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An in silico Approach for Integrating Phenotypic and
Target-based Approaches in Drug Discovery
Hiroaki Iwata,[a, b] Ryosuke Kojima,[a] and Yasushi Okuno*[a, b, c]

Abstract: Phenotypic and target-based approaches are
useful methods in drug discovery. The phenotypic approach
is an experimental approach for evaluating the phenotypic
response. The target-based approach is a rational approach
for screening drug candidates targeting a biomolecule that
causes diseases. These approaches are widely used for drug
discovery. However, two serious problems of target decon-
volution and polypharmacology are encountered in these
conventional experimental approaches. To overcome these

two problems, we developed a new in silico method using a
probabilistic framework. This method integrates both the
phenotypic and target-based approaches to estimate a
relevant network from compound to phenotype. Our
method can computationally execute target deconvolution
considering polypharmacology and can provide keys for
understanding the pathway and mechanism from com-
pound to phenotype, thereby promoting drug discovery.
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1 Introduction

Phenotypic and target-based approaches, developed in
chemical biology, are useful methods for drug discovery[1]

(Figure 1). They are also utilized as an Adverse Outcome
Pathway Framework in the field of toxicology.[2] The
phenotypic approach is an experimental approach involving
techniques such as cell-based assay and in vivo assay for
evaluating the phenotypic response of cells or tissues by
chemical compounds. These assays are used in drug
discovery to search for active compounds that induce
phenotypic responses that improve the disease state of
cells or tissues.[3] On the other hand, the target-based
approach is a rational approach for screening drug
candidates targeting a biomolecule that causes diseases.[1b,4]

In recent years, with the advancement of high throughput
experimental technologies, the target-based approach has
become used widely for drug discovery.[1a,b, 5]

However, in drug discovery, we have two serious
problems, target deconvolution and polypharmacology,
that cannot be solved by the phenotypic and target-based
approaches[1b,3b, 6] (Figure 1). Target deconvolution is used to
identify a target biomolecule responsible for a phenotypic
response. In the phenotypic approach, even if we success-
fully identify an active compound that affects a target
phenotype, it is not possible to reveal the target biomole-
cule on which the hit compound directly acts, and the
relation between the target biomolecule and the
phenotype.[3b,6a] In addition, because the target-based
approach is a method for searching for compounds that act
directly on a known target biomolecule, it cannot be
applied if the target biomolecule is unknown. Thus, target
deconvolution is a bottleneck in phenotypic and target-
based approaches to drug discovery. Several experimental

methods have been developed in the chemical biology and
chemical genetics research fields to address this problem.[7]

In silico approaches have been also developed such as
protein-ligand docking,[8] virtual screening of small ligands[9]

and inverted virtual screening methods.[10] These methods
have a limitation in that they require available target
protein structures.

The second critical issue in drug discovery is polyphar-
macology, which means that “many drugs do not act on
only a single target biomolecule, but acts on multiple target
biomolecules and affects phenotypes such as efficacy and
toxicity”.[6] To consider polypharmacology, it is necessary to
achieve a target deconvolution for a plurality of target
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biomolecules that may affect drug efficacy and toxicity.
However, it is extremely difficult to perform target
deconvolution experiments for multiple biomolecules from
the viewpoint of labor and cost. Furthermore, even if target
deconvolution for multiple biomolecules can be achieved, it
is very hard to design and synthesize a chemical compound
that interacts with multiple target molecules by experiment.

To overcome these two problems i. e., target deconvolu-
tion and polypharmacology, we developed a new in silico
method using the probabilistic framework. This method is
based on a machine learning technique that integrates data
from compound-target protein interactions obtained from
the target-based approach and data from compound-
phenotype associations obtained from the phenotypic
approach. It estimates a relevant network from compound
to phenotype via target proteins. Specifically, the method
consists of the following two steps. In the first step, we infer
a plurality of protein candidates a compound can target by
using a prediction model that is trained on the data of the
compound-target protein interactions. In the second step,
we select the target proteins related to a phenotype from
protein candidates predicted in the first step model using a
lasso model constructed by learning the data of com-
pound-phenotype associations. Therefore, we can deduce a
plurality of target proteins that can be interacted with by a
specific compound and can be related to the phenotypic
response. This is the first method for computationally
executing target deconvolution considering polypharmacol-
ogy, which has been unsolved by previous experimental
approaches. This method could provide keys for under-
standing the pathway and molecular mechanism from
compound to phenotype, thus promoting drug discovery

2 Materials and Methods

2.1 Dataset

We extracted 789,708 compounds that interact with 1,103
target proteins from six families, including G-protein-
coupled receptor (GPCR), kinase, ion channel, transporter, a
nuclear receptor, and protease from the ChEMBL
database.[11] We used compound-protein pairs with a bind-
ing affinity of less than 30 μM (at Ki, EC50, and IC50) as
active interaction pairs.[12] We defined compound-protein
pairs below the set potency threshold (30uM) as non-
interaction pairs. We then prepared a data set classified for
each protein family and used these data sets as gold
standard data of compound-protein interactions (CPIs) in
cross-validation (CV) experiments to evaluate the perform-
ance of the CPI prediction (Table 1).

We extracted phenotypes that had both more than 100
active compounds as well as inactive compounds from the
PubChem database.[13] Consequently, we obtained
34,959,972 compound-phenotype associations (CPAs), in-
cluding 900,688 compounds and 548 phenotypes. These
phenotypes were classified via various assay types (e.g., In
vivo, In vitro, Biochemical, Cell-based, and Toxicity). We
used the CPAs as a gold standard data in CV experiments to
evaluate the performance of the CPAs prediction (Table 2
and Supplementary Table S1).

2.2 An in silico Method Using Probabilistic Framework

To formulate the integrating phenotypic and target-based
approaches, we generated a probabilistic interpretation for
the model. Figure 2 shows a Bayesian network representa-
tion for integrating the phenotypic and target-based
approaches. We consider three kinds of probabilities to

Figure 1. The phenotypic and target-based approaches, target
deconvolution, and polypharmacology in drug discovery

Table 1. Dataset of compound-protein interactions.

Number
of inter-
actions

Number
of non-
interactions

Number of
compounds

Number of
proteins

GPCR 312,989 4,435 227,846 2033
kinase 245,853 7,578 72,736 392
ion channel 37,773 2,233 24,139 122
transporter 18,392 1,268 11,561 50
nuclear receptor 49,619 7,763 41,857 28
protease 92,958 9,001 54,778 182

Table 2. Dataset of compound-phenotype associations.

Number of
associations

Number
of non-
associations

Number of
compounds

Number of
phenotypes

740,147 34,219,825 900,688 548
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model the relations between drugs, targets, and pheno-
types.

First, P tð jdÞ is a conditional probability of a binary
vector, t that represents the activities of targets related to a
drug with a feature vector, d. This probability is defined by
a probabilistic model. Though probabilistic models can be
separated into generative models and discriminative mod-
els, this type of probability can be modelled using a
discriminative model such as logistic regression.

P tk ¼ 1ð jdÞ ¼ s wkdþ bkð Þ

where t ¼ t1; t2; ; tk; ; tKð Þ, wk represents a weight parame-
ter matrix, and bk is a bias-parameter vector. Since tk is a
binary, its expectation tk can be computed as follows:

tk ¼ s wkd þ bkð Þ:

Next, P pjtð Þ is a conditional probability of a binary
vector, p that represents the activities of a phenotype given
a binary vector for targets, t. This probability can also be
defined by a discriminative model.

Finally, P pjdð Þ is the probability of a binary vector, p that
represents phenotypes related to a drug given a feature
vector, d of the drug.

Let us consider the training parameters related to P tð jdÞ
and P pjtð Þ from the given datasets: d; tð Þ 2 Dd� t and
d; pð Þ 2 Dd� p.

P tð jdÞ can be trained using Dd� t by the conventional
manner for discriminative models like logistic regression. In
contrast, to train P pjtð Þ from Dd� p, the following equation is
considered:

P pjdð Þ ¼
X

t

P pjtð ÞP tjdð Þ ¼ Etjd P pjtð Þ½ �:

This probability requires the consideration of all combi-
nations related to the targets, which requires exponential
time to compute. An effective approach to such models is a
mean-field approximation that is realized by replacing the
effects from variables with an expectation of them. By using
this approximation, the equation above can be rewritten as

P pjdð Þ ffi P pj�tð Þ

where P pj�tð Þ is defined by replacing t in a model of P pjtð Þ

with its expectation �t, computed by a given drug feature
vector, d. Since P pjdð Þ is given as an empirical distribution
of data, P pj�tð Þ can be trained using the KL-divergence
between the LHS and RHS probabilities in this formula. The
minimization of KL-divergence can be regarded as an
optimization of the cross-entropy error as follows:

KL ¼
X

p

P pjdð ÞlogP pj�tð Þ=P pjdð Þ ¼ CE � H0

where H0 is the entropy related to P pjdð Þ, which does not
depend on parameters, and CE represents cross-entropy
error. The model, P pj�tð Þ can be trained using the same
supervised training technique by using input, �t and
supervised label, p.

2.3 Prediction of Compound-protein Interactions and
Compound-phenotype Associations

To predict all possible compounds interacting with each
protein in the six families, we proposed a method based on
linear logistic regression, which is one of the machine
learning methods that refers to the CGBVS method.[12,14]

Compounds were represented by 894-dimensional descrip-
tors, called DRAGON descriptor (Version. 6.0-2014-Talete srl,
Milano, Italy), and proteins were represented by 1,080-
dimensional descriptors, called PROFEAT descriptor.[15] To
predict compounds that are associated with a phenotype,
we proposed a prediction method based on linear logistic
regression. Compounds are represented by a 1,103-dimen-
sional binary vector, whose elements respectively use 1 or 0
to encode the interaction or un-interaction of each protein.

To predict the possibility of CPIs or CPAs, we used a
linear logistic regression with L1- or L2-regression as
classifier, and adopted the LIBLINEAR suite of programs[16]

(http://www.csie.ntu.edu.tw/~cjlin/liblinear). To select the
penalty parameter C, we examined various values (0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1,000, 10,000). The value that
yields the highest area under the receiver operating
characteristic curve score in the 5-fold CV experiment is
selected.

2.4 Cross-validation of the Prediction Models

To evaluate the performance of classifiers of the CPIs or
CPAs, we performed 5-fold CV experiments using the gold
standard datasets. First, we divided the gold standard
dataset into five subsets. Second, we used a subset as an
evaluating set and used the remaining four subsets as a
learning set and constructed a prediction model using the
learning set. Finally, we applied the prediction model to all
pairs of the evaluating set and calculated the prediction
scores.

Figure 2. Bayesian network representation of the integrating
phenotypic and target-based approaches
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We evaluated the performance of the prediction accu-
racy using a receiver operating characteristic (ROC) curve.
The ROC curve is a plot of the true positive rate against the
false positive rate. To evaluate the performance of the
proposed methods, we calculated the area under the ROC
curve (AUC), which yields a score of 1 for perfect prediction
and 0.5 for random prediction.

2.5 Selection of Target Proteins by the Predictive Model

To select statistically significant target proteins for a
phenotype, we performed feature selection from the
prediction model using the following procedure (Supple-
mentary Figure S1): (i) construction of the prediction model
using all the 1,103 target proteins; (ii) calculation of the
AUC score through a 5-fold CV experiment using the gold
standard dataset for the CPAs; (iii) selection of proteins that
had a higher weight than the threshold (initially 0); (iv)
construction of the prediction model using selected target
proteins that had a higher weight than the threshold in the
previous procedure; (v) calculation of the AUC scores using
the prediction model constructed in the previous proce-
dure; (vi) evaluating whether the AUC was less than 95% of
the original AUC score. We raised the threshold by 0.02 for
each cycle from 0 and evaluated prediction accuracy using

the selected proteins by the 5-fold CV and calculated the
AUC score. The selected proteins were defined as statisti-
cally significant proteins if the AUC score was less than 95%
of the AUC score of all proteins. The selected target proteins
were important to their phenotype at that time. Significant
proteins for each phenotype were selected using these
analysis procedures.

2.6 Enrichment Analyses of the Selected Proteins

The gene ontology biological process term, enrichment
analysis, was performed using statistically significant
proteins.[17] We performed a statistical overrepresentation
test of the selected proteins using the PANTHER website[18]

(http://www.pantherdb.org/).

3 Results and Discussion

3.1 Overview of an in silico Approach Integrating
Phenotypic and Target-based Approaches

We proposed a new in silico method using the probabilistic
framework that aims at target deconvolution considering
polypharmacology in drug discovery. Figure 3 shows the

Figure 3. Workflow of the proposed method. Our proposed method comprises of two steps. In the first step, the method predicts
compound-target protein interactions. In the second step, the method selects target proteins related to a phenotype.
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workflow of the proposed method; it comprises two steps,
corresponding to the target-based and phenotypic ap-
proaches (Figure 1). In the first step (corresponding to the
target-based approach), the procedure for the prediction of
CPIs is divided into the following four steps: (i) acquisition
of known CPIs from the ChEMBL database[11] (Table 1); (ii)
calculation of the compound and protein feature vectors
(descriptors); (iii) construction of CPIs prediction model
using known interaction information to infer unknown data
due to lack of CPIs; (iv) prediction of unknown CPIs using
the constructed prediction model. In the second step
(corresponding to the phenotypic approach), the procedure
for the selection of the target proteins related to a
phenotype is divided into the following four steps: (v)
acquisition of known CPAs from the PubChem database[13]

(Table 2); (vi) using the CPIs as feature vectors (descriptors);
(vii) construction of the prediction model to predict CPAs
using the descriptors; (viii) selection of target proteins
related to a phenotype.

3.2 Performance Evaluation of the Compound-protein
Prediction Models

Though CPI information is registered in databases, many
CPIs still remain unknown. In the first step of the proposed
method, we constructed a CPI prediction model to predict
unknown interaction information (Figure 3). To evaluate the
performance of the CPI prediction model using L1- and L2-
regularized logistic regression algorithms, we employed the
gold standard data from the ChEMBL database for the CPIs.
We performed 5-fold CV experiments.

Figure 4 shows the ROC curve (Figure 4A) and the area
under the ROC curve (AUC) score (Figure 4B) in the 5-fold
CV experiments for the gold standard data for CPIs in each
protein family using L1- and L2-regularized logistic regres-
sion algorithms. In all protein families except the GPCR
family, the AUC score for the L1-regularized logistic
regression algorithm was higher than that of the L2-
regularized logistic regression algorithm. The GPCR family
and the transporter family showed high values of AUC
scores (0.9299 and 0.9406, respectively). The nuclear
receptor family had the lowest AUC score (0.8251) among
the six families. Our proposed methods exhibited high
prediction accuracy because the AUC scores for all protein
families were higher than 0.8. These results suggest that the
constructed prediction models had high accuracy for CPIs
prediction.

3.3 Performance Evaluation of the Compound-phenotype
Prediction Models

In the second step of the proposed method, we constructed
a CPA predictive model to predict unknown association
information. We used the interactions of the target protein

as a feature vector of a compound and predicted potential
CPIs using the constructed prediction model. To evaluate
the performance of the proposed method comparing a
random method, we performed 5-fold CV using the gold
standard data for CPAs from the PubChem database.

Figure 5 shows the results of the evaluation for each
phenotype using the 5-fold CV experiment. Figure 5A shows
ROC curves of the top 10 AUC phenotypes while Figure 5B
shows the AUC score distribution of the CPA prediction
models. Details of all predictive results are shown in
Supplementary Table S2. In the random method, the
prediction results were shown to be random for nearly all
the phenotypes (AUC score: 0.5). The AUC score distribution
of the proposed method was shifted to a high value
compared to the random method. This result suggests that
integrating the phenotypic and target-based approaches
improves the performance.

Figure 4. ROC curves and AUC scores from the cross-validation
experiments of compound-protein interactions. (A) The plot shows
the ROC curve; the x-axis indicates false positive rate and the y-axis
indicates true positive rate (blue: GPCR, red: ion channel, green:
kinase, purple: protease, light blue: transporter). (B) The results of
AUC scores by L1- and L2-regularized logistic regression are shown
for each protein family.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900096 (5 of 11) 1900096

www.molinf.com


3.4 Extraction of the Statistically Significant Proteins by a
Predictive Model

We applied L1- and L2-regularized logistic regression model
to infer target proteins from the compound-phenotype
network. In the previous section, we constructed the CPA
prediction models by L1- and L2-regularized logistic
regression models. In each method, we inferred target
protein features with positive weights in the predictive
model.

Figure 6A shows a histogram of the number of extracted
proteins (Supplementary Table S3) while Figure 6B shows a
histogram of AUC scores for L1- and L2-regularization

(Supplementary Table S4). It was found that in most
phenotypes, L1-regularized logistic regression inferred a
smaller number of features compared to L2-regularized
logistic regression (Figure 6A). This result suggests that L1-
regularization was more effective in reducing the number
of proteins with positive weight. Next, histograms of the
AUC scores for both the L1- and L2-regularized logistic
regression model exhibited a similar tendency. The average
prediction accuracy of L1-regularized regression is 0.6349
while that of L2-regularized regression is 0.6361. These
results indicate that L1-regression predicted a smaller
number of extracted proteins while maintaining analytical
accuracy, compared to L2-regression.

Furthermore, we performed additional analysis to eval-
uate the biological interpretation of the estimated target
proteins of the phenotype. Specifically, the threshold

Figure 5. ROC curves and AUC scores for cross-validation experi-
ments of compound-phenotype associations using the proposed
method and random method. (A) The histogram shows the AUC
scores of 548 phenotypes. The red bars represent results obtained
using the proposed method while the blue bars represent results
from the random method. The red bars represent results of our
method while the gray bars represent results of the random
method. The x-axis indicates AUC scores while the y-axis indicates
the number of phenotypes. (B) The ROC curves for the top 10
results of the AUC scores are shown. The x-axis indicates false
positives rate while the y-axis indicates true positives rate.

Figure 6. AUC scores and the number of features in the cross-
validation experiments using L1- and L2-regularized logistic
regression. (A) The histogram shows the number of extracted
proteins for each phenotype. The x-axis indicates the number of
proteins while the y-axis indicates the number of phenotypes. (B)
The histogram shows AUC scores for each phenotype. The x-axis
shows the AUC score while the y-axis indicates the number of
phenotypes. The red bars show L1-regularization while the blue
bars show L2-regularization.
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weight was raised for each phenotype to identify more
important proteins (detailed description in Methods). As a
result, we achieved drastic reduction of the number of
predicted target proteins, and succeeded in selecting the
key proteins (from 85 proteins to 40 proteins, on average)
(Supplementary Table S5). This result suggests that more
important target proteins related to a phenotype were
selected from the relation between the compound and the
phenotype.

3.5 Biological Interpretation of the Inferred Target
Proteins

We performed biological interpretation of the predicted
target proteins through enrichment analysis using the
PANTHER method.[18] We listed gene ontology (GO) terms
that were enriched in each phenotype using the GO
database.[19] Table 3 shows the list of GO biological process
terms for the top 10 AUC phenotypes.

Though AID1828 had the highest AUC score, no GO
terms were obtained when it was tested by enrichment
analysis (Table 3). For AID1888, which had the second
highest AUC score, GO: 0030154 cell differentiation was
selected by the enrichment analysis. This showed that our
predicted target proteins in AID1888 could be related to
cell differentiation. Since AID1888 is an inhibitors assay for
the proliferation of P. falciparum, the result was reasonable
because cell proliferation and cell differentiation are closely
related. For AID1815 with the third highest AUC score, GO:
050896 response to stimulus was selected as the highest
ranked GO term by enrichment analysis. The other previous
omics analysis reported that proteins obtained from malaria
life cycle stages were enriched in GO: 050896 response to
stimulus,[20] which is consistent with our result. In addition,
the previous study also reported that the proteins obtained
from the malaria life cycle were enriched in GO: 0009987
cellular process. In our results, GO: 0009987 cellular process
was selected for AID1815 and AID1882 with the ninth
highest AUC score. These biological interpretations suggest
that our prediction model offers reasonable results.

4 Conclusions

We proposed an in silico method using the probabilistic
framework that integrates both data from the phenotypic
and target-based approaches. The proposed method
enables us to computationally execute target deconvolu-
tion considering polypharmacology, which cannot be
solved by conventional experimental approaches. The
method consists of two machine learning models. The first
model predicts proteins targeted by a compound using the
CGBVS model trained on the compound-target protein
interaction data. The second model selects statistically
significant proteins related to a phenotype from candidate

proteins predicted by the CGBVS model. To evaluate the
prediction performance of the method, we applied data
from the ChEMBL and PubChem databases to the models.
The first model indicated a prediction performance higher
than 0.8 AUC score on average for six protein families.

Using the proposed method, we inferred target proteins
for assays of differential inhibitors of proliferation of P.
falciparum. The inferred proteins were related to the cellular
differentiation process and the life cycle stages of P.
falciparum. Our approach is expected to be useful for target
deconvolution considering polypharmacology in drug dis-
covery.
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CPI compound-protein interaction
CPA compound-phenotype association
CV experiment cross-validation experiment
ROC curve the receiver operating characteristic
AUC the area under the ROC curve
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GO gene ontology
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