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Abstract representations of events arise from
mental errors in learning and memory

Christopher W. Lynn', Ari E. Kahn® 23, Nathaniel Nyema® & Danielle S. Bassett@® 346,78

Humans are adept at uncovering abstract associations in the world around them, yet the
underlying mechanisms remain poorly understood. Intuitively, learning the higher-order
structure of statistical relationships should involve complex mental processes. Here we
propose an alternative perspective: that higher-order associations instead arise from natural
errors in learning and memory. Using the free energy principle, which bridges information
theory and Bayesian inference, we derive a maximum entropy model of people's internal
representations of the transitions between stimuli. Importantly, our model (i) affords a
concise analytic form, (ii) qualitatively explains the effects of transition network structure on
human expectations, and (iii) quantitatively predicts human reaction times in probabilistic
sequential motor tasks. Together, these results suggest that mental errors influence our
abstract representations of the world in significant and predictable ways, with direct impli-
cations for the study and design of optimally learnable information sources.
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ARTICLE

ur experience of the world is punctuated in time by

discrete events, all connected by an architecture of hidden

forces and causes. In order to form expectations about
the future, one of the brain’s primary functions is to infer the
statistical structure underlying past experiences!=3. In fact, even
within the first year of life, infants reliably detect the frequency
with which one phoneme follows another in spoken language®. By
the time we reach adulthood, uncovering statistical relationships
between items and events enables us to perform abstract rea-
soning®, identify visual patterns®, produce language’, develop
social intuition®, and segment continuous streams of data into
self-similar parcels®. Notably, each of these functions requires the
brain to identify statistical regularities across a range of scales. It
has long been known that people are sensitive to differences in
individual transition probabilities such as those between words or
concepts*9. In addition, mounting evidence suggests that humans
can also infer abstract (or higher-order) statistical structures,
including hierarchical patterns within sequences of stimulil,
temporal regularities on both global and local scales!!, abstract
concepts within webs of semantic relationships!'?, and general
features of sparse datal3.

To study this wide range of statistical structures in a unified
framework, scientists have increasingly employed the language of
network science!4, wherein stimuli or states are conceptualized as
nodes in a graph with edges or connections representing possible
transitions between them. In this way, a sequence of stimuli often
reflects a random walk along an underlying transition network!>-17,
and we can begin to ask which network features give rise to var-
iations in human learning and behavior. This perspective has been
particularly useful, for example, in the study of artificial gram-
mars!8, wherein human subjects are tasked with inferring the
grammar rules (i.e., the network of transitions between letters and
words) underlying a fabricated language!®. Complementary
research in statistical learning has demonstrated that modules (i.e.,
communities of densely connected nodes) within transition net-
works are reflected in brain imaging data?® and give rise to stark
shifts in human reaction times?!. Together, these efforts have cul-
minated in a general realization that people’s internal representa-
tions of a transition structure are strongly influenced by its higher-
order organization?>23. But how does the brain learn these abstract
network features? Does the inference of higher-order relationships
require sophisticated hierarchical learning algorithms? Or instead,
do natural errors in cognition yield a “blurry” representation,
making the coarse-grained architecture readily apparent?

To answer these questions, here we propose a single driving
hypothesis: that when building models of the world, the brain is
finely tuned to maximize accuracy while simultaneously mini-
mizing computational complexity. Generally, this assumption
stems from a rich history exploring the trade-off between brain
function and computational cost?»2°, from sparse coding prin-
ciples at the neuronal level?® to the competition between infor-
mation integration and segregation at the whole-brain level?’ to
the notion of exploration versus exploitation?® and the speed-
accuracy trade-off?? at the behavioral level. To formalize our
hypothesis, we employ the free energy principle’®, which has
become increasingly utilized to investigate constraints on cogni-
tive functioning®! and explain how biological systems maintain
efficient representations of the world around them32. Despite this
thorough treatment of the accuracy-complexity trade-off in
neuroscience and psychology, the prevailing intuition in statistical
learning maintains that the brain is either optimized to perform
Bayesian inference!®13, which is inherently error free, or hier-
archical learning!®:11:16:18 which typically entails increased rather
than decreased computational complexity.

Here, we show that the competition between accuracy and
computational complexity leads to a maximum entropy (or

minimum complexity) model of people’s internal representations of
events®033, As we decrease the complexity of our model, allowing
mental errors to take effect, higher-order features of the transition
network organically come into focus while the fine-scale structure
fades away, thus providing a concise mechanism explaining how
people infer abstract statistical relationships. To a broad audience,
our model provides an accessible mapping from transition networks
to human behaviors, with particular relevance for the study and
design of optimally learnable transition structures—either between
words in spoken and written language!$1933, notes in music34, or
even concepts in classroom lectures’>.

Results

Network effects on human expectations. In the cognitive sci-
ences, mounting evidence suggests that human expectations
depend critically on the higher-order features of transition
networks!>16, Here, we make this notion concrete with empirical
evidence for higher-order network effects in a probabilistic
sequential response task?2. Specifically, we presented human
subjects with sequences of stimuli on a computer screen, each
stimulus depicting a row of five gray squares with one or two of
the squares highlighted in red (Fig. 1a). In response to each sti-
mulus, subjects were asked to press one or two computer keys
mirroring the highlighted squares (Fig. 1b). Each of the 15 dif-
ferent stimuli represented a node in an underlying transition
network, upon which a random walk stipulated the sequential
order of stimuli (Fig. 1a). By measuring the speed with which a
subject responded to each stimulus, we were able to infer their
expectations about the transition structure: a fast reaction
reflected a strongly anticipated transition, while a slow reaction
reflected a weakly anticipated (or surprising) transition>2%36,

While it has long been known that humans can detect
differences in transition probabilities—for instance, rare transitions
lead to sharp increases in reaction times*¢—more recently it has
become clear that people’s expectations also reflect the higher-
order architecture of transition networks20-2337. To clearly study
these higher-order effects without the confounding influence of
variations in transition probabilities, here we only consider
transition graphs with a uniform transition probability of 0.25 on
each edge, thereby requiring nodes to have uniform degree k =4
(Fig. 1c). Specifically, we consider two different graph topologies: a
modular graph with three communities of five densely connected
nodes and a lattice graph representing a 3 x 5 grid with periodic
boundary conditions (Fig. 1d). As all transitions across both graphs
have uniform probability, any systematic variations in behavior
between different parts of a graph, or between the two graphs
themselves, must stem from differences in the graphs’ higher-order
modular or lattice structures.

Regressing out the dependence of reaction times on the
different button combinations (Fig. le), the natural quickening of
reactions with time3® (Fig. 1f), and the impact of stimulus recency
(Methods), we identify two effects of higher-order network
structure on subjects’ reactions. First, in the modular graph we
find that reactions corresponding to within-cluster transitions are
35ms faster than reactions to between-cluster transitions (p <
0.001, F-test; Supplementary Table 1), an effect known as the
cross-cluster surprisal®37 (Fig. 2a). Similarly, we find that people
are more likely to respond correctly for within-cluster transitions
than between-cluster transitions (Supplementary Table 8). Sec-
ond, across all transitions within each network, we find that
reactions in the modular graph are 23 ms faster than those in the
lattice graph (p<0.001, F-test; Supplementary Table 2), a
phenomenon that we coin the modular-lattice effect (Fig. 2b).

Thus far, we have assumed that variations in human behavior
stem from people’s internal expectations about the network
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Fig. 1 Subjects respond to sequences of stimuli drawn as random walks on an underlying transition graph. a Example sequence of visual stimuli (left)
representing a random walk on an underlying transition network (right). b For each stimulus, subjects are asked to respond by pressing a combination of one or
two buttons on a keyboard. ¢ Each of the 15 possible button combinations corresponds to a node in the transition network. We only consider networks with
nodes of uniform degree k =4 and edges with uniform transition probability 0.25. d Subjects were asked to respond to sequences of 1500 such nodes drawn
from two different transition architectures: a modular graph (left) and a lattice graph (right). e Average reaction times for the different button combinations,
where the diagonal elements represent single-button presses and the off-diagonal elements represent two-button presses. f Average reaction times as a
function of trial number, characterized by a steep drop-off in the first 500 trials followed by a gradual decline in the remaining 1000 trials. In e and f, averages
are taken over responses during random walks on the modular and lattice graphs. Source data are provided as a Source Data file.

structure. However, it is important to consider the possible
confound of stimulus recency: the tendency for people to respond
more quickly to stimuli that have appeared more recently3*40. To
ensure that the observed network effects are not simply driven by
recency, we performed a separate experiment that controlled for
recency in the modular graph by presenting subjects with
sequences of stimuli drawn according to Hamiltonian walks,
which visit each node exactly once?’. Within the Hamiltonian
walks, we still detect a significant cross-cluster surprisal effect
(Fig. 2a; Supplementary Tables 3-5). In addition, we controlled
for recency in our initial random walk experiments by focusing
on stimuli that previously appeared a specific number of trials in
the past. Within these recency-controlled data, we find that both
the cross-cluster surprisal and modular-lattice effects remain
significant (Supplementary Figs. 2 and 3). Finally, for all of our
analyses throughout the paper we regress out the dependence of
reaction times on stimulus recency (Methods). Together, these
results demonstrate that higher-order network effects on human
behavior cannot be explained by recency alone.

In combination, our experimental observations indicate that
people are sensitive to the higher-order architecture of transition
networks. But how do people infer abstract features like
community structure from sequences of stimuli? In what follows,
we turn to the free energy principle to show that a possible
answer lies in understanding the subtle role of mental errors.

Network effects reveal errors in graph learning. As humans
observe a sequence of stimuli or events, they construct an internal
representation A of the transition structure, where A represents
the expected probability of transitioning from node z to node j.
Given a running tally n;; of the number of times each transition
has occurred, one might naively expect that the human brain is
optimized to learn the true transition structure as accurately as

possible*!#2. This common hypothesis is represented by the
maximum likelihood estimate®?, taking the simple form

n..
AMLE __ y
v >k Mk W

To see that human behavior does not reflect maximum likelihood
estimation, we note that Eq. (1) provides an unbiased estimate of
the transition structure*3; that is, the estimated transition
probabilities in AM'F are evenly distributed about their true value
0.25, independent of the higher-order transition structure. Thus, the
fact that people’s reaction times depend systematically on abstract
features of the network marks a clear deviation from maximum
likelihood estimation. To understand how higher-order network
structure impacts people’s internal representations, we must delve
deeper into the learning process itself.

Consider a sequence of nodes (x;, x,), where x;€{1, ..., N}
represents the node observed at time ¢ and N is the size of the
network (here N =15 for all graphs). To update the maximum
likelihood estimate of the transition structure at time ¢+ 1, one
increments the counts #;; using the following recursive rule,

nij(t +1) = nij(t) +[i = x,] [J = xt+l]7 ()

where the Iverson bracket [] =1 if its argument is true and 0
otherwise. Importantly, we note that at each time ¢+ 1, a person
must recall the previous node that occurred at time #; in other
words, they must associate a cause x, to each effect x,, ; that they
observe. Although maximum likelihood estimation requires
perfect recollection of the previous node at each step, human
errors in perception and recall are inevitable**46, A more
plausible scenario is that, when attempting to recall the node at
time ¢, a person instead remembers the node at time ¢t — At with
some decreasing probability P(Af), where Af>0. This memory
distribution, in turn, generates an internal belief about which
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Fig. 2 The effects of higher-order network structure on human reaction
times. a Cross-cluster surprisal effect in the modular graph, defined by an
average increase in reaction times for between-cluster transitions (right)
relative to within-cluster transitions (left). We detect significant differences
in reaction times for random walks (p < 0.001, t = 5.77, df = 1.61x 10°) and
Hamiltonian walks (p = 0.010, t = 2.59, df =1.31x104). For the mixed
effects models used to estimate these effects, see Supplementary Tables 1
and 3. b Modular-lattice effect, characterized by an overall increase in
reaction times in the lattice graph (right) relative to the modular graph
(left). We detect a significant difference in reaction times for random walks
(p <0.001, t =3.95, df =3.33 x10°); see Supplementary Table 2 for the
mixed effects model. Measurements were on independent subjects,
statistical significance was computed using two-sided F-tests, and
confidence intervals represent standard deviations. Source data are
provided as a Source Data file.

node occurred at time £,

-1
B,(i) = Z P(A1)[i = x;_nl- (3)
Ar=0
Updating Eq. (2) accordingly, we arrive at a learning rule that
accounts for natural errors in perception and recall,

ﬂij(t +1)= ;’ij(t) + By(i) [J = xH—l]' (4)

Using this revised counting rule, we can begin to form more
realistic predictions about people’s internal estimates of the

transition structure, A; = 71/ > 4 fiy.

We remark that P(Af) does not represent the forgetting of past
stimuli altogether; instead, it reflects the local shuffling of stimuli
in time. If one were to forget past stimuli at some fixed rate — a
process that is important for some cognitive functions*’—this
would merely introduce white noise into the maximum likelihood
estimate AM'® (Supplementary Discussion). By contrast, we will
see that, by shuffling the order of stimuli in time, people are able
to gather information about the higher-order structure of the
underlying transitions.

Choosing a memory distribution: the free energy principle. In
order to make predictions about people’s expectations, we must

choose a particular mathematical form for the memory dis-
tribution P(Af). To do so, we begin with a single driving
hypothesis: that the brain is finely tuned to (i) minimize errors
and (ii) minimize computational complexity. Formally, we define
the error of a recalled stimulus to be its distance in time from the
desired stimulus (i.e., At), such that the average error of a can-
didate distribution Q(Af) is given by E(Q) = >_,, Q(At)At. By
contrast, it might seem difficult to formalize the computational
complexity associated with a distribution Q. Intuitively, we would
like the complexity of Q to increase with increasing certainty.
Moreover, as a first approximation we expect the complexity to be
approximately additive such that the cost of storing two inde-
pendent memories equals the costs of the two memories them-
selves. As famously shown by Shannon, these two criteria of
monotonicity and additivity are sufficient to derive a quantitative
definition of complexity>>—namely, the negative entropy
~S(Q) = Y., Q(AN)logQ(AL).

Together, the total cost of a distribution Q is its free energy F
(Q) =BE(Q) — S(Q), where f is the inverse temperature para-
meter, which quantifies the relative value that the brain places on
accuracy versus efficiencyl. In this way, our assumption about
resource constraints in the brain leads to a particular form for P:
it should be the distribution that minimizes F(Q), namely the
Boltzmann distribution3?

P(At) = %e_ﬁm, (5)

where Z is the normalizing constant (Methods). Free energy
arguments similar to the one presented here have been used
increasingly to formalize constraints on cognitive functions?!-32,
with applications from active inference*® and Bayesian learning
under uncertainty®? to human action and perception with
temporal or computational limitations3149°0, Taken together,
Egs. (3)-(5) define our maximum entropy model of people’s
internal transition estimates A.

To gain an intuition for the model, we consider the infinite-
time limit, such that the transition estimates become independent
of the particular random walk chosen for analysis. Given a
transition matrix A, one can show that the asymptotic estimates
in our model are equivalent to an average over walks of various

lengths, A = >, P(At)AY*1, which, in turn, can be fashioned
into the following analytic expression,

A=(1—eP)A(T—ePa), (6)

where I is the identity matrix (Methods). The model contains a
single free parameter 8, which represents the precision of a
person’s mental representation. In the limit § — e (no mental
errors), our model becomes equivalent to maximum likelihood
estimation (Fig. 3a), and the asymptotic estimates A converge to
the true transition structure A (Fig. 3b), as expected!.
Conversely, in the limit § — 0 (overwhelming mental errors),
the memory distribution P(At) becomes uniform across all past
nodes (Fig. 3a), and the mental representation A loses all
resemblance to the true structure A (Fig. 3b).

Remarkably, for intermediate values of §, higher-order features
of the transition network, such as communities of densely
connected nodes, come into focus, while some of the fine-scale
features, like the edges between communities, fade away (Fig. 3b).
Applying Eq. (6) to the modular graph, we find that the average
expected probability of within-community transitions reaches
over 1.6 times the estimated probability of between-community
transitions (Fig. 3c), thus explaining the cross-cluster surprisal
effect?>37. Furthermore, we find that the average estimated
transition probabilities in the modular graph reach over 1.4 times
the estimated probabilities in the lattice graph (Fig. 3d), thereby
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Fig. 3 A maximum entropy model of transition probability estimates in humans. a lllustration of the maximum entropy distribution P(At) representing
the probability of recalling a stimulus At time steps from the target stimulus (dashed line). In the limit # — O, the distribution becomes uniform over all past
stimuli (left). In the opposite limit f — oo, the distribution becomes a delta function on the desired stimulus (right). For intermediate amounts of noise, the
distribution drops off monotonically (center). b Resulting internal estimates A of the transition structure. For B — 0, the estimates become all-to-all, losing
any resemblance to the true structure (left), while for f — oo, the transition estimates become exact (right). At intermediate precision, the higher-order
community structure organically comes into focus (center). ¢, d Predictions of the cross-cluster surprisal effect (¢) and the modular-lattice effect (d) as

functions of the inverse temperature g.

predicting the modular-lattice effect. In addition to these higher-
order effects, we find that the model also explains previously
reported variations in human expectations at the level of
individual nodes*%22 (Supplementary Fig. 1). Together, these
results demonstrate that the maximum entropy model predicts
the qualitative effects of network structure on human reaction
times. But can we use the same ideas to quantitatively predict the
behavior of particular individuals?

Predicting the behavior of individual humans. To model the
behavior of individual subjects, we relate the transition estimates
in Egs. (3)-(5) to predictions about people’s reaction times. Given
a sequence of nodes X, ..., x;_;, we note that the reaction to the
next node x; is determined by the expected probability of tran-
sitioning from x,_; to x; calculated at time ¢ — 1, which we denote

by a(t) = Avaxt (t — 1). From this internal anticipation a(t), the
simplest possible prediction #(t) for a person’s reaction time is
given by the linear relationship®? #(t) = r, + r,a(t), where the
intercept ry represents a person’s reaction time with zero antici-
pation and the slope r; quantifies the strength of the relationship
between a person’s reactions and their anticipation in our
model3.

To estimate the parameters f3, ry, and r; that best describe a
given individual, we minimize the root mean squared error

(RMSE) between their predicted and observed reaction times after
regressing out the dependencies on button combination, trial
number, and recency (Fig. le, f; Methods). The distributions of
the estimated parameters are shown in Fig. 4a-b for random
walks and in Fig. 4g-h for Hamiltonian walks. Among the 358
random walk sequences in the modular and lattice graphs (across
286 subjects; Methods), 40 were best described as performing
maximum likelihood estimation (8 — ) and 73 seemed to lack
any notion of the transition structure whatsoever (8 — 0), while
among the remaining 245 sequences, the average inverse
temperature was 5 =0.30. Meanwhile, among the 120 subjects
that responded to Hamiltonian walk sequences, 81 appeared to
have a non-trivial value of f, with an average of f=0.61.
Interestingly, these estimates of  roughly correspond to the
values for which our model predicts the strongest network effects
(Fig. 3¢, d). In the following section, we will compare these values
of B, which are estimated indirectly from people’s reaction times,
with direct measurements of  in an independent memory
experiment.

In addition to estimating 3, we also wish to determine whether
our model accurately describes individual behavior. Toward this
end, we first note that the average slope r, is large (—735 ms for
random walks and —767 ms for Hamiltonian walks), suggesting
that the transition estimates in our model a(f) are strongly
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Fig. 4 Predicting reaction times for individual subjects. a-f Estimated parameters and accuracy analysis for our maximum entropy model across 358
random walk sequences (across 286 subjects; Methods). a For the inverse temperature g, 40 sequences corresponded to the limit f — oo, 73
corresponded to the limit # — 0. Among the remaining 245 sequences, the average value of § was 0.30. b Distributions of the intercept ry (left) and slope
ry (right). ¢ Predicted reaction time as a function of a subject’s internal anticipation. Gray lines indicate 20 randomly selected sequences, and the red line
shows the average prediction over all sequences. d Linear parameters for the third-order competing model; data points represent individual sequences and
bars represent averages. e, f Comparing the performance of our maximum entropy model with the hierarchy of competing models up to third-order. Root
mean squared error (RMSE; e) and Bayesian information criterion (BIC; f) of our model averaged over all sequences (dashed lines) compared to the
competing models (solid lines); our model provides the best description of the data across all models considered. g-j Estimated parameters and accuracy
analysis for our maximum entropy model across all Hamiltonian walk sequences (120 subjects). g For the inverse temperature f, 20 subjects were best
described as performing maximum likelihood estimation (f — o), 19 lacked any notion of the transition structure ( — 0), and the remaining 81 subjects
had an average value of = 0.61. h Distributions of the intercept ry (left) and slope ry (right). i Average RMSE of our model (dashed line) compared to that
of the competing models (solid line); our model maintains higher accuracy than the competing hierarchy up to the second-order model. j Average BIC of
the maximum entropy model (dashed line) compared to that of the competing models (solid line); our model provides a better description of the data than
the second- or third-order models. Source data are provided as a Source Data file.

predictive of human reaction times, and negative, confirming the
intuition that increased anticipation yields decreased reaction
times (Fig. 4b, h). To examine the accuracy of our model 7, we
consider a hierarchy of competing models #*), which represent
the hypothesis that humans learn explicit representations of the
higher-order transition structure. In particular, we denote the

I(f) /> nl(,,f), where nff)
counts the number of observed transitions from node i to node j
in £ steps. The model hierarchy takes into account increasingly
higher-order transitions, such that the /th-order model contains

perfect information about transitions up to length ¢:

lth-order transition matrix by Al(jz) =n

H() = o,
H() = o +Va (1),
(7)

I4
10 =+ q a% )
k=1

where a®(t) = A,(C’f)hxt(t —1). Each model #*) contains ¢+ 1

parameters cée), s cﬁ,@, where c](f) quantifies the predictive

power of the kth-order transition structure.
Intuitively, for each model #), we expect C(1£)7 cgo, ..., to be
negative, reflecting a decrease in reaction times due to increased
anticipation, and decreasing in magnitude, such that higher-order
transitions are progressively less predictive of people’s reaction
times. Indeed, considering the third-order model #* as an
example, we find that progressively higher-order transitions are
less predictive of human reactions (Fig. 4d). However, even the

largest coefficient (c?) = —135ms) is much smaller than the
slope in our maximum entropy model (r; = —735 ms), indicating
that the representation A is more strongly predictive of people’s
reaction times than any of the explicit representations
AW A@) ] Indeed, averaging over the random walk sequences,
the maximum entropy model achieves higher accuracy than the
first three orders of the competing model hierarchy (Fig. 4e)—this
is despite the fact that the third-order model even contains one
more parameter. To account for differences in the number of
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Fig. 5 Measuring the memory distribution in an n-back experiment. a Example of the 2-back memory task. Subjects view a sequence of stimuli (letters)
and respond to each stimulus indicating whether it matches the target stimulus from two trials before. For each positive response that the current stimulus
matches the target, we measure At by calculating the number of trials between the last instance of the current stimulus and the target. b Histograms of At
(i.e., measurements of the memory distribution P(At)) across all subjects in the 1-, 2-, and 3-back tasks. Dashed lines indicate exponential fits to the
observed distributions. The inverse temperature  is estimated for each task to be the negative slope of the exponential fit. € Memory distribution
aggregated across the three n-back tasks. Dashed line indicates an exponential fit. We report a combined estimate of the inverse temperature f=0.32 =
0.01, where the standard deviation is estimated from 1000 bootstrap samples of the combined data. Measurements were on independent subjects. Source

data are provided as a Source Data file.

parameters, we additionally compare the average Bayesian
information criterion (BIC) of our model with that of the
competing models, finding that the maximum entropy model
provides the best description of the data (Fig. 4f).

Similarly, averaging over the Hamiltonian walk sequences, the
maximum entropy model provides more accurate predictions
than the first two competing models (Fig. 4i) and provides a lower
BIC than the second and third competing models (Fig. 4j).
Notably, even in Hamiltonian walks, the maximum entropy
model provides a better description of human reaction times than
the second-order competing model, which has the same number
of parameters. However, we remark that the first-order compet-
ing model has a lower BIC than the maximum entropy model
(Fig. 4j), suggesting that humans may focus on first-order rather
than higher-order statistics during Hamiltonian walks—an
interesting direction for future research. On the whole, these
results indicate that the free energy principle, and the resulting
maximum entropy model, is consistently more effective at
describing human reactions than the hypothesis that people
learn explicit representations of the higher-order transition
structure.

Directly probing the memory distribution. Throughout our
discussion, we have argued that errors in memory shape human
representations in predictable ways, a perspective that has
received increasing attention in recent years*’->%>. Although our
framework explains specific aspects of human behavior, there
exist alternative perspectives that might yield similar predictions.
For example, one could imagine a Bayesian learner with a non-
Markov prior that “integrates” the transition structure over time,
even without sustaining errors in memory or learning. In addi-
tion, Eq. (6) resembles the successor representation in reinfor-
cement learning®®>7, which assumes that, rather than shuffling
the order of past stimuli, humans are instead planning their
responses multiple steps in advance (Supplementary Discussion).
In order to distinguish our framework from these alternatives,
here we provide direct evidence for precisely the types of mental
errors predicted by our model.

In the construction and testing of our model, we have
developed a series of predictions concerning the shape of the

memory distribution P(Af), which, to recall, represents the
probability of remembering the stimulus at time t — At instead of
the target stimulus at time f. We first assumed that P(Af)
decreases monotonically. Second, to make quantitative predic-
tions, we employed the free energy principle, leading to the
prediction that P drops off exponentially quickly with At (Eq.
(5)). Finally, when fitting the model to individual subjects, we
estimated an average inverse temperature 3 between 0.30 for
random walks and 0.61 for Hamiltonian walks.

To test these three predictions directly, we conducted a
standard n-back memory experiment. Specifically, we presented
subjects with sequences of letters on a screen, and they were asked
to respond to each letter indicating whether or not it was the
same as the letter that occurred n steps previously; for each
subject, this process was repeated for the three conditions n =1,
2, and 3. To measure the memory distribution P(Af), we
considered all trials on which a subject responded positively that
the current stimulus matched the target. For each such trial, we
looked back to the last time that the subject did in fact observe the
current stimulus and we recorded the distance (in trials) between
this observation and the target (Fig. 5a). In this way, we were able
to treat each positive response as a sample from the memory
distribution P(At).

The measurements of P for the 1-, 2-, and 3-back tasks are
shown in Fig. 5b, and the combined measurement of P across all
conditions is shown in Fig. 5c. Notably, the distributions decrease
monotonically and maintain consistent exponential forms, even
out to At=10 trials from the target stimulus, thereby providing
direct evidence for the Boltzmann distribution (Eq. (5)). More-
over, fitting an exponential curve to each distribution, we can
directly estimate the inverse temperature . Remarkably, the value
B =0.32£0.1 estimated from the combined distribution (Fig. 5¢)
falls within the range of values estimated from our reaction time
experiments (Fig. 4a, g), nearly matching the average value =
0.30 for random walk sequences (Fig. 4a).

To further strengthen the link between mental errors and
people’s internal representations, we then asked subjects to
perform the original serial response task (Fig. 1), and for each
subject, we estimated 3 using the two methods described above:
(i) directly measuring f in the n-back experiment, and (ii)
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Fig. 6 Network violations yield surprise that grows with topological distance. a Ring graph consisting of 15 nodes, where each node is connected to its
nearest neighbors and next-nearest neighbors on the ring. Starting from the boxed node, a sequence can undergo a standard transition (green), a short
violation of the transition structure (blue), or a long violation (red). b Our model predicts that subjects’ anticipations of both short (blue) and long (red)
violations should be weaker than their anticipations of standard transitions (left). Furthermore, we predict that subjects’ anticipations of violations should
decrease with increasing topological distance (right). ¢ Average effects of network violations across 78 subjects, estimated using a mixed effects model
(Supplementary Tables 10 and 11), with error bars indicating one standard deviation from the mean. We find that standard transitions yield quicker
reactions than both short violations (p < 0.001, t = 4.50, df = 7.15 x 104) and long violations (p < 0.001, t = 8.07, df = 7.15 x 104). Moreover, topologically
shorter violations induce faster reactions than long violations (p = 0.011, t = 2.54, df = 3.44 x103), thus confirming the predictions of our model.
Measurements were on independent subjects, and statistical significance was computed using two-sided F-tests. Source data are provided as a Source

Data file.

indirectly estimating f in the serial response experiment.
Comparing these two estimates across subjects, we find that they
are significantly related with Spearman correlation r,=0.28 (p =
0.047, permutation test), while noting that we do not use the
Pearson correlation because S is not normally distributed
(Anderson-Darling test8, p <0.001 for the serial response task
and p=0.013 for the n-back task). Together, these results
demonstrate not only the existence of the particular form of
mental errors predicted by our model—down to the specific value
of f—but also the relationship between these mental errors and
people’s internal estimates of the transition structure.

Network structure guides reactions to novel transitions. Given
a model of human behavior, it is ultimately interesting to make
testable predictions. Thus far, in keeping with the majority of
existing research®0:20-2237 we have focused on static transition
graphs, wherein the probability A; of transitioning from state i to
state j remains constant over time. However, the statistical
structures governing human life are continually shifting®>, and
people are often forced to respond to rare or novel
transitions®!-%2. Here we show that, when confronted with a novel
transition—or a violation of the preexisting transition network—
not only are people surprised, but the magnitude of their surprise
depends critically on the topology of the underlying network.

We consider a ring graph where each node is connected to its
nearest and next-nearest neighbors (Fig. 6a). We asked subjects to
respond to sequences of 1500 nodes drawn as random walks on
the ring graph, but with 50 violations randomly interspersed.
These violations were divided into two categories: short violations
of topological distance two and long violations of topological
distances three and four (Fig. 6a). Using maximum likelihood
estimation (Eq. (1)) as a guide, one would naively expect people
to be equally surprised by all violations—indeed, each violation
has never been seen before. In contrast, our model predicts that
that surprise should depend crucially on the topological distance
of a violation in the underlying graph, with topologically longer
violations inducing increased surprise over short violations
(Fig. 6b).

In the data, we find that all violations give rise to sharp
increases in reaction times relative to standard transitions (Fig. 6¢;
Supplementary Table 10), indicating that people are in fact

learning the underlying transition structure. Moreover, we find
that reaction times for long violations are 28 ms longer than those
for short violations (p =0.011, F-test; Fig. 6c; Supplementary
Table 11). In addition, we confirm that the effects of network
violations are not simply driven by stimulus recency (Supple-
mentary Figs. 4 and 5). These observations suggest that people
learn the topological distances between all nodes in the transition
graph, not just those pairs for which a transition has already been
observed>?-62,

Discussion

Daily life is filled with sequences of items that obey an underlying
network architecture, from networks of word and note transitions
in natural language and music to networks of abstract relation-
ships in classroom lectures and literature®=. How humans infer
and internally represent these complex structures are questions of
fundamental interest!9-13, Recent experiments in statistical
learning have established that human representations depend
critically on the higher-order organization of probabilistic tran-
sitions, yet the underlying mechanisms remain poorly under-
stood?0-23,

Here we show that network effects on human behavior can be
understood as stemming from mental errors in people’s estimates
of the transition structure, while noting that future work should
focus on disambiguating the role of recency3?40. We use the free
energy principle to develop a model of human expectations that
explicitly accounts for the brain’s natural tendency to minimize
computational complexity—that is, to maximize entropy3!-32:49,
Indeed, the brain must balance the benefits of making accurate
predictions against the computational costs associated with such
predictions?4-2%°0, This competition between accuracy and effi-
ciency induces errors in people’s internal representations, which,
in turn, explains with notable accuracy an array of higher-order
network phenomena observed in human experiments20-23,
Importantly, our model admits a concise analytic form (Eq. (6))
and can be used to predict human behavior on a person-by-
person basis (Fig. 4).

This work inspires directions for future research, particularly
with regard to the study and design of optimally learnable net-
work structures. Given the notion that densely connected com-
munities help to mitigate the effects of mental errors on people’s
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internal representations, we anticipate that networks with high
“learnability” will possess a hierarchical community structure®3.
Interestingly, such hierarchical organization has already been
observed in a diverse range of real world networks, from
knowledge and language graphs®* to social networks and the
World Wide Web®. Could it be that these networks have evolved
so as to facilitate accurate representations in the minds of the
humans using and observing them? Questions such as this
demonstrate the importance of having simple principled models
of human representations and point to the promising future of
this research endeavor.

Methods

Maximum entropy model and the infinite-sequence limit. Here we provide a
more thorough derivation of our maximum entropy model of human expectations,
with the goal of fostering intuition. Given a matrix of erroneous transition counts 7;;,

our estimate of the transition structure is given by A,j = ;;/ 32y fiyx. When observing
a sequence of nodes x;, X, ..., in order to construct the counts ;;, we assume that
humans use the following recursive rule: 71 (t + 1) = 71;(t) + B,(i) [i = %], where
By(i) denotes the belief, or perceived probability, that node i occurred at the previous
time f. This belief, in turn, can be written in terms of the probability P(Af) of
accidentally recalling the node that occurred At time steps from the desired node at
time £ B,(i) = Y hyto P(AD)[i = x,_y,]-

In order to make quantitative predictions about people’s estimates of a
transition structure, we must choose a mathematical form for P(At). To do so, we
leverage the free energy principle3!: When building mental models, the brain is
finely tuned to simultaneously minimize errors and computational complexity. The
average error associated with a candidate distribution Q(At) is assumed to be the
average distance in time of the recalled node from the target node, denoted
E(Q) = >", Q(At)At. Furthermore, Shannon famously proved that the only
suitable choice for the computational cost of a candidate distribution is its negative
entropy*3, denoted —S(Q) = 3_,, Q(At)logQ(At). Taken together, the total cost
associated with a distribution Q(At) is given by the free energy F(Q) = BE(Q) — S
(Q), where B, referred to as the inverse temperature, parameterizes the relative
importance of minimizing errors versus computational costs. By minimizing F with
respect to Q, we arrive at the Boltzmann distribution p(At) = ePMYZ, where Z is
the normalizing partition function®. We emphasize that this mathematical form
for P(At) followed directly from our free energy assumption about resource
constraints in the brain.

To gain an analytic intuition for the model without referring to a particular
random walk, we consider the limit of an infinitely long sequence of nodes. To
begin, we consider a sequence xj, ..., xr of length T. At the end of this sequence,
the counting matrix takes the form

~

—1

B, (i) [J = xr+1}

_ O
(Z P(Af)]i = xt—At]) [] = Xt+1]

At=0

t=1
—1

T

Dividing both sides by T, the right-hand side becomes a time average, which by
the ergodic theorem converges to an expectation over the transition structure in the
limit T — oo,
(7)) & . .
TIEEQ]T=AZ:OP<A”<[’ =xt—At] [J =xr+1]>A= )

=

where (-),, denotes an expectation over random walks in A. We note that the
expectation of an identity function is simply a probability, such that
(i=x_adli=x0]),= p;(AM*1),, where p; is the long-run probability of node i
appearing in the sequence and (AAt“)ij is the probability of randomly walking
from node i to node j in At + 1 steps. Putting these pieces together, we find that the
expectation A converges to a concise mathematical form,

lim A,(T) = lim M
A )

Pi
=Y P(An (A,
At=0

Thus far, we have not appealed to our maximum entropy form for P(At). It
turns out that doing so allows us to write down an analytic expression for the long-
time expectations A simply in terms of the transition structure A and the inverse
temperature B. Noting that Z = Y% ;e P =1/(1 — ¢7#) and

Y=o (fﬁA)At= (- ePA)"!, we have

o0
A= P(anatt!
At=0

— lA f: (e*ﬁA)At
== 2
=0
= (1—eP)a(1—ePa)™".
This simple formula for the representation A is the basis for all of our analytic

predictions (Figs. 3¢, d and 6b) and is closely related to notions of communicability
in complex network theory%%:67.

(11)

Experimental setup for serial response tasks. Subjects performed a self-paced
serial reaction time task using a computer screen and keyboard. Each stimulus was
presented as a horizontal row of five gray squares; all five squares were shown at all
times. The squares corresponded spatially with the keys ‘Space’, ‘H’, T, ‘K, and ‘L,
with the left square representing ‘Space’ and the right square representing ‘L’
(Fig. 1b). To indicate a target key or pair of keys for the subject to press, the
corresponding squares would become outlined in red (Fig. 1a). When subjects
pressed the correct key combination, the squares on the screen would immediately
display the next target. If an incorrect key or pair of keys was pressed, the message
‘Error!” was displayed on the screen below the stimuli and remained until the
subject pressed the correct key(s). The order in which stimuli were presented to
each subject was prescribed by either a random walk or a Hamiltonian walk on a
graph of N =15 nodes, and each sequence consisted of 1500 stimuli. For each
subject, one of the 15 key combinations was randomly assigned to each node in the
graph (Fig. 1a). Across all graphs, each node was connected to its four neighboring
nodes with a uniform 0.25 transition probability. Importantly, given the uniform
edge weights and homogeneous node degrees (k = 4), the only differences between
the transition graphs lay in their higher-order structure.

In the first experiment, we presented subjects with random walk sequences
drawn from two different graph topologies: a modular graph with three
communities of five densely connected nodes and a lattice graph representing a 3 x
5 grid with periodic boundary conditions (Fig. 1¢). The purpose of this experiment
was to demonstrate the systematic dependencies of human reaction times on
higher-order network structure, following similar results reported in recent
literature2%37, In particular, we demonstrate two higher-order network effects: In
the cross-cluster surprisal effect, average reaction times for within-cluster
transitions in the modular graph are significantly faster than reaction times for
between-cluster transitions (Fig. 2a); and in the modular-lattice effect, average
reaction times in the modular graph are significantly faster than reaction times in
the lattice graph (Fig. 2b).

In the second experiment, we presented subjects with Hamiltonian walk
sequences drawn from the modular graph. Specifically, each sequence consisted of
700 random walk trials (intended to allow each subject to learn the graph
structure), followed by eight repeats of 85 random walk trials and 15 Hamiltonian
walk trials (Supplementary Discussion)?’. Importantly, we find that the cross-
cluster surprisal effect remains significant within the Hamiltonian walk trials
(Fig. 2a).

In the third experiment, we considered a ring graph where each node was
connected to its nearest and next-nearest neighbors in the ring (Fig. 6a). In order to
study the dependence of human expectations on violations to the network
structure, the first 500 trials for each subject constituted a standard random walk,
allowing each subject time to develop expectations about the underlying transition
structure. Across the final 1000 trials, we randomly distributed 50 network
violations: 20 short violations of topological distance two and 30 long violations, 20
of topological distance three and 10 of topological distance four (Fig. 6a). As
predicted by our model, we found a novel violations effect, wherein violations of
longer topological distance give rise to larger increases in reaction times than short,
local violations (Fig. 6b, c).

Data analysis for serial response tasks. To make inferences about subjects’
internal expectations based on their reaction times, we used more stringent filtering
techniques than previous experiments when pre-processing the data?2. Across all
experiments, we first excluded from analysis the first 500 trials, in which subjects’
reaction times varied wildly (Fig. le), focusing instead on the final 1000 trials (or
simply on the Hamiltonian trials in the second experiment), at which point subjects
had already developed internal expectations about the transition structures. We
then excluded all trials in which subjects responded incorrectly. Finally, we
excluded reaction times that were implausible, either three standard deviations
from a subject’s mean reaction time or below 100 ms. Furthermore, when mea-
suring the network effects in all three experiments (Figs. 3 and 6), we also excluded
reaction times over 3500 ms for implausibility. When estimating the parameters of
our model and measuring model performance in the first two experiments (Fig. 4),
to avoid large fluctuations in the results based on outlier reactions, we were even
more stringent, excluding all reaction times over 2000 ms. Taken together, when
measuring the cross-cluster surprisal and modular-lattice effects (Fig. 2), we used
an average of 931 trials per subject; when estimating and evaluating our model
(Fig. 4), we used an average of 911 trials per subject; and when measuring the
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violation effects (Fig. 6), we used an average of 917 trials per subject. To ensure that
our results are robust to particular choices in the data processing, we additionally
studied all 1500 trials for each subject rather than just the final 1000, confirming
that both the cross-cluster surprisal and modular-lattice effects remain significant
across all trials (Supplementary Tables 6 and 7).

Measurement of network effects using mixed effects models. In order to
extract the effects of higher-order network structure on subjects’ reaction times, we
used linear mixed effects models, which have become prominent in human
research where many measurements are made for each subject’®%8. Put simply,
mixed effects models generalize standard linear regression techniques to include
both fixed effects, which are constant across subjects, and random effects, which
vary between subjects. Compared with standard linear models, mixed effects
models allow for differentiation between effects that are subject-specific and those
that persist across an entire population. Here, all models were fit using the fitlme
function in MATLAB (R2018a), and random effects were chosen as the maximal
structure that (i) allowed model convergence and (ii) did not include effects whose
95% confidence intervals overlapped with zero®. In what follows, when defining
mixed effects models, we employ the standard R notation’?.

First, we considered the cross-cluster surprisal effect (Fig. 2a). As we were only
interested in measuring higher-order effects of the network topology on human
reaction times, it was important to regress out simple biomechanical dependencies
on the target button combinations (Fig. 1d), the natural quickening of reactions
with time (Fig. le), and the effects of recency on reaction times>>#0. Also, for the
first experiment, since some subjects responded to both the modular and lattice
graphs (Experimental Procedures), it was important to account for changes in
reaction times due to which stage of the experiment a subject was in. To measure
the cross-cluster surprisal effect, we fit a mixed effects model with the formula
‘RT~log(Trial)*Stage-+Target+Recency-+Trans_Type+(1-+log(Trial)*Stage
+Recency+Trans_Type|ID)’, where RT is the reaction time, Trial is the trial
number (we found that log(Trial) was far more predictive of subjects’ reaction
times than the trial number itself), Stage is the stage of the experiment (either one
or two), Target is the target button combination, Recency is the number of trials
since the last instance of the current stimulus, Trans_Type is the type of transition
(either within-cluster or between-cluster), and ID is each subject’s unique ID.
Fitting this mixed effects model to the random walk data in the first experiment
(Supplementary Table 1), we found a 35 ms increase in reaction times (p < 0.001, F-
test) for between-cluster transitions relative to within-cluster transitions (Fig. 2a).
Similarly, fitting the same mixed effects model but without the variable Stage to the
Hamiltonian walk data in the second experiment (Supplementary Table 4), we
found a 36 ms increase in reaction times (p < 0.001, F-test) for between- versus
within-cluster transitions (Fig. 2a). We note that because reaction times are not
Gaussian distributed, it is fairly standard to perform a log transformation.
However, for the above result as well as those that follow, we find the same
qualitative effects with or without a log transformation.

Second, we studied the modular-lattice effect (Fig. 2b). To do so, we fit a mixed
effects model with the formula ‘RT~log(Trial)*Stage+Target+Recency+Graph-+(1
+log(Trial)*Stage+Recency+Graph|ID)’, where Graph represents the type of
transition network, either modular or lattice. Fitting this mixed effects model to the
data in the first experiment (Supplementary Table 2), we found a fixed 23 ms
increase in reaction times (p < 0.001, F-test) in the lattice graph relative to the
modular graph (Fig. 2b).

Finally, we considered the effects of violations of varying topological distance in
the ring lattice (Fig. 6¢c). We fit a mixed effects model with the formula ‘RT~log
(Trial)+Target+Recency+Top_Dist+(1+log(Trial)+Recency+Top_Dist|ID)’,
where Top_Dist represents the topological distance of a transition, either one for a
standard transition, two for a short violation, or three for a long violation. Fitting
the model to the data in the third experiment (Supplementary Tables 10 and 11),
we found a 38 ms increase in reaction times for short violations relative to standard
transitions (p < 0.001, F-test), a 63 ms increase in reaction times for long violations
relative to standard transitions (p < 0.001, F-test), and a 28 ms increase in reaction
times for long violations relative to short violations (p = 0.011, F-test). Put simply,
people are more surprised by violations to the network structure that take them
further from their current position in the network, suggesting that people have an
implicit understanding of the topological distances between nodes in the network.

Estimating parameters and making quantitative predictions. Given an observed
sequence of nodes x;, ..., x,_;, and given an inverse temperature /3, our model
predicts the anticipation, or expectation, of the subsequent node x; to be

a(t) = Axl,,,xl (t — 1). In order to quantitatively describe the reactions of an indi-
vidual subject, we must relate the expectations a(t) to predictions about a person’s
reaction times #(¢) and then calculate the model parameters that best fit the
reactions of an individual subject. The simplest possible prediction is given by the
linear relation #(t) = ry + rya(t), where the intercept r, represents a person’s
reaction time with zero anticipation and the slope r; quantifies the strength with
which a person’s reaction times depend on their internal expectations.

In total, our predictions #(¢) contain three parameters (f, ry, and r;), which
must be estimated from the reaction time data for each subject. Before estimating
these parameters, however, we first regress out the dependencies of each subject’s
reaction times on the button combinations, trial number, and recency using a

mixed effects model of the form ‘RT~log(Trial)*Stage+Target+Recency+(1+log
(Trial)*Stage+Recency|ID)’, where all variables were defined in the previous
section. Then, to estimate the model parameters that best describe an individual’s
reactions, we minimize the RMS prediction error with respect to each subject’s
observed reaction times, RMSE = /3>, (r(t) — #(t))?, where T is the number of

trials. We note that, given a choice for the inverse temperature 3, the linear
parameters r, and r; can be calculated analytically using standard linear regression
techniques. Thus, the problem of estimating the model parameters can be restated
as a one-dimensional minimization problem; that is, minimizing RMSE with
respect to the inverse temperature . To find the global minimum, we began by
calculating RMSE along 100 logarithmically spaced values for 8 between 10~4 and
10. Then, starting at the minimum value of this search, we performed gradient
descent until the gradient fell below an absolute value of 10~°. For a derivation of
the gradient of the RMSE with respect to the inverse temperature f3, we point the
reader to the Supplementary Discussion. Finally, in addition to the gradient descent
procedure described above, for each subject we also manually checked the RMSE
associated with the two limits § — 0 and § — o. The resulting model parameters
are shown in Fig. 4a, b for random walk sequences and Fig. 4g, h for Hamiltonian
walk sequences.

1

Experimental setup for n-back memory task. Subjects performed a series of n-
back memory tasks using a computer screen and keyboard. Each subject observed a
random sequence of the letters ‘B’, ‘D’, ‘G’, ‘T’, and ‘V’, wherein each letter was
randomly displayed in either upper or lower case. The subjects responded on each
trial using the keyboard to indicate whether or not the current letter was the same
as the letter that occurred n trials previously. For each subject, this task was
repeated for the conditions n =1, 2, and 3, and each condition consisted of a
sequence of 100 letters. The three conditions were presented in a random order to
each subject. After the n-back task, each subject then performed a serial response
task (equivalent to the first experiment described above) consisting of 1500 random
walk trials drawn from the modular graph.

Data analysis for n-back memory task. In order to estimate the inverse tem-
perature 3 for each subject from their n-back data, we directly measured their
memory distribution P(At). As described in the main text, we treated each positive
response indicating that the current stimulus matched the target stimulus as a
sample of P(At) by measuring the distance in trials At between the last instance of
the current stimulus and the target (Fig. 5a). For each subject, we combined all such
samples across the three conditions n =1, 2, and 3 to arrive at a histogram for At.
In order to generate robust estimates for the inverse temperature /3, we generated
1000 bootstrap samples of the At histogram for each subject. For each sample, we
calculated a linear fit to the distribution P(At) on log-linear axes within the domain
0 < At < 4 (note that we could not carry the fit out to At = 10 because the data is
much sparser for individual subjects). To ensure that the logarithm of P(At) was
well defined for each sample—that is, to ensure that P(Af) > 0 for all At—we added
one count to each value of At. We then estimated the inverse temperature f3 for
each sample by calculating the negative slope of the linear fit of logP(At) versus At.
To arrive at an average estimate of 3 for each subject, we averaged f across the 1000
bootstrap samples. Finally, we compared these estimates of  from the n-back
experiment with estimates of 3 from subjects’ reaction times in the subsequent
serial response task, as described above. We found that these two independent
estimates of people’s inverse temperatures are significantly correlated (excluding
subjects for which =0 or f — oo), with a Spearman coefficient r;=0.28 (p =
0.047, permutation test). We note that we do not use the Pearson correlation
coefficient because the estimates for 3 are not normally distributed for either the
reaction time task (p <0.001) nor the n-back task (p =0.013) according to the
Anderson-Darling test>®. This non-normality can be clearly seen in the distribu-
tions of f3 in Fig. 4a, g.

Experimental procedures. All participants provided informed consent in writing
and experimental methods were approved by the Institutional Review Board of the
University of Pennsylvania. In total, we recruited 634 unique participants to
complete our studies on Amazon’s Mechanical Turk. For the first serial response
experiment, 101 participants only responded to sequences drawn from the modular
graph, 113 participants only responded to sequences drawn from the lattice graph,
and 72 participants responded to sequences drawn from both the modular and
lattice graphs in back-to-back (counter-balanced) sessions for a total of 173
exposures to the modular graph and 185 exposures to the lattice graph. For the
second experiment, we recruited 120 subjects to respond to random walk sequences
with Hamiltonian walks interspersed, as described in the Supplementary Discus-
sion. For the third experiment, we recruited 78 participants to respond to
sequences drawn from the ring graph with violations randomly interspersed. For
the n-back experiment, 150 subjects performed the n-back task and, of those, 88
completed the subsequent serial response task. Worker IDs were used to exclude
duplicate participants between experiments, and all participants were financially
remunerated for their time. In the first experiment, subjects were paid up to $11 for
up to an estimated 60 min: $3 per network for up to two networks, $2 per network
for correctly responding on at least 90% of the trials, and $1 for completing the
entire task. In the second and third experiments, subjects were paid up to $7.50 for
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an estimated 30 min: $5.50 for completing the experiment and $2 for correctly
responding on at least 90% of the trials. In the #n-back experiment, subjects were
paid up to $8.50 for an estimated 45 min: $7 for completing the entire experiment
and $1.50 for correctly responding on at least 90% of the serial response trials.

At the beginning of each experiment, subjects were provided with the following
instructions: “In a few minutes, you will see five squares shown on the screen, which
will light up as the experiment progresses. These squares correspond with keys on
your keyboard, and your job is to watch the squares and press the corresponding key
when that square lights up”. For the 72 subjects that responded to both the modular
and lattice graphs in the first experiment, an additional piece of information was also
provided: “This part will take around 30 minutes, followed by a similar task which
will take another 30 minutes”. Before each experiment began, subjects were given a
short quiz to verify that they had read and understood the instructions. If any
questions were answered incorrectly, subjects were shown the instructions again and
asked to repeat the quiz until they answered all questions correctly. Next, all subjects
were shown a 10-trial segment that did not count towards their performance; this
segment also displayed text on the screen explicitly telling the subject which keys to
press on their keyboard. Subjects then began their 1500-trial experiment. For the
subjects that responded to both the modular and lattice graphs, a brief reminder was
presented before the second graph, but no new instructions were given. After
completing each experiment, subjects were presented with performance information
and their bonus earned, as well as the option to provide feedback.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Source data for Fig. 1 are provided in Supplementary Data File 1. Source data for Fig. 2,
Supplementary Figs. 2 and 3, and Supplementary Tables 1-9 are provided in
Supplementary Data File 2. Source data for Fig. 5 are provided in Supplementary Data
File 3. Source data for Fig. 6, Supplementary Figs. 4 and 5, and Supplementary Tables 10
and 11 are provided in Supplementary Data File 4. Source data from Supplementary
Fig. 1 are provided in Supplementary Data File 5.

Code availability
The code that supports the findings of this study is available from the corresponding
author upon reasonable request.
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