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Abstract

Real-world tasks typically consist of a series of target-directed actions and often require

choices about which targets to act on and in what order. Such choice behavior can be

assessed from an optimal foraging perspective whereby target selection is shaped by a bal-

ance between rewards and costs. Here we evaluated such decision-making in a rapid move-

ment foraging task. On a given trial, participants were presented with 15 targets of varying

size and value and were instructed to harvest as much reward as possible by either moving

a handle to the targets (hand task) or by briefly fixating them (eye task). The short trial dura-

tion enabled participants to harvest about half the targets, ensuring that total reward was

due to choice behavior. We developed a probabilistic model to predict target-by-target har-

vesting choices that considered the rewards and movement-related costs (i.e., target dis-

tance and size) associated with the current target as well as future targets. In the hand task,

in comparison to the eye task, target choice was more strongly influenced by movement-

related costs and took into account a greater number of future targets, consistent with the

greater costs associated with arm movement. In both tasks, participants exhibited near-opti-

mal behaviour and in a constrained version of the hand task in which choices could only be

based on target positions, participants consistently chose among the shortest movement

paths. Our results demonstrate that people can rapidly and effectively integrate values and

movement-related costs associated with current and future targets when sequentially har-

vesting targets.

Author summary

Many natural tasks involve a series of decisions about which target to acquire next, either

with our gaze or hand. We examined the factors influencing such decisions using a task in

which targets of varying value and size are sequentially acquired by eye or hand move-

ments. By developing a probabilistic model of decision-making behavior we show that eye

movement decisions are made in isolation, independent of potential future targets, and

are primarily determined by target value. In contrast, hand movement decisions consider

multiple future targets and are strongly shaped by movement-related costs. By examining
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decision-making in sequential actions, our results and model represent a significant

advance over previous work that has focused primarily on decisions about single actions.

Introduction

Studies of reach planning and control have focused on movements towards single targets, with

theoretical accounts focusing on the minimization of various movement-related costs [for

reviews, see 1, 2–5]. However, real-world tasks often involve choosing targets from among

multiple alternatives, and therefore not only involve decisions about how to move but also

where to move. Moreover, such tasks often involve a sequence of actions in which choices are

made at each step. Although decision-making related to target selection has been extensively

studied in the context of eye movement preparation [6–9] and in more cognitive tasks such as

the traveling salesperson problem [10–13], comparatively little work has been done on reach-

ing, in which movement-related costs are likely to play a more critical role [14,15]. A handful

of reaching studies have examined how values and costs influence the selection of targets in

single movements and fixed sequences of movements. This work has shown that when point-

ing to target configurations that have different reward and penalty regions, people are able to

choose their average pointing location to minimize the loss that accrues through the variability

of pointing [e.g. 16], but that when reaching to two consecutive targets in a fixed time period,

people fail to invest more time in the movement to the more valuable target [17,18]. In addi-

tion, when ‘harvesting’ a sequence of targets by maintaining a hand-controlled cursor on each

target for a fixed duration, people learn to optimize reward by predicting the required duration

[19]. However, to our knowledge no study has investigated the selection of targets during a

sequential reach task.

In performing a task involving the selection of a series of targets, each successive choice

decision could be made de novo in order to maximize rewards and minimize costs associ-

ated with only the next target selection. However, by ‘looking ahead’ and considering the

rewards and costs across future potential targets, it may be possible to further optimize

performance. Here we assessed sequential decision-making using a movement foraging

task in which participants could choose the order in which they harvested from a set of

targets of varying size, value and location across the workspace (Fig 1A), either by moving

a hand-held handle to a target and clicking a button on the handle (hand task) or making

a saccade to a target and fixating it for 150 ms (eye task), with the goal of maximizing

reward. Gaze was unconstrained in the hand task. The trial duration was such that, in both

tasks, participants could only harvest around half of the targets, placing a premium on effi-

cient decision-making. We examined four conditions: two in which only the size or only

the value of targets varied, and two in which both size and value varied in either a corre-

lated or anti-correlated manner (Fig 1B). We evaluated performance using a probabilistic

model, inspired by optimal foraging theory [20,21], that predicts target-by-target harvest-

ing probabilities based on rate of reward, costs associated with target distance and size,

and decision noise. A key feature of the model is that it can incorporate a number of future

successive harvests with temporal discounting; i.e., it can ‘look ahead’. Because moving the

hand is more costly, in time and energy, than moving the eyes, we predicted that target

choice in the hand task, in comparison to the eye task, would be more strongly influenced

by movement-related costs and would take into account a greater number of future targets

so as to optimize the route through the targets.

Choice behavior in a human foraging task
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Results

Representative trials

Fig 1C–1E shows hand or gaze paths for single trials performed by different participants in

each of the three foraging tasks in the ‘small-high’ condition in which target size was inversely

related to target value. These trials illustrate several general features of the performance we

observed in these tasks. Participants exhibited a strong tendency to move between adjacent tar-

gets in the hand task but also tended to make relatively small movements in the eye task. Even in

the constrained hand task (Fig 1E, in which the targets had to be harvested in order of decreas-

ing value), participants moved to close-by targets where possible. In the hand task, participants

also tended to minimize changes in movement direction between successive harvested targets

whereas, in the eye task, sharper changes in direction were often observed. One strategy that par-

ticipants employed to limit changes in hand movement direction was to harvest targets along a

roughly circular route. In all three tasks, participants typically harvested most, if not all, of the

high value targets. In the hand task, they often harvested medium or, less frequently, low value

Fig 1. Experimental setup and behavior. A, Schematic of the experimental setup and stimuli configuration.

In the hand task, participants harvested targets by moving a handle and pressing a button instrumented to the

handle to acquire targets. In the eye task, participants harvested targets by fixating a target. B, Target size

and value pairings featured in the 4 experimental conditions. Five of each target type (size-value pairing) was

displayed for a given block and the position of each of the 15 targets was randomized on each trial. C-E,

Representative traces for the Small-High condition for hand movements or eye movements in each of the

three foraging tasks, where grey targets represent those that have been successfully harvested. The numbers

indicate the order of harvests.

https://doi.org/10.1371/journal.pcbi.1005504.g001
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targets in between the high value targets. In contrast, in the eye task, there was a stronger ten-

dency to harvest the high value targets prior to lower valued targets. The pattern observed in the

hand task suggests that participants were aware that they could typically obtain 8 or 9 targets

and could therefore harvest some less valuable targets while ensuring that most, if not all, high

value targets were harvested. Harvesting a few less valuable targets en route between high value

targets often allowed participants to avoid large amplitude hand movements.

Target preferences

Fig 2 shows the mean number of harvests for each condition of the hand and eye foraging

tasks. A one-way ANOVA revealed that, overall, the number of targets harvested in the hand

(M = 8.4, SE = .16) and eye (M = 8.2, SE = .18) tasks were similar (F1, 13 = .12, p = 0.73), allow-

ing us to reasonably compare target preferences across tasks. In both tasks large targets were

preferred when only size was varied and high value targets were preferred whenever value was

varied (i.e., in the three other conditions). However, in the small-high condition, in which

value and size traded off, the preference for high value targets was weaker in the hand task

than the eye task. To quantify these results, for each condition we carried out a two-way mixed

model ANOVA to assess the effects of target type (3 levels for each condition: see Fig 1B) and

task (2 levels: eye or hand) on the number of harvests. In no condition was there a main effect

of task (p> 0.05 in all 4 cases). A main effect of target size was found in the size condition (F2,

26 = 48.8, p< 0.001) but there was no target by task interaction. A main effect of target value

was observed in the value (F2, 26 = 104.7, p< 0.001), small-high (F2, 26 = 91.6, p< 0.001), and

small-low (F2, 26 = 280.6, p< 0.001) conditions. A target value by task interaction was found

for the value (F2, 26 < 5.5, p< 0.05), small-high (F2, 26 < 91.6, p< 0.001), and small-low (F2, 26

< 4.6, p< 0.05). In these three conditions, participants in the eye task harvested more high

value targets than participants in the hand task (Fig 2), possibly because smaller movement-

related costs in the eye task allowed participants to harvest targets according to their value,

with limited influence of their sizes and/or distances.

Although size similarly influenced hand and gaze target selection in the size condition,

when size was paired with value, size had a substantial influence on hand target selection (com-

pare the small-high and small-low conditions) but little influence on gaze target selection.

Thus, whereas participants in the eye tasks exhibited a clear preference for large targets when

only size varied, this preference was largely superseded by value when value also varied.

Movement times

For the probabilistic model, we estimated the time required to move to any given target based

on its distance and size. Specifically, for each participant, we performed separate regressions

between recorded movement time (i.e., time between harvests) and target distance for each

target size, where regressions in the arm task were obtained after pooling data from the free

choice and constrained tasks. Two-way mixed model ANOVAs were carried out to assess how

the slope and intercept varied with task and target size. There was no significant difference

(F1, 13 = 2.3, p = 0.2) between the slopes in the eye (M = 0.9 s/m; SE = 0.2 s/m) and hand

(M = 1.0 s/m; SE = 0.1 s/m) tasks. However, the intercepts were slightly greater (F1, 13 = 15.8,

p = 0.002) in the eye task (M = 0.3 s; SE = 0.02 s) than the hand task (M = 0.2 s; SE = 0.01 s).

Note that with the required fixation duration in the eye task, the time between successive har-

vests was similar to the hand foraging tasks. The slope (F2, 26 = 18.6, p< 0.001) and intercept

(F2, 26 = 6.0, p = 0.007) also depended on target size. Specifically, the slope and intercept tended

to decrease and increase, respectively, as a function of target size.

Choice behavior in a human foraging task
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Model of harvesting choice

We developed a simple model of harvesting in which the choice of the next harvest target

could depend on the distance to each potential target as well as their size and value (which

affects the reward rate). We first evaluate the contribution of these factors using the 1-look-

Fig 2. Overall harvesting performance. Average number of harvests per trial for the hand task (left column)

and the eye task (right column) for each condition and target type. The bars show the average number of

harvests computed from participant means, with error bars representing ±1 SE, and the lines show individual

participant means. All bars represent targets of a given size shown for a given value (X-axis), with white,

skinny bars representing the smallest target size, light grey, thicker bars representing the medium target size,

and thick, dark grey bars representing the largest target size.

https://doi.org/10.1371/journal.pcbi.1005504.g002
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ahead version of the model, which only considers the next or immediate harvest when predict-

ing which target will be selected. After establishing, for both the hand and eye tasks, that the

full model (with all three of these components) provided a better overall fit than any of the

reduced models with one component removed, we then examined versions of the model with

1 to 5 look-ahead steps. That is the next harvest could depend on the weighted combination

of these components for up to the next 5 harvests. Such look ahead in the model would allow

the eye or hand to forgo short term gains for longer terms gains, for example, by moving to

regions of the workspace where there are more rewarding targets. Finally, we evaluated the

performance of the best-fit N-look-ahead model by comparing model predictions against

actual data.

In all cases, the models were fit to each individual participant from all trials in all four con-

ditions (i.e., size, value, small-high, and small-low) fit together. We only considered up to 8

harvests in each trial because as the number of harvests increased beyond 8, the number of tri-

als decreased sharply. We did not analyze the first harvest of each trial because, in the hand

task especially, participants tended to rapidly launch their initial movement in a relatively

fixed direction and choose between the one or two targets located in this direction (e.g., the

center target in the first row and the target to its left). By limiting decision-making in the initial

movement, participants could initiate the task quickly while bringing their hand (or gaze)

towards the grid of targets and giving themselves time to select the next target or targets. We

used maximum likelihood (MATLAB fminsearch) to fit the model to the entire dataset of 200

trials by 8 harvests (max) for each participant separately.

One-ahead model

The model assigned, to each available target, a probability that this target would be chosen

next. Each selection made by the model began from the most recently harvested target, i and

considered the sizes, values and positions of the remaining targets, j 2 H, where H represents

the set of remaining non-harvested targets. We defined the distance from target i to target j as

dij, the value of target j as vj and the size of target j as sj. An estimate of the time required to

move from target i to target j, tij, was derived from linear regressions, relating movement time

to movement distance, that were computed separately for each participant and target size. In

our sequential target task, we found that the relationship between movement time and distance

was close to linear. Rate of reward is known to be a key factor in decision making [e.g. 22, 23]

and the rate of reward for selecting target j was calculated as rij = vj / tij. A pure reward based

model would only consider rate of reward. In this case, target distance and size can only influ-

ence choice via effects on movement duration. However, distance and size may also influence

target choice via other costs. For example, distance may be associated with a physical effort

cost [24] whereas target size may be associated with a cost linked to planning and controlling

more precise movements [25]. To capture this possibility, the cost, cij, of choosing target j as

the next harvest was calculated as:

Cj ¼ cij ¼ � rij þ w1dg

ij � w2sj ð1Þ

That is, the cost depended on the negative reward rate, a penalty associated with distance

and a penalty for reaching to smaller targets. The penalty associated with distance captures

possible movement-related energy costs. We included the exponent gamma in this term to

accommodate the possibility of a nonlinear mapping between effort and distance. A power

function was selected because it can capture a wide range of nonlinear functions. We assume

there is noise in the decision making process (or calculation of this cost) so that potential har-

vest targets that have similar costs may be chosen with similar probability. As is commonly

Choice behavior in a human foraging task
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used in models of decision making, we used a softmax selection rule [26] so that the probability

of choosing target j became:

Pj ¼
e� b�Cj

X

j

e� b�Cj
ð2Þ

The parameter β determined the combined noise in perceptual and decision processes, with

infinite noise assuming a value of β = 0. For very large values of β, the probability of choosing

the target with the lowest cost approaches 1. For intermediate values the probabilities are

always ordered according to the cost (highest probability for lowest cost) but allow higher cost

targets to be selected occasionally.

To assess the contribution of reward rate, target distance, and target size, we compared the

full one-ahead model against the three submodels, obtained by removing each individual fac-

tor, using the Bayesian Information Criterion (BIC), with a lower BIC indicating a better fit

[27,28].

The Bayesian Information Criterion (BIC) was used to compare models with different

numbers of parameters:

BIC ¼ � 2 lnðLÞ þ k lnðNÞ ð3Þ

where L is the likelihood of the data given the model, k is the number of degrees of freedom of

the model and N is the total number of data points. The BIC allow models with different num-

bers of parameters to be compared, with the one with a lower BIC being preferable. The differ-

ence in the BIC scaled by 0.5 approximates the log of the Bayes factor, the likelihood that one

model is better than another (27). A Bayes factor larger than 10 indicates strong evidence in

favor of a model, and a value larger than 100 is considered decisive (28).

Fig 3A and 3B show the change in BIC score (Δ BIC) going from the full model to each of

the three submodels, for the hand and eye tasks respectively. The full model provided the best

fit for all 8 participants in the hand task and for 4 of 7 participants in the eye task. In the other

3 participants who performed the eye task, the best model included reward rate and distance

but not target size. However, this model and the full model had very similar BIC scores in all

participants in the eye task (i.e., Δ BIC was very close to zero). For all participants in the hand

task, the model omitting target distance was the poorest predictor of target choice by a large

margin, and this model was also the poorest predictor in 5 of 7 participants in the eye task

(with the model omitting reward rate being the poorest predictor in the other 2 participants).

Overall, these results indicate that in both the hand and eye tasks, all three parameters of the

full model—i.e., reward rate, target distance, and target size—influence choice behavior.

Look ahead model

We next considered an extension of the model that could ‘look ahead’ to take into account

potential future harvests when selecting the next harvest. When looking n harvests ahead

(where n = 1 corresponds to the model already described), we consider each potential next har-

vest target j and all possible subsequent sequences of n-1 harvests (k, l, m, . . .). For each harvest

we calculated the cost of each harvest with different weightings, λ, applied to future harvests.

For example, when looking n = 5 steps ahead (i.e., j, k, l, m, n) the cost of choosing j as the next

harvest is given by:

Cj ¼ min
Hðk;l;m;nÞ

cij þ l1cjk þ l2ckl þ l3clm þ l4cmn

� �
ð4Þ

Choice behavior in a human foraging task
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Fig 3. Model performance and look-aheads. A-B, Bayesian Information Criterion (BIC) for each participant

in the hand and eye task used to compare models having different number of parameters, where smaller BIC

scores are preferred. The difference in BIC shows the BIC relative to the full cost model for three different

models in which one component of the cost is removed: no reward rate (dark grey bars), no target size (white

bars), or no distance (medium grey bars). C-D, shows the BIC scores for each participant as a function of

look-ahead for the hand and eye task, with BICs normalized to the mean score for the 1 look-ahead model. E,

histogram showing the number of participants in the hand (black bars) and eye (grey bars) task whose best

fitting model incorporated a given number of look-aheads. F, Average weights computed from participant

means assigned to each look-ahead number in the model for the hand (black line) and eye (grey line) task

taken from the 5 look-ahead model. Error bars represent ±1 SE.

https://doi.org/10.1371/journal.pcbi.1005504.g003
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where the minimum is taken over all quadruplets H(k, l, m, n) of potential harvested targets

after the first harvest. Therefore Cj represents the smallest cost associated with making the next

harvest target j when considering the next 4 targets. Again we used the softmax function to

select the next harvested target. We modeled look aheads, n, from 1 to 5 targets (due the com-

binatorial nature of the problem it was not possible to consider look aheads of 6 or more). For

a look ahead of n, the model had n+4 parameters. We also fit reduced models in which one of

the three components in Eq 1 was set to zero.

Fig 3C and 3D show BIC scores as a function of the number of look-ahead harvests for each

participant in the hand and eye tasks, respectively. Note that the curves have been vertically

aligned so that they start from the same point, which is the mean BIC score, across partici-

pants, for the 1-look-ahead model. In the hand task, the BIC score tended to decrease (indicat-

ing a better fit) as a function of look-ahead steps whereas, in the eye task, the BIC score tended

to increase for the majority of participants. The histogram in Fig 3E shows the number of par-

ticipants best fit by models with 1 to 5 look-aheads. In the hand task, the best-fit model for all

participants contained at least 3 look-aheads and, in 5 of the 8 participants, the 5-look-ahead

model provided the best fit. With the exception of one participant, the BIC scores appeared to

level off somewhat as the number of look-aheads increased. In the eye task, the 1-look-ahead

model provided the best fit in 5 of 7 participants, with the other two participants’ choice behav-

ior best fit by models the 3 and 5 look-aheads. Despite the variation across participants within

each task group, there is a clear difference between the two tasks in the number of look-aheads.

Whereas hand task all participants consider a sequence of forthcoming target choices when

selecting the next target whereas, in the eye task, most participants chose targets on a harvest-

by-harvest basis.

When considering the best-fit models for each participant, the average power exponent on

the distance term (gamma in Eq 1) was 0.36 (SE = 0.09) for the eye task and 1.14 (SE = 0.23)

for the hand task. Thus, the influence of target distance in determining target choice was close

to linear in the hand task but compressive in the eye task, consistent with the idea that the

additional cost of making larger eye movements was less than the additional cost of making

larger hand movements.

In the model, different weights are assigned to the costs associated with each look-ahead

step. To further assess the contribution of future harvests to the choice of target in the current

harvest, we fit the 5-look-ahead full model to each participant. Fig 3F shows the average weights

assigned to each look-ahead step in the hand and eye tasks. (Note that we normalize the weights

for a given participant to sum to one.) For both tasks, the largest weight was assigned to the

immediate choice option (i.e., 1-look-ahead), with this weight being higher in the eye task than

the hand task, consistent with the finding that the 1-look-ahead model provided the best fit for

most participants who performed the eye task. These effects were confirmed by a two-way look-

ahead number by task ANOVA, which revealed a main effect of look-ahead number (F4, 52 =

130.0, p< 0.001) as well as a look-ahead by task interaction (F4, 52 = 4.6, p< 0.05).

To evaluate the best-fit model for each participant (i.e., the full model with the number of

look-aheads that provided the lowest BIC), we compared the actual target selections to those

predicted by the model. At each harvesting step, the model assigns a probability of selection to

each available (i.e., non-harvested) target. The black traces in Fig 4A and 4B show, for each

participant in the hand and eye tasks respectively, the probability that the participant selected

the target assigned the highest probability of selection by the model, as a function of harvest

number. Overall, participants selected the highest probability target 61 percent of the time in

the hand task and 53 percent of the time in the eye task. As is evident from the figure, across all

harvests in both tasks, the probability of selecting the highest probability target was well above

Choice behavior in a human foraging task
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chance (dashed grey traces), which increases from 1/14 (0.071) to 1/8 (0.125) from the second

to the eighth harvest.

The black traces in Fig 4C and 4D show the probability, assigned by the model, to the actual

target selected by the participant, and the grey traces show the difference between the highest

assigned probability and the probability assigned to the selected target. Although participants

did not always select the target with the highest assigned probability, they generally selected a

high probability target. Overall, the average ranking—from highest to lowest probability—of

the selected target was 1.61 in the hand task and 1.96 in the eye task. These results are

Fig 4. Target selection probabilities. A-B, The black lines show, for each participant in the hand and eye

tasks, respectively, the average probability that the participant selected the target assigned the highest

probability by the model for harvests 2–8. The dashed grey line show the probability that a target would be

selected by chance, which increases slightly as targets are harvested. C-D, Black lines show the average

probability, assigned by the model, to the target selected by each participant in the hand and eye tasks,

respectively, for harvests 2–8. The grey lines show the probability of the most probable target minus the

probability of target selected by the participant.

https://doi.org/10.1371/journal.pcbi.1005504.g004

Choice behavior in a human foraging task

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005504 July 6, 2017 10 / 23

https://doi.org/10.1371/journal.pcbi.1005504.g004
https://doi.org/10.1371/journal.pcbi.1005504


indicative of the fact that the probabilities assigned to the most probable few targets were often

similar. Note that both the probability of selecting the highest probability target (black traces

in Fig 4A and 4B) and the probability assigned to the selected target (black traces in Fig 4C and

4D) increased over the initial few harvests in the hand task, but were quite constant in the eye

task. This observation is consistent with the fact that, in the eye task, the influence of target dis-

tance is relatively weak, which yields more target options with similar probabilities of

selection.

To assess how well participants performed, we estimated each participant’s ‘optimal’ perfor-

mance using an optimal planner that could look 5 harvests ahead at each harvest. Note that

we could not use an optimal planner that considered all targets as this involved 15 factorial

(~10^12) possible harvest orders, which is too many to evaluate. For each harvest choice, the

optimal planner uses the predicted duration of each possible sequence of remaining harvests

(up to 5) to select the best sequence in terms of maximizing rate of reward (given the remain-

ing time). The predicted duration was determined separately for each participant based on

that participant’s estimated movement durations as a function of distance and target size (see

above). This target-by-target choice was repeated until the trial time elapsed. We computed

the efficiency of each participant’s performance as the mean, over all trials from all conditions,

of the ratio of the actual to ’optimal’ points score. For the eye task, the average ratio was 0.95

and the ratio ranged from 0.85 to 0.98 across the participants. For the hand task, the average

ratio was 0.91 and the ratio ranged from 0.84 to 0.96 across the participants. A t-test failed to

show a significant difference between the two tasks (t13 = 1.63; p = 0.13). We also computed

the ratio of the actual number of target harvested to the number harvested by the optimal plan-

ner. For the eye task, the average ratio was 0.95 and the ratio ranged from 0.85 to 0.99 across

the participants. For the hand task, the average ratio was 0.92 and the ratio ranged from 0.84 to

0.99 across the participants. As with the points ratios, a t-tested failed to show a significant dif-

ference between the two tasks (t13 = 1.50; p = 0.16). Thus, in terms of both points and targets

harvested, participants in both tasks were highly efficient and performed almost as well as the

optimal 5-ahead planner.

Features of selected targets over harvests

To examine how participants prioritized targets of varying value and size across harvests, for

each participant and condition we calculated the proportion of targets, of a given size or value,

that were selected on each successive harvest. Fig 5 shows these proportions, averaged across

all participants, for harvests 2 through 8 in both the hand and eye tasks. The figure also shows

the predicted proportions, averaged across participants, obtained with each participant’s best-

fit model. (Note that the data from all four conditions the predicted together.) Qualitatively, it

is evident that the model was able to capture the choice behavior of the participants in both

tasks and in all four conditions.

In the eye task under conditions in which target value varied (i.e., the value, small-high, and

small-low conditions), participants had a strong tendency to initially select high value targets

right from the start (i.e., from harvest number 2 onwards), and largely ignored the size of the

targets. When most or all of the high value targets were harvested, they then strongly favored

the middle value targets. In contrast, under the corresponding conditions in the hand task, the

influence of value on target selection was weaker, and varied considerably across conditions.

Thus, although high value targets were always preferred, this preference was weaker when the

high value targets were small (small-high condition) and stronger when the high value targets

were large (small-low condition). A modest influence of target size was observed under the

size condition in both tasks, even though size had little influence on choice behavior in the eye
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Fig 5. Target selection features. Proportion of targets of a given size or value selected from harvests 2–8.

Proportions averaged across all participants in the hand (left column) and eye (right column) tasks. The red,

green and blue traces show proportions for high, medium and low value harvests, respectively, or in the case

of the size condition (top row), large, medium, and small target harvests, respectively. These proportions are

shown for the experimental data (solid lines) as well as the model data (dashed lines). Shaded regions

represent ±1 SE.

https://doi.org/10.1371/journal.pcbi.1005504.g005
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task in the other conditions. These results are consistent with the finding that movement

related costs play a more significant role in shaping choice behavior in the hand task than the

eye task. Participants in the hand task appeared to exploit the fact that they had enough time to

harvest most, if not all, of the high value targets without having to harvest the high value targets

first. Presumably, they were willing to harvest lower value targets in order to reduce movement

related costs. In contrast, participants in the eye task tended to select the high value targets,

presumably because they can do so without incurring large movement related costs.

Movement distance

Fig 6 shows, for each of the conditions, frequency distributions of target-to-target distances for

all actual and predicted harvests in both the hand and eye tasks averaged across participants.

In both tasks, participants most often harvested targets that were directly adjacent (up, down,

left, or right) to the previously harvested target and were therefore on average 60 mm away

(corresponding to the mode of the distributions). Participants less frequently harvested adja-

cent but oblique targets, located on average 90 mm away, and targets located 2 or, even less fre-

quently, 3 targets away. Although the distributions for the hand and eye tasks were similar in

that adjacent targets were strongly preferred, a greater number of larger distances were seen in

the eye task (blue traces) than the hand task (red traces). Two independent samples Kolmogo-

rov-Smirnov tests revealed significant differences (p< 0.05) between the two tasks in the three

conditions where target value varied (Fig 6), but not in the size condition where only target

size varied (upper left subplot). Presumably, participants were more willing to move greater

Fig 6. Distribution of movement distances. Frequency distributions of target-to-target distances for all

actual (solid line) and predicted (dashed line) harvests in both the hand (red traces) and eye (blue traces)

tasks for each condition averaged across participants. The pronounced peak at 60 mm reflects the separation

distance of adjacent targets and the most common movement.

https://doi.org/10.1371/journal.pcbi.1005504.g006
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distances in the eye task, when value was manipulated, because of the lower movement-related

costs involved. However, target size alone did not drive participants to move greater move-

ment distances in the eye task.

Constrained hand task

We included a constrained hand task, in which participants were required to harvest targets in

order of decreasing value, for two reasons. First, comparing performance on the constrained and

unconstrained (or ‘free’) hand tasks enables us to test whether sometimes selecting lower value

targets before harvesting all high value targets (as in the unconstrained hand task), improves per-

formance. Second, by focusing on the first 5 harvests (i.e., harvests of the high value targets) in

the constrained task, we could assess how effectively participants minimize movement path dis-

tance. Fig 7A and 7B show the average number of points and harvests, respectively, per trial for

both the free and constrained hand tasks in the three conditions examined in the constrained

hand task. (Note that the size condition was not performed since the targets all had equal value.)

On average, participants harvested all 5 high value targets and one or two mid-value targets in

the constrained hand task. A task (2 levels: hand, eye) by condition (three levels: value, small-

high, small-low) repeated measures ANOVA showed that participants harvested more points

(F1, 7 = 68.0, p< 0.001) in the free choice task than the constrained task. A similar ANOVA

showed that participants also harvested more targets (F1, 7 = 72.4, p< 0.001) in the free choice

task than the constrained task. These findings indicate that participants’ inclination to sometimes

Fig 7. Performance in the constrained hand task. A-B, Average number of points and harvests, respectively,

per trial across the three conditions examined in the constrained hand task. Error bars represent ±1 SE. C, Mean

distributions, averaged across participants, of possible path distances (dashed line) and actual path distances

(solid line) that participants chose. Shaded areas represent ±1 SE. D, The bars show the proportion of trials in

which participants selected the shortest possible path (rank 1), the next shortest path (rank 2), and so on up to the

20th shortest path. The grey line shows the total path length as a function of rank.

https://doi.org/10.1371/journal.pcbi.1005504.g007
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forgo high value targets in the free task led to more optimal performance. The analysis also

uncovered a task by condition interaction for both the number of harvested points (F2, 14 = 43.3,

p< 0.001) and targets (F2, 14 = 6.2, p = 0.012). As shown in Fig 7A and 7B, for both variables, the

largest discrepancy between tasks is seen in the small-high condition, where high value targets

were small. In the constrained task, fewer targets were harvested when participants were

required to harvest the small targets first. This could reflect a speed-accuracy trade-off, more

challenging visual search, or both. However, even when the high value targets were large, the

number of targets harvested in the constrained task was less than in the free choice task.

To assess how effectively participants minimized hand path distance, we computed, for

each trial in the constrained task, the distance between successive targets for all 120 possible

harvest orders of the first five targets. Fig 7C shows the distribution of possible path dis-

tances (dashed line) together with the distribution of actual path distances that participants

chose. It is evident that participants selected harvest paths from the lower end of the distri-

bution of all possible paths. The histogram in Fig 7D shows the proportion of trials in which

participants selected the shortest possible path (rank 1), the next shortest path (rank 2), and

so on up to the 20th shortest path. (The gray solid line shows the average total distance of

the ranked paths.) Participants chose the shortest path on close to 40% of trials and selected

one of the 5 shortest paths on approximately 75% of trials. These data show that participants

were efficient at rapidly harvesting a sequence of targets the resulted in a relatively short

cumulative distance.

Discussion

We examined sequential decision-making within the context of a rapid motor foraging task.

Participants had a limited time to harvest targets of varying value, position, and size either by

moving the hand to the targets (hand task) or fixating the targets (eye task). We fit a probabilis-

tic ‘look ahead’ model in which target choice depended on a cost function that included rate

of reward, target distance, and target size of up to the next 5 targets, with different weights

allowed for the cost of each future target. We found that in the hand task, in comparison to the

eye task, target choice was more strongly influenced by target distance and size, although target

size did influence target choice in the eye task when target value was constant. In addition, par-

ticipants in the hand task took into account a greater number of future targets, with most par-

ticipants considering at least 5 future targets, compared to the eye task, with most participants

only considering the next target. In a version of the hand task designed to examine route-find-

ing efficiency, we found that participants were capable of selecting efficient routes through the

targets that reduced total distance travelled. These results suggest that participants take into

account the motor costs associated with different effectors so as to be efficient in foraging with

both the eye and hand.

Studies examining the control of reaching movements have typically focused on move-

ments to a single target, and contemporary models of reaching behavior have emphasized the

trade-off between accuracy and effort [1–3,5,24]. A number of studies have recently examined

the interplay between motor control and the decisions about where and when to reach during

single movements. For example, it is has been shown that people factor into account their spa-

tial movement variability to optimize performance when reaching towards target configura-

tions with different reward and penalty regions [29–31] and similar optimization has been

shown for temporal variability [19,32,33]. Recent work has investigated decision-making pro-

cesses associated with selecting a single target from among multiple potential targets [15,for

reviews, see 34–37]. To capture choice behavior in such tasks, additional factors need to be

considered, including target value and biomechanical costs.
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However, in many real world tasks people must make a series of choices, each involve mul-

tiple potential targets. In this situation, captured by the task we examined, potential costs asso-

ciated with planning ahead need to be considered. In our task, we found that target value and

distance influenced choice behavior in both the hand and eye tasks, with the relative influence

of distance being stronger for the hand. Target distance is clearly related to biomechanical

costs, especially in the hand task, but may also be linked to temporal costs associated with tar-

get search and selection. Although target size did not strongly affect movement time in either

task, it nevertheless influenced choice in the hand task. Recently, it has been suggested that

participants can improve their accuracy without incurring additional time by increasing the

level of control [25]. In other words the trade-off between speed and accuracy can be altered

through the cost of control. We suggest that participants’ preference for larger targets in the

hand task may partially reflect the greater cost of control involved in attaining small targets.

The trade-off between value and biomechanical costs in the hand task agrees with recent work

by Cos and colleagues [38–40] showing that people can rapidly predict biomechanical costs

associated with competing reaching actions [see also 41, 42].

Our probabilistic model suggests that participants in the hand task took into account a

greater number of future harvests in comparison to participants in the eye task. Such ‘looking

ahead’ in the hand task presumably enabled participants to trade off more effectively bio-

mechanical and time costs with the value of the targets harvested. The ability to look ahead has

been shown for a task in which participants reached through a series of fixed via-points which

had to be visited in a prescribed order [43]. Our results also show that, in both the hand and

eye tasks, participants placed the most weight on the current target option with each subse-

quent target option having progressively less weight in the decision. This finding can be linked

to the phenomenon of ‘temporal discounting’ of reward which has been shown to influence

the kinematics of single saccadic eye movements, with more rewarding targets leading to faster

movements [44–48]. Our study shows that such temporal discounting acts across a sequence

of future movements of both the eye and hand.

To our knowledge, our study is the first to quantitatively assess how costs and rewards asso-

ciated with future targets influence current target choice during sequential target acquisition

with either the hand or the eye. Thus, the results pertaining to each task, in isolation, are in

themselves novel. A priori, it was not obvious that in the eye task participants would only con-

sider the next target when selecting targets. By ‘looking ahead’ (i.e., considering multiple future

targets, viewed in peripheral vision, while fixating the current target in order to harvest it), par-

ticipants could have reduced, on average, the amplitude and therefore duration of each eye

movement. It is also possible that they could have reduced the average distance between the

remaining targets and the current fixation point, which may have facilitated search. On the

other hand, it strikes us as impressive that, in the hand task, participants consider a number of

future targets given the speeded nature of the task. That is, given the short harvesting window,

it was not obvious, a priori, that participants would invest resources in looking ahead.

In terms of the comparison between the eye and hand tasks, we acknowledge that there are

several differences between the tasks beyond the effector involved. Whereas target size directly

determined the required accuracy of hand movements, this was not the case for eye move-

ments. Given that the functional fovea is approximately 3˚ [49], it was simply not possible to

implement similar accuracy constraints in the two tasks. We did not record eye movements

in the hand task because it was difficult to obtain accurate recordings while participant gener-

ated very vigorous arm movements. However, based on previous work (as well as our observa-

tions), we can be quite certain that participants launched eye and hand movements towards

each target in synchrony and maintained fixation at the target until the hand cursor arrived

and the button was clicked [49–55]. Thus, the overall pattern of eye movements in the two
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tasks would have been similar. In both tasks, gaze shifts from one harvested target to the next

and information about targets remaining to be harvested is provided by peripheral vision. Of

course, the function of gaze differs between the two tasks. Whereas visual feedback is presum-

ably used to help keep gaze on target in both tasks, in the hand task retinal and extraretinal sig-

nals are also used to guide the hand. Given the additional functions played by gaze in the hand

task, it seems unlikely that gaze demands account for the reduced look-ahead behaviour

observed in the eye task. However, we would emphasize that our goal was not to perfectly

equate the two tasks, which are necessarily somewhat different. Rather, we wanted to keep

each task as natural as possible, within the overall timing constraints, so that we could broadly

compare the behaviours. We believe that the striking difference between the two tasks, in

terms of look ahead behaviour, is likely quite robust and does not depend on subtle details of

the two tasks.

Activity in sensorimotor areas of the brain has been shown to encode multiple potential

reach targets prior to deciding between, and then reaching towards, one of these targets [56].

One interpretation of this activity is that it reflects competing movement plans prepared for

multiple potential targets (Cisek and Kalaska, 2010), an idea consistent with recent behavioral

studies showing spatial averaging when reaching towards multiple potential reach targets [57–

62]. The formation of multiple motor plans may be an effective way of evaluating the costs

associated with these alternatives [40]. In the current task, it is an open question whether par-

ticipants may prepare competing immediate motor plans (i.e., from the current target to differ-

ent potential targets), as well as plans for future actions.

Although numerous studies have examined how rewards and costs associated with individ-

ual targets are neurally represented [63–65], our results indicate that the brain must also re-

present, and evaluate, alternative routes involving multiple targets, potentially in parallel. A

number of studies have identified brain regions that may play a role representing and planning

such routes. Recent work on navigational planning in an open area has shown that, prior to

goal-directed navigation, the rat hippocampus generates sequences of neural events encoding

spatial trajectories from the current location to the known goal location [66]. These events

may support a goal-directed, trajectory-finding mechanism that identifies important places

and relevant behavioural paths and can be used to control future navigational behaviour.

This, or a similar, mechanism may support the optimization of sequential reaching movements

to objects is reachable space. In behavioural studies, route optimization has been studied

using versions of the travelling salesperson problem in which participants attempt to select

the shortest path when connecting a set of fixed targets [67]. This work, which has focused

on the heuristics used to solve the problem, has shown that, when given ample time, humans

are capable of very good performance levels, often with near optimal solutions [10–13]. Our

results indicate that even under speeded conditions, participants are able to perform extremely

well.

Although there are obviously many differences between natural foraging and the reaching

task we examined, foraging theory [20,21] can nevertheless provide a framework for studying

movement decisions in the context of competing costs and rewards [see 68]. In general, a key

component of natural foraging involves deciding whether to engage with options as they are

sequentially encountered. For example, work on patch foraging examines whether to remain

in the current patch (i.e. to exploit) or switch to a new patch (i.e. to explore) which can incur a

cost of time or effort [69,70]. In the most general setting there is both uncertainty as to the

value of the current patch, which can vary with time as resources are depleted, and the value of

other patches that could be visited. In such general settings it has been suggested that distinct

neural processes appear to be engaged in choices within a patch and choices to move to forage

a new patch [68,70], revealing aspects of the exploration-exploitation trade-off [71,72]. In our
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task, the main pressure is time within a patch and the assessment of target value, size and dis-

tance must occur rapidly leading to some uncertainty. Therefore our task examines the effi-

ciency of foraging within a patch to extract valuable resources and the potential trade-off

between looking far ahead (which can incur a time cost) and myopic decisions that can be

faster but less efficient.

Methods

Participants

Eight women and seven men between 20 and 28 years of age participated in the present study

after providing written, informed consent. All participants self-reported having normal or

corrected-to-normal vision, being right handed, and being free of sensorimotor dysfunction.

Participants were randomly assigned to one of two groups: the hand foraging group (n = 8) or

the eye foraging group (n = 7). The experimental protocols were approved by the General

Research Ethics Board at Queen’s University in compliance with the Canadian Tri-Council

Policy on Ethical Conduct for Research Involving humans. Each experimental session lasted

approximately one hour. Participants received $10 in compensation and an additional mone-

tary sum based on the total points harvested during the experiment. Specifically, a 5¢ bonus

was provided for every 250 points harvested, resulting in an additional payoff of between $4

and $5.

Apparatus and stimuli

Seated participants viewed 15 circular targets located in 3 rows by 5 columns (see examples in

Fig 1). To specify the locations of the targets on each trial, we began with a 3 x 5 grid with

equal spacing of 6 cm in both dimensions, providing 15 initial grid locations. A set of 15 target

locations was generated from these 15 grid locations by adding random vertical and horizontal

offsets to each grid location, independently drawn from a uniform distribution over ± 11 mm.

Thus, the positions of the targets, relative to the grid locations, changed from trial to trial. Tar-

gets in the display could be one of three sizes—5, 8, or 11 mm in radius—and have one of

three point values—10, 12, or 15 points (Fig 1B). Participants also viewed a circular start posi-

tion, 5 mm in diameter, located 6 cm closer to their body than the first row of targets and at

the participant’s midline. All stimuli were presented using a visual display system, consisting

of a CRT projector (Electrochrome 9500 Ultra) with a refresh rate of 120 Hz and a horizontal

mirror through which participants viewed the images on a horizontal surface. Note that partic-

ipants could not see their hand or arm.

In the hand foraging task, participants selected targets by moving a circular cursor (5 mm

in diameter) linked to the position of a handle, grasped with the right hand, to each target. A

successful harvest occurred when participants pressed a button fitted to the side of the handle

with their index finger when the cursor overlapped with any portion of the target. The handle,

which was attached to a lightweight manipulandum (Phantom 3.0, Sensable Technologies,

Cambridge, MA), could freely rotate about its vertical axis and was mounted on an air sled

allowing participants to move the handle by sliding over a horizontal surface. Optical encoders

in the manipulandum measured the handle position at 1000 Hz and the state of the button was

also recorded at 1000 Hz.

In the eye foraging task, participants selected targets by fixating their gaze on the targets.

An infrared video-based eye-tracker (ETL 500 pupil/corneal tracking system, ISCAN, Burling-

ton, MA, USA) was used to record gaze position of the left eye in the plane of the target display

at 240 Hz. A bite bar was used to help stabilize the head. Gaze position was calibrated to the

plane of the target display [for details, see 54] at the beginning of the experiment and
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recalibrated if drift in the recorded gaze signal occurred. The spatial resolution of gaze in the

horizontal plane of the hand was 0.36˚ visual angle, corresponding to ~3 mm when gaze was

directed to the center of the targets. In practice, gaze was recalibrated approximately once per

participant, typically at around 75% of the duration of the experiment. The gaze signal was

smoothed, on-line, using a running average filter computed over the last 50 samples (over-

sampled at 1000 Hz), which introduced a small time delay of 24.5 ms. In performing the gaze

foraging task, participants almost always fixated one of the targets. That is, participants shifted

their gaze directly from one target to the next. To determine which target was fixated, we sim-

ply took the closest target to the gaze position. A successful target selection was achieved when

gaze was at a given target for 150 ms. Fixations less than 150 ms were rarely observed, as might

be expected if participants (1) made corrective saccades after fixating a target they did not

want to harvest or (2) briefly fixated targets to explore the scene. With the required fixation

duration, the time between successive harvests was similar to the hand foraging tasks. Note

that given that the size of the functional fovea, which is about 3˚ [49] or ~2.5 cm in the target

plane in our task, it would not have been appropriate to require participants to align the

recorded gaze position inside the targets in order to harvest them. Note that we did not record

eye movements in the hand task because participants tended to make rapid and vigorous arm

movements in this task which make obtaining stable gaze recordings difficult.

Procedure

For a given trial, participants were instructed to harvest as many points as possible (which

translated to a monetary bonus). At the start of each trial, the participant had to position the

cursor, or fixate, the start position for a random time period of between 0.3 and 2.3 s. The tar-

get display then appeared, and the participant then had a fixed duration of 3.25 s to harvest tar-

gets. This duration was chosen so that on average subjects could average about half the targets

on any given trial. At the moment a target was successfully harvested, the target turned grey

and a brief tone (1000 Hz) was sounded for 50 ms. At the end of each trial, the total number of

harvested points was presented on the target display. Participants completed one practice

block of trials, consisting of a set of targets that were all of medium size (8 mm radius) and

value (12 points). Participants then completed four experimental blocks of 50 trials, in coun-

terbalanced order, with a 3–5 minute rest between blocks.

The four experimental blocks differed in how target size and value were combined (see Fig

1B). In the size condition, only target size was varied, with 5 targets of each size, while target

value (12 points) was held constant. In the value condition, only target value was varied, with 5

targets of each value, while target size (8 mm) was held constant. For this condition, the low,

medium, and high value targets were colored blue, green, and orange, respectively (in all other

conditions, all of the targets were blue). In the small-high condition, the target size was nega-

tively correlated with target value with the smallest targets being the most valuable. Partici-

pants were presented with 5 small targets of high value, 5 medium-sized targets of medium

value, and 5 large targets of low value. Lastly, in the small-low condition, target size was posi-

tively correlated with value with the larger targets being the most valuable. Participants were

presented with 5 small targets of low value, 5 medium-sized targets of medium value, and 5

large targets of high value. Before each block, participants were explicitly told the size-value

pairing of the upcoming block. These blocks were completed in both the hand and eye forag-

ing tasks.

Participants in the hand foraging group performed an additional constrained hand foraging

task in which they were required to harvest targets in order of decreasing value. That is, partic-

ipants were required to harvest all of the high value targets first, followed by the medium value
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targets, and then the low value targets. Participants could not harvest a target out of order; if a

participant attempted to harvest a target out of sequence, no tone was sounded and the target

did not change to gray. In this task, participants typically harvested between 6 and 7 targets

and therefore we could assess their route-selection efficiency by comparing the actual route

they selected through the first 5 (high value) targets to all possible 5-target routes (n = 120). In

this task, participants performed three blocks of 50 trials, counterbalanced across participants,

corresponding to the value, small-high, and small-low conditions described above.

Analyses

For each harvest, we determined the duration from the previous harvest (i.e., duration between

successive successful button presses) as well as the distance from the previous harvest, defined

as the distance between successive target centers. In the hand foraging task, participants occa-

sionally missed the target by pressing the button while the cursor was slightly off the target.

Participants on average missed the target on 7% (SE = 0.01%) of harvest attempts in the free

task and 8% (SE = 0.01%) in the constrained task. In the eye task, harvests were registered

when gaze was closest to a given target for 150 ms and participants did not press a button.

Thus, misses akin to those in the hand task did not occur. An alpha level of 0.05 was used for

statistical tests and a Bonferroni correction was used for post hoc tests.
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