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Gene expression is regulated at both transcriptional and post-transcriptional levels. DNA sequence and
epigenetic modifications are key factors which regulate gene transcription. Understanding their complex
interactions and their respective contributions to gene expression regulation remains a challenge in bio-
logical studies. We have developed iSEGnet, a framework of deep convolutional neural network to predict
mRNA abundance using the information on DNA sequences as well as epigenetic modifications within
genes and their cis-regulatory regions. We demonstrate that our framework outperforms other machine
learning models in terms of predicting mRNA abundance using transcriptional and epigenetic profiles
from six distinct cell lines/types chosen from the ENCODE. The analysis from the learned models also
reveals that specific regions around promotors and transcription termination sites are most important
for gene expression regulation. Using the method of Integrated Gradients, we identify narrow segments
in these regions which are most likely to impact gene expression for a specific epigenetic modification.
We further show that these identified segments are enriched in known active regulatory regions by com-
paring the transcription factor binding sites obtained via ChIP-seq. Moreover, we demonstrate how
iSEGnet can uncover potential transcription factors that have regulatory functions in cancer using two
cancer multi-omics data.
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
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1. Introduction

Precise regulation of gene expression is an essential biological
process for all cells because it allows for fine-tuned coordination
of complex transcriptional programs. Multiple regulatory mecha-
nisms work in concert to regulate transcription of individual genes.
First, chromatin accessibility is required for the binding of tran-
scription factors to initiate gene expression; such chromatin acces-
sibility can be assessed by DNase I hypersensitivity [1]. Histone
modifications robustly dictate chromatin structure and thus are
important regulators of gene expression. For example, H3K4
trimethylation (H3K4me3) is commonly associated with the acti-
vation of transcription of genes in the proximity of the modifica-
tion through chromatin remodeling by the NURF complex [2].
Second, DNA methylation is another type of epigenetic modifica-
tion that regulates gene expression; it is associated with closed
chromatin and is thought to repel DNA Polymerase II or transcrip-
tion factors from binding to loci such as promoters or enhancers
[3]. Lastly, genetic variants in gene regulatory regions can also
affect all the above-mentioned mechanisms by changing the inter-
actions between the DNA sequence and regulatory modifications
or proteins [4]. These diverse aspects of gene regulation have been
interrogated using next-generation sequencing technologies such
as RNA-seq, ChIP-seq, and whole-genome bisulfite sequencing
(WGBS) [5,6]. Joint modeling of these data within a quantitative
framework has the potential to shed light on their relative impor-
tance, to elucidate mechanistic underpinnings, and to uncover new
modes of gene regulation [7,8].

Several computational tools have been developed to identify
the relationship between histone modifications and gene expres-
sion [9]. Multiple machine learning models are being used to pre-
dict gene expression from epigenetic profiles, including linear
regression [9], support vector machine (SVM) [10], and random
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forest combined with regression [11]. These methods take a ‘‘bin-
ning” approach to divide a large region surrounding the gene tran-
scription start site (TSS) and transcription termination site (TTS)
into consecutive smaller bins to represent the epigenetic signals.
However, histone modification signals can span over an increas-
ingly long range [12] that requires representation by multiple bins.
Thus, the above machine learning methods can not completely
capture the relationship of the neighboring bins, because the rela-
tionship of the bins is not explicitly explored in these machine
learning models.

Recent years have witnessed the rapid growth of applications
that leverage deep learning in systems genomics to learn complex
non-linear relationships from input data for prediction tasks [13].
Convolutional neural networks (CNNs) have been used successfully
in multiple studies, such as predicting the transcription factor
binding sites [14] and classifying cell types in single-cell RNA-seq
data [15], in part due to the CNNs’ capacity to capture both local
and global representations, which are important for accurate pre-
dictions. Several CNN models are specifically designed for gene
expression prediction using various inputs. Some models have
achieved state-of-the-art performance using DNA sequences in
the human and mouse genomes [16–20]. These models rely on
population data or aggregated data from multiple mRNA expres-
sion datasets, limiting their application to cases where multi-
omics profiles are generated only for a few biological replicates.
Other models, such as DeepChrom and DeepDiff, use histone mod-
ification signals to predict gene expression level (i.e., low or high)
and differentially expressed genes [12,21]. Other methods that pre-
dict gene expression only consider open chromatin regions (DNase
I hypersensitive sites) and DNAmethylation signals, without incor-
porating DNA sequences of genes into the models [12,22]. Overall,
this emphasizes the need for a model which integrates the effects
of both DNA sequence and epigenetic modifications, and identify
their interactions with on gene expression regulation.

We present a novel framework herein to assess the comparative

importance of DNA Sequence and Epigenetic modifications on

Gene expression regulation using a deep convolutional neural net-
work (iSEGnet). By incorporating an analytical approach known as
Integrated Gradients (IG) [23] in a trained neural network model,
iSEGnet further computes an attribution score associated with a
specific epigenetic modification for each position in the input
DNA region. This attribution score indicates the relative magnitude
of the potential impact of the epigenetic modification on gene
expression at that specific position. We demonstrate that the iSEG-
net models outperform other machine learning models for predict-
ing mRNA expression levels in terms of Transcripts Per Kilobase
Million (TPM) using data of six different cell lines/types from the
ENCODE project [6]. The attribution analysis also reveals positions
in the cis-regulatory regions that are important for predicting gene
expression. We further show that these regions are active regula-
tory regions by analyzing them for ChIP-seq derived transcription
factor binding sites. Moreover, we apply iSEGnet to data obtained
from two cancer datasets to identify putative regulatory transcrip-
tion factors specific to the disease conditions.
2. Materials & methods

2.1. Datasets and preprocessing

To train an iSEGnet model, three types of data, i.e., DNA
sequences of genes, epigenetic modification signals, and observed
mRNA levels (gene expression), are required. To train and evaluate
iSEGnet, we used epigenetic modification and gene expression data
from six different cell lines/types provided in the ENCODE project
[6]; namely, A549 (adenocarcinomic human alveolar basal epithe-
3815
lial cells), HepG2 (Human liver carcinoma cells), K562 (human
immortalised myelogenous leukemia), large intestine (human
intestine tissue male embryo, 108 days), pancreas (human pan-
creas tissue make adult, 34 years), and small intestine (human
small intestine tissue make child, 3 years). The epigenetic data
includes DNase-seq (indicative of open chromatin and comparable
to ATAC-seq data), ChIP-seq of five histone modifications
(H3K4me1, H3K4me3, H3K9me3, H3K27me3, H3K36me3), and
WGBS DNA methylation profiles. The DNA sequences of genes
were obtained from the hg38 reference genome in NCBI.

We additionally acquired datasets of esophageal tumor [24] and
breast cancer multi-omics [25] studies from Gene Expression
Omnibus (GEO) (accession numbers: GSE149612 and
GSE118716). The esophageal tumor study provides the WGBS
DNA methylation and gene expression profiles in both tumor and
normal tissues from 9 patients. The breast cancer study provides
histone modifications (H3K4me1 and H3K4me3), WGBS DNA
methylation, and gene expression profiles in one drug-sensitive
breast cancer cell line (MCF7, endocrine-sensitive) and one drug-
resistant cell line (TAMR, endocrine-resistant derivatives
tamoxifen-resistant). These two cancer-related datasets were used
as case studies for the application of iSEGnet. The details about cell
lines and cell types are described in Supplement Table 1.

The preprocessed histone modification and DNase-seq data
were downloaded. They provide the signal p-values in bigWig for-
mat processed with Bowtie2 and MACS [5]. A p-value indicates the
significance of a signal in that region compared to the control
input. The whole genome was divided into 20 bp length regions.
The p-value was assigned to each region as follows. First, we
assigned the p-value to each site within that region. Then, we
transformed the p-value by -log10 and scaled it to [0,1].

For DNA methylation data, we downloaded the preprocessed
raw signal data in bigWig format. Each value ranges from [0,
100], indicating the percentage of methylation on that site. We
assigned all other sites with 0, which means unmethylated, and
then scaled the data into [0,1].

For DNA sequence data, we used one-hot encoding to transform
DNA sequences into a binary-valued matrix. An input sequence of
length L was represented by a L� 4 matrix, where 4 is the number
of nucleotides (A, C, G, and T). The selection of L will be discussed in
Section 3.1.

For gene expression data, we downloaded the normalized count
tables and removed the genes with zero expression.

2.2. iSEGnet architecture

iSEGnet is a deep convolutional neural network framework in
which each gene is considered an input sample. As shown in
Fig. 1, iSEGnet has two key input sources, i.e., the epigenetic mod-
ification signals and the DNA sequences of the gene regulatory
regions. As the output, it predicts the mRNA abundance level
(TPM) of the gene. Therefore, to train the model, the RNA-seq gene
expression measured under the same condition is required. iSEG-
net consists of several convolution layers. The convolutional layers
contain multiple convolution kernels, each of which extracts fea-
tures from a single perspective. The first convolutional layer
extracts low-level features from the original data. The next convo-
lutional layer pulls out high-level features from the low-level fea-
tures, and its convolution kernel size gradually decreases. The
rectified linear unit (ReLU) is used as an activation function at each
node of the network, i.e.,

ReLU ¼ x x > 0
0 x � 0

�



Fig. 1. iSEGnet architecture. iSEGnet is a deep convolutional neural network with two-modality inputs. The network predicts gene expression by epigenetic modifications and
DNA sequence of the regions around the transcription starting site and transcription termination site of a gene. l is the number of rows of a kernel. m is the number of
epigenetics modification types in input. k1 and k2 are the numbers of kernels in the first and second convolutional layers, respectively.
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We also used dropout for model regularization to avoid overfit-
ting. To train a model, first, the input corresponding to the epige-
netic data is fed into a convolutional layer with l�m � k1as the
kernel size. The value of m is determined for each dataset based
on the number of available epigenetic modifications in a dataset.
The input corresponding to the DNA-sequence is fed into a convo-
lutional layer withl � 4 � k1as the kernel size. Next, a max-pooling
layer follows the convolutional layer to further preserve the fea-
tures with the highest scores in a region. Then, there is another
convolutional layer with kernel sizel � 1 � k2and a max-pooling
layer, where the two input components (the epigenetic modifica-
tions and the DNA sequence) of the same size (L0 � 1 � k2) are con-
catenated by columns and used as input to the last convolutional
(kernel size: l�2 � 64) and max-pooling layer. Next, the learned
region representation is fed into four fully connected layers. The
final output of the iSEGnet framework is the mRNA abundance
level in TPM count of the input gene. TensorFlow 2.0 [26,27] was
used to train iSEGnet. l; k1; k2 are Hyper-parameters that will be
tunned.

2.3. Model training and testing

iSEGnet was trained using the ADAM optimizer [28] with the
loss function.

MSE ¼ 1
N

XN
i¼1

yi � y0i
� �2 þ k

X
Wj jj j2

Here, N is the number of genes in training data. The first term is
the mean squared error (MSE) between the observed gene expres-
sion yi and the predicted expression yi. The second term is the L2
regularization with a penalty parameter k.

The data for each cell type were divided into three parts: train-
ing (60 %), validation (20 %), and testing (20 %). The network was
fine-tuned for 200 epochs using a batch size of 100. Batch normal-
ization layers were added to the network to increase stability. Early
stopping was applied by checking the model performance on the
validation set at every epoch during the training to avoid overfit-
ting. The prediction results on the test sets were used to report
model performance.

Hyper-parameter tuning was performed to determine the opti-
mal set of hyper-parameters (number of layers, number of kernels,
kernel size, the L2 regularization parameter k, and dropout rate).
We allowed for two convolutional layers in each of the convolu-
3816
tional networks. The number of kernels varied from the combina-
tion of 16, 32, 64, and 128 with different sizes: 20 � 7, 50 � 7, and
100 � 7. The value of k was selected from 5 different values:
0.0001, 0.01, 0.1, and 1.0. The dropout rate was selected from
0.1, 0.3, and 0.5. The hyper-parameters and the corresponding
model performance using the evaluation criteria described in Sec-
tion 2.4 are shown in Supplement Fig. S1. Our analysis indicates
that the models with the hyperparameters (64 nodes for the first
and 128 nodes for the second convolutional layers, kernel size of
20x7, dropout rate of 0.5, and k value of 0.0001) generated the best
performance. Therefore, we chose these hyperparameters for the
rest of our study.

We also evalued another architecture as follows. Instead of
using a convolutional layer to extract information from the con-
catenation layer, we used the fully connected layers right after
the concatenation layer. The evaluation on the test sets indicated
a better performance of iSEGnet (Supplement Fig. S2).
2.4. Evaluation criteria

The best models were chosen according to the coefficient of
determination (R2) computed on the test set of a cell type, i.e.,
R2 ¼ 1� SSResidual=SSTotal, where SSResidual is the sum of residual
squares of predictions and SSTotal is the total sum of squares from
the observations. We also used Pearson’s correlation coefficient
between the observed and predicted expression as an additional
measurement to evaluate the models. These criteria were consid-
ered because the iSEGnet predictions are gene expression levels.
2.5. Comparision with other gene expression prediction methods

We used the Python library (scikit-learn) [29,30] to compare
with other machine learning models, including random forest
and support vector machines. We used sklearn.ensemble.RandomFor
estRegressor with 100 and 200 trees for random forest, and sklearn.
svm.SVR (rbf and linear kernel) and sklearn.svm.NuSVR (rbf kernel)
for support vector machines. We conducted the grid search for
hyperparameter tuning for random forest and support vector
machines using 5-fold cross-validation and reported the mean R2

values for each combination of hyperparameters (Supplement
Fig. S3, Supplement Table 2, and Supplement Table 3). These mod-
els were trained and evaluated on the same training and testing
data used for the iSEGnet models.
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2.6. Feature attribution identification

In order to identify the most relevant modifications and loca-
tions for predicting gene expression, we used the method of Inte-
grated Gradients (IG) [23] to compute the attribution of every
site on input sequence regions. IG explains predictions from a dif-
ferentiable function F defined on a feature space X and F is
obtained from the trained deep learning models. The per-feature
attributions for a prediction are defined relative to a reference
point x0 2 X and its prediction Fðx0Þ. For an observation x 2 X, IG
obtains an attribution vector attrðxÞ by integrating the gradients
of F with respect to the feature space along a path c : ½0;1� ! X that
starts at x0 and ends at x, i.e., cð0Þ ¼ x0 and cð1Þ ¼ x.

Sundararajan et al. focus on a special case where the path c is
chosen to take the straight-line path from x0 to x. Parameterized
by a 2 ½0;1�; the path is cðaÞ ¼ x0 þ aðx� x0Þ so that the attribution
for the j th feature is defined as.

attrjðxÞ :¼ ðxj � x0jÞ �
Z 1

0
a@F x0 þ a� x� x0ð Þð Þ@xjda

The IG analysis was performed using function alibi.explainers.I
ntegratedGradients [31] with n_steps = 200.

2.7. Transcription factor ChIP-seq data for validation

To assess whether high attribution regions were related to
known transcription factor binding regions, we used the MYC tran-
scription factor ChIP-seq data in the lung cancer cell line A549 as
an example. The ChIP-seq data were downloaded from the ENCODE
project (ENCSR000DYC), and the p-values of the peaks were trans-
formed by -log10 as the MYC binding signal on each site.

2.8. KEGG enrichment analysis

Enrichr [32–34] was used to identify signature KEGG pathways
[35] of the transcription factors identified by high attributions in
iSEGnet. Fisher’s exact test was used to perform the enrichment
testing. The Benjamini-Hochberg method was applied for the
multi-test correction, and 0.05 was set as the significant threshold
for adjusted p-values.
3. Results

3.1. Identify the optimal combination of input regions for gene
regulation

Four key cis-regulatory regions, i.e., promoter, 50-UTR, 30-UTR,
and terminator, were evaluated as inputs for iSEGnet. It is not fully
understood how these regions differentially impact gene expres-
sion in the setting of distinct epigenetic modifications. The respec-
tive lengths of these regulatory regions for each gene are also not
well-defined. To identify the regulatory regions which best predict
gene expression, we created combinations of these regions with
different lengths as input. We trained models separately with these
different regulatory regions to find the combination with the high-
est performance evaluated in the test sets (details see Methods).
First, we only used promoters and 50-UTRs as inputs to the model.
We first assessed different lengths of promoters and 50-UTR.
Among various combinations, 1000 bp upstream of TSS (and
500 bp downstream of TSS ([-1000 bp, +500 bp] around TSS) were
the regions with the best coefficient of determination (R2) values
across all six lines/cell types (Fig. 2 A). Then we fixed the promoters
and 50-UTR and combined them with different lengths of 30-UTR
and terminator regions. We found that model performance
increases 0.10–0.15 in R2 values in all cell types (Fig. 2 B). Impor-
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tantly, this analysis highlights that the regions around the TTS also
impact gene expression. The performance of models was most con-
sistent when we set 30-UTR as 500 bp upstream of TTSs. Therefore,
we chose regions of [-1000 bp, +500 bp] around TSSs and [-500 bp,
+500 bp] around TTSs as the input to obtain the model for subse-
quent analysis. As a negative control of the model, we generated
a random dataset by shuffling gene expression randomly and
trained the model on the data set. The R2 values of the models
on the test sets are close to 0 (e.g., R2 value was �0.02004 for
K562 and �0.001861 for A549), demonstrating the prediction of
iSEGnet model is not due to randomness.

3.2. The iSEGnet models outperformed other machine learning models

Next, we compared iSEGnet to other widely used machine
learning methods, including random forest and support vector
machines. iSEGnet outperformed other machine learning models
in three cell lines (A549, HepG2, and K562) with increases of
0.15–0.30 in R2 values and Pearson’s correlations on the tested
datasets (Fig. 3 A, B, Supplement Fig. S4). In primary cells,
iSEGnet also outperformed these methods for the large intestine
dataset and performed comparably for the other two cell types
(pancreas and small intestine). We next compared with Deep-
Chrom, a classification model to predict binary gene expression
levels with histone modification signals. The developers used a
binary approach, labeling the expressed genes as either ‘‘high
expression genes” or ‘‘low expression genes”. The median of all
gene expression values was used to separate the genes into these
two groups. As our model predicts normalized gene expression val-
ues instead of using the binary approach of DeepChrom, the set-
tings of these two models are fundamentally different. Thus, we
modified iSEGnet slightly in order to perform the comparison. First,
we labeled the genes as ‘‘high expression genes” or ‘‘low expres-
sion genes”, analogous to the DeepChrom approach. Then we used
the binary cross-entropy as the loss function and kept all other
aspects unchanged. The performance of DeepChrom and the classi-
fication version of iSGEnet is shown in Supplement Fig. S5. Our
model has a higher accuracy for all six cell lines and cell types com-
pared to DeepChrom.

3.3. The impact of different epigenetic profiles on gene expression
prediction

Next, we investigated which epigenetic modification most
impacts gene expression. Our strategy was to train the model using
only one type of epigenetic modification to evaluate the perfor-
mance of the input signal. In all cell types, we found that epigenetic
modifications contribute significantly more to model accuracy
than DNA sequences. Moreover, we observed distinct patterns of
the importance of epigenetic modifications in different cell types
(Fig. 4 A). This approach allowed us to assess the contributions of
individual epigenetic modifications, as well as the DNA sequence
to the overall performance. For all cell types, the models using only
DNA sequence as input had the lowest prediction performance
(paired t-test, p-value < 0.05) for RNA expression (R2 value < 0.1).
When only one type of epigenetic modification was used as the
input, the performance of the models varied for different cell types.
In general, H3K36me3 and H3K4me3 were the most important epi-
genetic modifications for predicting gene expression [12]. Notably,
the model integrating all epigenetic modifications and the DNA
sequence showed the best performance, thus underscoring the
need for a comprehensive and integrated approach when predict-
ing RNA expression levels.

To discern the influence of epigenetic modifications, we com-
pared the predicted gene expression in A549 from the model with
epigenetics data only to the predicted gene expression from the



Fig. 2. The performance of iSEGnet with distinct input regulatory regions. (A) The R2 values of the iSEGnet models on the testing datasets with different regions around TSS as
input for the six cell lines/types. The region [-1000 bp, +500 bp] around TSS has the best performance across datasets. (B) The R2 values of the iSEGnet models on testing
datasets with [-1000 bp, +500 bp] around TSS combined with different regions around transcription termination sites as inputs for the six cell lines/types. The region [-
1000 bp, +500 bp] around TSS plus [-500 bp, +500 bp] around TTS has the best performance across datasets. This region will be the final input for iSEGnet.

Fig. 3. The performance of iSEGnet compared with other machine learning models. (A) The R2 of prediction with different models on the testing datasets. (B) Pearson’s
correlations between the prediction and overserved expression with different models on the testing datasets.
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model with both epigenetics data as well as DNA sequence. We
selected the top 10 % of genes which showed minimal differences
between these two models for the predicted expression levels.
The predicted expressions of these genes were therefore less
impacted by DNA sequence. We found that these genes had higher
DNase ChIP-seq signals around TSS regions and lower DNA methy-
lation levels on TSSs and 50-UTRs compared to the rest of the genes
(Kolmogorov–Smirnov test, p-value < 0.05) (Supplement Fig. S6).
Similarly, we analyzed models trained with sequence data only
and trained with both epigenetics data and DNA sequence. We
identified motifs enriched on the genes that have little change in
the predicted expression level compared to other genes (Supple-
ment Table 4). These analyses indicate that iSEGnet may shed light
on subsets of genes that are more likely to be regulated by DNA
sequences or by epigenetic modifications, facilitating the design
of additional hypotheses.

3.4. Attribution of an epigenetic modification at a given site in the
regulatory region

After identifying the relative importance of distinct epigenetic
modifications on gene expression, we proceeded to detect the
DNA sequence regions with the highest regulatory attributions
for gene expression. Using the IG method on the trained models
3818
from all six cell lines/types (Fig. 4 B,C,D; Supplement Fig. S7), we
computed the attribution of each epigenetic modification occur-
ring at each DNA sequence site. From the mean predicted site-
specific attribution for each epigenetic modification on gene
expression across all genes in cell line A549, we observed that
DNase I signals (‘‘open chromatin”) on the region around TSS were
very important for predicting gene expression (Fig. 4 B). This result
is consistent with the prior biological knowledge that the DNase I
signals indicate the accessibility of the chromatin to other factors
which interact with the DNA to regulate gene transcription. Other
histone modifications, such as H3K4me3 and H3K36me3, signifi-
cantly impacted gene expression when the modifications occurred
in 5’-UTRs. On the other hand, the epigenetic modifications of
H3K36me3 were most important in TTS regions. Similar patterns
were observed for cell line K562 (Fig. 4 C). The mean site-specific
attribution in the HepG2 cell line showed patterns distinct from
those seen in A549 and K562 cell lines (Fig. 4 D). For example,
the H3K36me3 modification has much lower attributions around
TTS regions in HepG2. These analyses indicate that the relative
region-specific importance of certain epigenetic modifications are
cell type-dependent.

Next, we used MYC as an example to show the integrated gra-
dient attributions for an individual gene in the A549 lung cancer
cell line. MYC is a well-known oncogene; it plays an important role



Fig. 4. The importance of epigenetic modification on gene expression by dropout analysis and integrated gradient. (A) The R2 values of iSEGnet with different epigenetics
modification data as input. (B), (C) and (D) The mean predicted site-specific attributions for each epigenetic modification on gene expression across all genes in cell lines
A549, H3pG2, and K562, respectively.
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in cell cycle progression and apoptosis [36]. For the attribution of
the DNase I signal (‘‘open chromatin”), we observed two regions
with high attribution values. One was 500 bp upstream of TSS,
and the other at the nearby TSS (Supplement Fig. S8 A). For the
H3K4me3 signals, a high attribution region on 5’-UTR was
observed, indicating that gene expression may be highly influenced
by the H3K4me3 presence region (Supplement Fig. S8 B). More-
over, compared to the experimentally observed signals, there were
shifts in the location and strength of the high attribution regions
(Supplement Fig. S8 C, D). These results demonstrated that the
attribution computed from our models is not simply a reflection
of input data; but instead shows the relative importance of each
region under a specific epigenetic modification for determining
gene expression.
3.5. The high attribution regions are related to transcription factor
binding

After identifying the attribution of each epigenetic modification
on each site, we examined the possible biological functions of the
regions with high attribution scores. We hypothesized that these
regions may be related to transcription factor binding activities
that regulate gene expression, thus explaining why changes in epi-
genetic modifications of these areas could have a significant impact
on mRNA levels.

To test this hypothesis, we first extracted the sequence of [-
50 bp, +50 bp] around the highest attribution site of each gene
for each epigenetic modification. Then, we used the method AME
[37] from the MEME suite [38] to identify the enriched transcrip-
tion factors binding motifs in the regions for each epigenetic mod-
ification. The transcription factor binding motifs were acquired
from the JASPAR database [39]. From this analysis, we identified
3819
the transcription factors that might bind to these high attribution
regions. We conducted the same analysis for every cell type. As
observed in Fig. 5 A, the heatmap showed the enrichment pattern
of transcription factor binding motifs on high attribution regions
across all cell types and epigenetics modifications. From the heat-
map generated using the negative log p-value of enrichment, we
observed shared transcription factors such as FOXB1 and KLF10
across cell types or tissues or epigenetic modifications. Also, some
transcription factors are specific to epigenetic modifications. For
example, HOXC12 was only enriched in high attribution regions
specific to DNA methylation in different cell types.

Furthermore, we identified genes with high attribution regions
enriched by MYC binding motifs in the A549 cell line. To validate if
MYC indeed binds to these sites, we used the MYC ChIP-seq data of
A549 from the ENCODE project (GSM1003607). We found that the
MYC ChIP-seq signal peaks on the promoter regions of these genes
significantly overlapped with the attribution peaks in the same
gene promoters (compared to randomly selected regions, p-
value < 0.05). For example, the MYC ChIP-seq signal peak on the
NIPSNAP2 promoter region overlapped with the attribution peak
of H3K4me3 and Dnase I hypersensitive sites (Fig. 5 B). Similarly,
the MYC ChIP-seq signal peak on the GUSB promoter region over-
lapped with the attribution peaks of H3K4me1 and H3K9me3
(Fig. 5 C). Taken together, we demonstrated that the high attribu-
tion regions identified by iSEGnet are potential transcription factor
binding regions that may be relevant to gene expression
regulation.
3.6. Case studies

To further explore the utility of this framework in the context of
human disease, we applied iSEGnet on an esophageal cancer data-



Fig. 5. The transcription factor binding motifs are enriched on the high attribution regions identified by iSEGnet. (A) The enrichment pattern of transcription factor binding
motifs on high attribution regions across all cell types and epigenetics modifications. (B) and (C) The MYC ChIP-seq signals and epigenetic modification attributions on the
NIPSNAP2 and GUSB promoter regions, respectively.
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set [24] and a breast cancer dataset [25] as case studies. The eso-
phageal cancer dataset included DNA methylation and mRNA gene
expression profiles available on both cancer and normal tissues
(n = 9 in each condition). The breast cancer dataset included
H3K4me1, H3K4me3, DNA methylation, and mRNA gene expres-
sion profiles on the drug-sensitive breast cancer cell line (MCF7)
and the drug-resistant breast cancer cell line (TAMR). There was
only one sample available for each epigenetic modification.

First, we evaluated whether multiple biological replicates could
improve the predictive performance as the esophageal cancer data-
set included profiles from nine patients. To test the model perfor-
mance with multiple replicates, we varied the number of patients
in model training. We observed an improved model performance
(the R2 increased from 0.38 to 0.82) as more replicates were
included, and this effect reached a plateau around n = 5 (Fig. 6
Fig. 6. The results of iSEGnet on the esophageal dataset, (A) The R2 values of iSEGnet on
number of transcription factors that are enriched on the regions identified by differentia
tissue. (C) The KEGG pathways enriched for the transcription factors detected from diffe
factors detected from different attribution regions. (E) The overlapped KEGG pathways en
and different attribution regions.
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A). This result shows that iSEGnet model performance can benefit
from multiple biological replicates.

Next, as the esophageal cancer dataset included tumor and nor-
mal tissues, we proceeded to ask the following question: for differ-
entially expressed (DE) genes, can we identify key regulatory
regions by comparing attributions derived from the iSEGnet mod-
els between tumor and normal tissues? For a given region of a DE
gene, if the attribution levels from the two conditions are signifi-
cantly different, then this region might have regulatory functions
that lead to differential expression. We identified the site-specific
attributions from both tumor and normal models for every DE
gene. We defined a site as a differential attribution site by a thresh-
old on the mean difference of attributions between the two condi-
tions, i.e., a site is a differential attribution site if the difference is
among the top 10 % of all the input regions. Then, we retrieved
the esophageal cancer dataset with a varying number of patients as input. (B) The
lly methylated regions and different attribution regions between cancer and normal
rentially methylated regions. (D) The KEGG pathways enriched for the transcription
riched for the transcription factors identified from differentially methylated regions
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the transcription factor binding motifs on each differential attribu-
tion region with FIMO from the MEME suite. The detected motifs
belonged to 74 transcription factors. Compared to the transcription
factors identified from individual differentially methylated regions
with the same approach, 45 of the transcription factors are over-
lapped (Fig. 6 B). The transcription factors detected on the individ-
ual differentially methylated regions are enriched on non-cancer
pathways (Fig. 6 C). On the other hand, the KEGG pathways
enriched by the 74 transcription factors are cancer-related path-
ways, such as Transcriptional dysregulation in cancer (hsa05202)
and Pathway in cancer (hsa05200) (Fig. 6 D). The overlapped tran-
scription factors between cancer and normal tissue are also cancer-
related (Fig. 6 E). These results demonstrate that attribution of the
regions derived from iSEGnet could be used to uncover important
regions that may be involved in dysregulation of gene expression
in human disease.

The breast cancer dataset only included one sample for each cell
line. The R2 values and correlations of iSEGnet were in the range of
(0.28, 0.32) and (0.50, 0.63), respectively (Fig. 7 A). We used the
same approach to identify the differential attribution regions of
the DE genes (determined by fold-change) between the drug-
sensitive cell line and drug-resistant cell lines. We found that the
transcription factors binding to these regions are enriched for
cancer-related KEGG pathways. However, the enriched pathways
are not significantly different from those identified from the differ-
ential regions of the observed signals (Supplement Fig. S9-S11).
Additionally, we found that the observed epigenetic signals are
not significantly different at several differential attribution regions.
For example, the observed H3K4me1 signals in one DE gene,
STXBP6, were high in both drug-sensitive and drug-resistant cell
lines at the region 500bs upstream of TSS. However, the attribution
of this region was differentially higher in the drug-sensitive cell
line (Fig. 7 B). Similarly, for the DE gene, BEX2, there were differen-
tially high attributions at the region 300 bp to 500 bp downstream
of the TSS, but the observed H3K4me1 ChIP-seq signals at the same
Fig. 7. The results of iSEGnet on the breast cancer cell line data (A) The performance of iS
(B), (C) The observed H3K4me1 ChIP-seq signals and the iSEGnet identified attributions
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region were not significantly different (Fig. 7 C). These examples
suggest that the attribution analysis in iSEGnet may reveal alterna-
tive regulatory regions even when observed epigenetic signals do
not show a significant difference between the two cell lines.

4. Discussion

In this study, we presented iSEGnet, a deep convolutional neu-
ral network, which predicts gene expression using epigenetic mod-
ifications and DNA sequences of promoter and transcription
termination regions. Among various combinations of regions
explored, the optimal input regions for iSEGnet, i.e., the combina-
tion of [-1000 bp, +500 bp] around TSSs and [-500 bp, +500 bp]
around TTSs, generated the best performance. We demonstrated
that iSEGnet outperforms other machine learning models, such as
support vector machine and random forest, using data from the
six cell lines/types obtained from the ENCODE project. Employing
the method of Integrated Gradients, we identified the regulatory
regions and epigenetic modifications highly relevant to predicting
gene expression for individual genes. We further showed that
these regions may have regulatory activities by identifying the
enrichment of transcription factor binding motifs and overlapping
with the peak regions of the corresponding transcription factor
ChIP-seq signal. Finally, we applied iSEGnet to two cancer multi-
omics datasets to further demonstrate that iSEGnet could be used
to identify specific regulatory regions relevant to differential
expressed genes between distinct conditions, such as tumor and
normal tissues. Thus, iSEGnet is a framework integrating multi-
omics of small replicates to discover important transcription fac-
tors and regulatory regions that might influence gene expression
under different conditions.

iSEGnet is a deep learning architecture with several convolu-
tional and densely connected layers. It learns non-linear mappings
from two inputs - epigenetics modifications and DNA sequence - to
gene expression. To effectively integrate these two modalities of
EGnet on drug-resistant (TAMR) and drug-sensitive (MCF7) breast cancer cell lines.
on the promoter region of STXBP6 and BEX2, respectively.
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information, we considered several factors in the architectural
design. First, the input data derived from the DNA sequence and
the epigenetic input data have different sizes. Namely, the DNA
sequence input has four columns, whereas the epigenetic input
has multiple columns, depending on the available epigenetic mod-
ification data. The proposed model needs the flexibility to integrate
these two inputs. Second, since DNA sequence and epigenetic mod-
ifications regulate gene expression in an associative way, the deep
neural network architecture needs to include epigenetics modifica-
tion data and the corresponding DNA sequence for each given posi-
tion in the genome. For the first factor, our model has two key
input sources. As shown in Fig. 1, we use two convolutional layers
to extract features from a single perspective and make the data
from two sources of equal size. For the second factor, we concate-
nate the outputs from previous convolutional layers by column.
This step enables the data integration from the same position to
reflect the associative regulation of DNA sequence and epigenetics
modifications on gene expression. Thus, the architecture using
fully connected layers right after the 2nd convolutional layers can-
not maintain the associative information of DNA sequence and epi-
genetic modification on the same site. This could explain why
iSGEnet exhibits better performance as shown in Supplement Fig-
ure S2. Another architecture in ExPecto [16] uses a sequential
design from DNA sequence to epigenetics factors to predict gene
expression values. This type of architecture can reveal the potential
regulation pattern from DNA sequence to known epigenetics mod-
ification to gene expression. However, ExPecto requires generating
2002 epigenetics features (including histone markers, chromatin
accessibility, and TF features) to achieve the best gene expression
prediction. On the other hand, iSEGnet can leverage limited epige-
netics data typically available in standard biological experiments
to generate similar performance. For example, ExPecto reported
the correlations between the predicted and observed gene expres-
sion in the range of 0.40 to 0.82 in different cell types, whereas
iSEGnet models had correlations from 0.68 to 0.89 (Supplement
Fig. S4). Thus, ExPector and iSEGnet have comparable performance
in terms of prediction accuracy.

Several studies have shown that epigenetic features could be
predicted from the DNA sequence [40–42]. However, the joint
impact of DNA sequence and epigenetics features on gene expres-
sion was not investigated. To demonstrate that iSEGnet facilitates
such analysis, we compared models’ predicted gene expression
values with different inputs in A549. Particularly, we selected the
top 10 % of genes that showed minimal differences between these
models for the predicted expression levels. We found that for genes
with a higher epigenetic modification level, the epigenetic signals
were sufficient to predict gene expression (Supplement Fig. S6).
Similarly, we identified a subset of genes whose DNA sequences
possess dominant information for predicting gene expression (Sup-
plement Table 4).

As all expressed genes are treated as learning samples, iSEGnet
learns the shared transcription regulatory patterns across genes
under a particular condition or in a specific cell type from one copy
of omics profiles. Although regulatory regions and epigenetic mod-
ifications vary between genes, iSEGnet can detect useful patterns
for predicting gene expression from multiple hidden layers and
kernels in deep CNNs. However, in the current CNN architecture,
there is a risk of losing information about the connection between
different segments of regulatory regions. This limitation could be
removed by employing recurrent neural networks (RNN). RNN
has been widely used in modeling sequential data, such as natural
language processing [43] and time-series data analysis [44]. The
combination of RNN and CNN has been shown as a promising
architecture to predict biological events from sequential data such
as DNA sequence [45,46] and DNA methylation [47–49].
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In iSEGnet, we have chosen the input regions for each gene as [-
1000 bp, +500 bp] around TSSs and [-500, +500] around TTSs. We
determined these optimal lengths by comparing the model perfor-
mance of multiple combinations of regions around genes. How-
ever, distal regulatory regions, such as enhancers located up to
1 Mb away from TSS [50], also regulate gene expression. However,
the locations and lengths of distal regulatory regions vary by genes
and are often unknown, making it challenging to consider in the
current framework. In a recent study [17], long-range enhancer
(100 kb away from TSS) and promotor interactions have been
explored to predict gene expression based on DNA sequence alone
using a self-attention neural network architecture. While it pre-
dicts mutation effects in population eQTL studies, this model is
not geared towards uncovering the impact of epigenetic modifica-
tions on gene expression.

The consequences of epigenetic modifications such as DNA
methylation in gene bodies are important in regulating gene
expression [51] and thus should be considered in the future. From
the integrated gradient analysis of iSEGnet on the epigenetics data,
we found that the histone modifications, H3K4me3 and
H3K36me3, have higher average importance in the region from
TSS to 500 bp downstream, indicating that the starting part of gene
bodies also has an impact on gene expression. Thus, It is likely that
if we increase the size of the gene bodies, we might observe addi-
tional epigenetics-modified regions that are important to predict
gene expression. However, the lengths of the gene bodies vary
from gene to gene. To meet the requirement of same-length input
in the current iSEGnet framework, we would need to add zeros to
the genes of shorter length. However, this augmentation could
introduce noise into the data. Therefore, we only considered the
fixed region around TSS and TTS in the current version.

Identifying the important features from a deep learning model
is challenging but essential for knowledge discovery. Multiple
methods have been developed to understand feature importance
in machine learning and deep learning models, such as SHAP
[52] and Integrated Gradients [23]. While the method of Integrated
Gradients has been used in several genomics studies to identify
regulators of splicing in important genome regions for a distinct
purpose [53], the baseline selection of integrated gradients for
DNA sequencing and epigenetics modifications remains an open
question. In iSEGnet, we used zero as the baseline to identify the
feature importance. However, other baseline settings could be
explored in the future. For example, the baseline for DNA sequence
data could be [0.25, 0.25, 0.25, 0.25], which mimics the distribution
of nucleotides on a random DNA sequence. Alternatively, the base-
line for DNA methylation could be one instead of zero, to account
for maintenance methylation, where the baseline status is a
methylated CpG site, as opposed to de novo methylation, an
unmethylated CpG site is the baseline.

In the case studies of iSEGnet, we demonstrated that our model
could locate the high attribution regions of differentially expressed
genes. In the esophageal cancer data, the regions identified by dif-
ferential attributions are more enriched by the binding motifs of
transcription factors related to cancer, compared to the regions
detected from the differential methylation levels. In contrast, in
the breast cancer cell line data, the KEGG pathways enriched for
transcription factors obtained from these two approaches are sim-
ilar. However, the limited number of samples of breast cancer cell
line study could potentially explain this finding. The learned attri-
bution of the model correlates with the observation considerably.
However, it is hard to reliably detect distinct regulation of gene
expression based on only one copy of the multi-omics profile in
the closely related cell lines. With more replicates, iSEGnet may
perform better as shown in the esophageal cancer data.

Another limitation of iSEGnet is that it focuses on the impact of
epigenetic modifications on cis-regulatory regions. It is possible
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and likely that epigenetic modifications in trans-regulatory regions
can also impact gene expression. Therefore, the future direction of
iSEGnet could include designing novel architectures that can take
into account epigenetic modifications in trans-regulatory regions.
However, this would be contingent on the identification of such
regions, which still remains a major challenge in biological studies.

In conclusion, iSEGnet is a useful tool to integrate epigenetic
modifications and RNA-seq gene expression data to detect plausi-
ble regulatory sites in promoter and TTS regions, as well as infer
potential transcription factors from a limited number of biological
replicates. The results from iSEGnet may facilitate hypothesis gen-
eration for interrogating gene regulatory machinery and provide
insights into how distinct epigenetic modifications impact gene
expression in discrete regulatory regions. The code of iSEGnet is
available at github.com/YDaiLab/iSEGnet.
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