
In our previous study, we obtained the CSC fraction
from a CSC marker-positive cell population using flow
cytometry. A representative lung cell line, A549, was used
as a reference representing TCP in patients with NSCLC,
and its CSC fraction, which was measured by aldehyde
dehydrogenase activity at 7.98% = 0.36%. This percentage
may vary depending on the CSC marker used, the cell line
type, and the tissue type.”” In addition, heterogeneous cell
populations are known to change dynamically depending
on the microenvironment in the human body (ie, tumor
microenvironment).”** Additionally, marker-dependent
changes in the intratumoral CSC fraction have been
reported.”> Consequently, the accurate estimate of the
CSC fraction has not been established in clinical.
Although biopsy specimens are often not available for
lung cancers treated with SBRT, using intratumoral hyp-
oxia imaging techniques may be possible to indirectly

estimate the CSC fraction because hypoxia is the tumor
microenvironment maintain the CSC property.”>*” Other
limitations in this study, we did not specify the dose pre-
scription (ie, isocenter or Dys), tumor localization, and
respective tumor volumes. These factors can influence the
relationship between dose, CSC fraction and TCP, but
were not considered in the model of this study.

The conventional LQ model has been modified for pre-
dicting the therapeutic effects of SBRT due to the unreli-
ability of the high-dose range estimation.”>”” Meanwhile,
the model parameters often directly derived from pub-
lished TCP data by fitting approach or just showing a
hypothesis’’'; thus, a large gap remains in the relation-
ship between cell survival fraction and TCP. In this study,
we presented the generality of the all-in-one IMK model
considering the CSC for TCP predicting based on the
model parameters derived from a cell line. The predicted
TCP curve with CSC fractions of 0.001%—100% covered
most of the pooled TCP between 1 and 100%. Although
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Figure 2 Tumor control probability (TCP) depicted by the TCP model considering cancer stem-like cells (CSC). The
circles, triangles, squares, diamonds, and inverted triangles represent 1-, 2-, 3-, and 5-year, and others (ie, nonspecified)
TCP, respectively. Various fractionation schemes were converted to single fractionation equivalent dose. The TCP curve
depicted by the TCP model with (A) arbitrarily CSC fractions (ie, 0.001% with dark gray, 0.01% with red, 0.1% with blue,
1% with green, 10% with purple, and 100% with orange solid line) and (B) constant CSC fractions (ie, 7.983%). Abbrevia-

tion: SFED = single fractionation equivalent dose.

there is room for verification of the validity of the CSC
fraction, introducing the concept of CSC into TCP esti-
mation shows the possibility of high-precision clinical
outcome prediction. Therefore, future investigations of
the stemness plasticity during radiation therapy and accu-
rate CSC fraction estimation in clinical are important for
linking the local control and the CSC fraction of tumors.
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