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A B S T R A C T   

Human papillomavirus (HPV) causes not only most cervical cancers but also cancers of the vagina, vulva, penis, 
anus, rectum, and oropharynx. Every year, 200,000 women die of cervical cancer in the world, and China ac-
counts for about 10%. HPV vaccines are effective in preventing HPV infections thus HPV-related cancers 
worldwide. Studies on the clinical trials of the 2v Cervarix™ and the 4v Gardasil® have suggested that immu-
nization with either of these vaccines provided some level of protection against other HPV types that are closely 
related to the types contained in the vaccines. Here we conducted a preliminary evaluation on the ability to 
induce cross-neutralizing antibodies in rhesus monkeys by a 3v HPV vaccine that targets HPV16, 18, and 58 and 
it is specifically designed for Chinese women. We found that this vaccine is no less than Gardasil® in terms of the 
ability to induce NAbs against non-vaccine types of HPV in rhesus macaques. These results provided evidence 
from the immunogenicity point of view that the KLWS 3v HPV vaccine is a strong competitor to the imported 2v 
and 4v HPV vaccines currently available on the market.   

1. Introduction 

Human papillomaviruses (HPVs) consisting of more than 100 geno-
types can infect epithelial cells and cause genital warts or carcinomas in 
both males and females. HPV is classified into 5 genera: alpha, beta, 
gamma, mu, and nu, which can be further sorted into different species 
according to their genetic relatedness based on their L1 sequences [1–5] 
(Table 1). Members of the alpha genus are often associated with genital 
or mucosal carcinoma and skin warts. HPVs belonging to the α9 and α7 
species (namely HPV16, 31, 33, 52, 58, 35, 18, 45, 59, and 39) 
contribute to almost 90% of cervical cancer [6]; HPV16 (the prototype 
of the α9 species) and HPV18 (the prototype of the α7 species) together 
are responsible for 70% of cervical cancer cases [7]. 

HPVs are non-enveloped double-stranded DNA viruses with a size of 
approximately 55 nm in diameter. The HPV genome has a region for the 

early genes E1-E7, a region for the late genes L1 and L2, and a non- 
coding region. The early genes are responsible for the viral life cycle 
and pathogenesis; whereas the late genes encode for the major capsid 
protein L1 and the minor capsid protein L2. The two late proteins 
together form the viral capsid in such a way that 72 copies of the L1 
homo-pentamer form the viral external, and L2 sits in the centre of the 
L1-pentamers [4,5,8–12]. In vitro, the L1 protein can self-assemble into 
virus-like particles (VLPs) without the presence of the minor L2 protein. 
Such L1-VLP shares similar structures with the native virus, and induces 
high titres of neutralizing antibodies as it retains most of the neutralizing 
epitopes on the native virus [13–16]. These characteristics of the L1-VLP 
make it an ideal candidate for HPV vaccines. 

There are currently four HPV vaccines available on the market. 
Cecolin® is a bivalent (2v) vaccine produced by INNOVAX that targets 
HPV16 and HPV18, Cervarix™ is also a 2v vaccine produced by GSK 

Abbreviations: 2v, bivalent; 3v, trivalent; 4v, quadrivalent; 9v, nonavalent; CI, confidence interval; GFP, green fluorescent protein; GMT, geometric mean titre; 
HPV, human papillomavirus; NAb, neutralizing antibody; PBNA, pseudovirion-based neutralization assay; PsV, pseudovirion; VLP, virus-like particle. 
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that targets HPV16 and HPV18, and the other two vaccines are devel-
oped by Merck: the quadrivalent (4v) Gardasil® is designed to prevent 
the oncogenic HPV16 and HPV18 as well as HPV6 and 11 that cause 
genital warts; whereas the nonavalent (9v) Gardasil® 9 can provide 
additional protections against HPV 31/33/45/52/58 compared with 
Gardasil®. All these four vaccines have been approved by the National 
Medical Products Administration (NMPA) in recent years. We have 
developed a recombinant trivalent (3v) HPV vaccine (which will be 
referred as KLWS 3v vaccine in this article) containing HPV16, 18, and 
58 L1-VLP antigens (expressed in Escherichia coli) for Chinese women, as 
analyses on the type distribution of HPV infections in Chinese women 
revealed that the infection rate of HPV58 is higher compared to women 
in other countries, suggesting HPV58 is one of the common HPV types in 
China [17–32], and this vaccine has recently been approved by the 
NMPA for clinical trials. 

It was hypothesized that due to the polyclonal nature of immune 
response, vaccination with HPV16 and 18 would induce neutralizing 
antibodies with broad spectra, thus provide at least some level of pro-
tection against other HPV types that are closely related to these two 
types [6]. The induction of cross-neutralizing antibodies by HPV16 
and/or 18 L1-VLPs has been reported by several groups [33,34], and 
such cross-protection effect has been seen in clinical trials of both Cer-
varix™ and Gardasil® [35–42]. We conducted a preliminary evaluation 
of the induction of cross-neutralizing antibodies using sera of rhesus 
macaques from the Preclinical Safety Evaluation of our 3v HPV vaccine, 
aiming to shed some light on the cross-protection ability of this vaccine. 

2. Materials and methods 

2.1. Vaccine formulations 

KLWS 3v vaccine contained HPV16/18/58 L1-VLPs and aluminum 
hydroxide in 500 μl acetic acid-sodium acetate buffer. 3 doses of KLWS 
3v vaccine containing 60 μg/30 μg/30 μg/, 40 μg/20 μg/20 μg/and 20 
μg/10 μg/10 μg/of HPV 16/18/58 L1-VLPs, respectively (termed high 
dose, middle dose and low dose of KLWS 3v vaccine). Each dose has 500 
μg aluminum hydroxide. Gardasil was chosen as the positive control, 
which contained the same amounts of HPV16/18 L1-VLPs as middle 
dose KLWS 3v vaccine but less adjuvant (225 μg of aluminum hydrox-
yphosphate sulfate per dose). They were intramuscular injection to 
groups of female rhesus macaques (n = 5) aged 3–5 in a 0, 4 and 24 week 
[43]. 

2.2. Source of serum 

Serum samples of rhesus macaques collected in the Preclinical Safety 
Evaluation of KLWS 3v vaccine were used as the experimental material 
of this study. All animals were handled by licensed laboratory animal 
practitioners during the Preclinical Safety Evaluation, and were injected 
with ketamine and nembutal sodium for euthanasia at the end of the 
evaluation. Two weeks later after the third intramuscular injection at 24 
weeks, serum samples were collected. 

2.3. Pseudovirion-based neutralization assay (PBNA) 

The pseudovirion-based neutralization assay (PBNA) was conducted 
essentially as described previously [44,45] with minor modifications. 
HPV type-specific pseudovirions (PsVs) encapsidating a green fluores-
cent protein (GFP) reporter plasmid were used for the PBNA. 293FT cells 
(Invitrogen, USA) were seeded in 96-well plates at a concentration of 15, 
000 cells/well in complete DMEM medium and incubated at 37 ◦C for 
4–6 h. HPV PsVs were diluted with complete DMEM medium to a con-
centration that the fluorescence expression level of cells in each well 
reached 15%. Serum samples were diluted with complete DMEM me-
dium at a 4-fold dilution from 1:20 to 1:327,680. Equal volumes (60 μl) 
of HPV PsVs and serum samples were mixed and cooled at 4 ◦C for an 
hour, which were subsequently added to the cells. Following 72-h in-
cubation at 37 ◦C, the plates were subjected to a SpectraMax MiniMax 
300 Imaging Cytometer (molecular Devices, Sunnyvale, California, 
USA) to count the number of cells that were fluorescent. All tests were 
performed in duplicate. 

2.4. Data analysis 

The data were exported to Microsoft Excel, and the readings of each 
sample (including the PsV control) were averaged. The inhibition rate of 
fluorescence expression was calculated using the averaged value of each 
serum sample and that of the PsV control. The neutralization titre was 
determined by the Reed-Muench method as the final dilution factor that 
yielded 50% inhibition of fluorescence expression with PsVs alone, and 
reported as IC50. The limit of quantification of the PBNA was set at 40 
IC50. Serum samples with neutralization titres equal or above 40 IC50 
were considered positive; serum samples with neutralization titres 
below 40 IC50 were assigned a value of 1 for calculation purposes. 
Geometric mean titres (GMTs) and 95% confidence interval (95% CI) 
were calculated using GraphPad Prism version 5.01 for Windows, 
GraphPad Software, La Jolla California USA, www.graphpad.com. 

3. Results 

HPV6, 11, 16, 18, 31, 33, 45, 52, and 58 PBNAs were performed on 
serum samples of rhesus macaques collected in the Preclinical Safety 
Evaluation of KLWS 3v vaccine. These rhesus macaques were negative 

Table 1 
Classification of HPVs of alpha species.  

Genus Species HPV type 

Alpha Alphapapillomavirus 1 HPV32, 42 
Alphapapillomavirus 2 HPV3, 10, 28, 29, 77, 78, 94, 117, 125, 160 
Alphapapillomavirus 3 HPV61, 62, 72, 81, 83, 84, 86, 87, 89, 102, 

114 
Alphapapillomavirus 4 HPV2, 27, 57 
Alphapapillomavirus 5 HPV26, 51, 69, 82 
Alphapapillomavirus 6 HPV30, 53, 56, 66 
Alphapapillomavirus 7 HPV18, 39, 45, 59, 68, 70, 85, 97 
Alphapapillomavirus 8 HPV7, 40, 43, 91 
Alphapapillomavirus 9 HPV16, 31, 33, 35, 52, 58, 67 
Alphapapillomavirus 10 HPV6, 11, 13, 44, 74 
Alphapapillomavirus 11 HPV34, 73, 177 
Alphapapillomavirus 13 HPV54 
Alphapapillomavirus 14 HPV90, 71, 106 

Beta Betapapillomavirus 1-5 HPV5, 8, 9, 12, 14, 15, 17, 19, 20, 21, 22, 
23, 24, 25, 36, 37, 38, 47,49, 75, 76, 80, 92, 
93, 96, 98, 99, 100, 104, 105, 107, 110, 111, 
113, 115, 118, 120, 122, 124, 143, 145, 150, 
151, 152, 159, 174, 182, 185, 195, 196, 198, 
206, 209, 217, 227 

Gamma Gammapapillomavirus 1- 
27 

HPV4, 48, 50, 60, 65, 88, 95, 101, 103, 108, 
109, 112, 116, 119, 121, 123, 126, 127, 128, 
129, 130, 131, 132, 133, 134, 135, 136, 137, 
138, 139, 140, 141, 142, 144, 146, 147, 148, 
149, 153, 155, 156, 157, 158, 161, 162, 163, 
164, 165, 166, 167, 168, 169, 170, 171, 172, 
173, 175, 176, 178, 179, 180, 181, 183, 184, 
186, 187, 188, 189, 190, 191, 192, 193, 194, 
197, 199, 200, 201, 202, 203, 205, 207, 208, 
210, 211, 212, 213, 214, 215, 216, 218, 219, 
220, 221, 222, 223,224, 225, 226, 228 

Mu Mupapillomavirus 1-3 HPV1, 63, 204 
Nu Nupapillomavirus 1 HPV41 

Data were compiled based on “Reference genomes for Human papillomavirus” 
by Papillomavirus Episteme (https://pave.niaid.nih.gov/#explore/reference_ge 
nomes/human_genomes), and “Reference clones” by International Human 
Papillomavirus (HPV) Reference Centre (http://www.nordicehealth.se/hpvce 
nter/reference_clones/). 
Numbers of the vaccine types are colored in bold black: HPV 16, 18, 58 for KLWS 
3v vaccine, those of the non-vaccine types are colored in blue. 
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for nine PBNAs before immunization. The serum samples were catego-
rized into four groups based on the different dosages of either KLWS 3v 
or Gardasil® 4v HPV vaccines. Three dose levels of KLWS 3v vaccine 
were used, namely, high dose (1.5 vials per injection), middle dose (1 
vial per injection), and low dose (0.5 vial per injection); and one dose 
level (1 vial per injection) of Gardasil® was used. All serum samples 
were collected two weeks after the third immunization with either KLWS 
3v or Gardasil® HPV vaccines. 

Two weeks after the third immunization, all four groups of rhesus 
macaques had neutralizing antibodies (NAbs) against vaccine types of 
HPV. The NAb levels in sera of the three groups of KLWS vaccinees were 
105-106. In details, HPV18 NAbs of the low dose group was at the level of 
105; HPV16, 18, 58 NAbs of the high and middle dose groups as well as 
the levels of HPV16 and HPV58 NAbs of the low dose group were all at 
the level of 106. For the serum samples of Gardasil® vaccinees, HPV16 
NAbs were at the level of 106, and HPV6, 11, 18 NAb levels were 105 

respectively (Fig. 1). 
Serum samples of the three groups of KLWS vaccines showed 

different levels of NAbs against non-vaccine types (HPV6, 11, 31, 33, 45, 
and 52). NAbs against HPV31 and HPV33 were at the level of 105 and 
104 respectively, with all samples being positive. The levels of NAb 
against HPV6 were between 102 and 103.80% (4/5) of the serum sam-
ples in the high dose group were HPV6 NAb positive; whereas 100% (4/ 
4) of the serum samples in the middle and low dose groups were HPV6 
NAb positive. The levels of NAbs against HPV11 and HPV52 were the 
lowest (at the level of 101), and only 2 or 3 samples of each group were 
HPV11 or HPV52 NAb positive. The levels of NAb against HPV45 in 
samples of the high and low dose groups were 101, with 3 and 2 positive 

samples respectively; whereas for the middle dose group, HPV45 NAb 
was at the level of 103, with all 4 samples being positive (Fig. 1). 

For Gardasil® vaccines, different levels of NAbs against four (out of 
five) non-vaccine types of HPV (HPV31, 33, 45, and 58) were detected. 
NAbs against HPV31 and HPV33 were at the level of 103; levels of 
HPV33 and HPV58 NAbs were 102. One out of five samples was HPV45 
NAb positive, with a titre of 72, and the other four samples were below 
the detection limit for HPV45 NAb. All five samples were below the 
detection limit for HPV52 NAb (Fig. 1). 

4. Discussion 

In this study, we evaluated and compared the NAb and cross- 
neutralizing antibody (cross-NAb) titres induced by KLWS 3v HPV 
vaccine (types 16/18/58) and Gardasil® in rhesus macaques. The results 
suggested that high, middle, and low dose of KLWS 3v HPV vaccines 
could induce not only high levels of NAbs against vaccine types (HPV16, 
18, and 58), but also various levels of NAbs against non-vaccine types 
(HPV 6, 11, 31, 33, 45, and 52) in rhesus macaques. The control group, 
middle dose Gardasil® vaccine, induced high levels of HPV6, 11, 16, and 
18 (the vaccine types) NAbs, and lower levels of HPV31, 33, 45, and 58 
(non-vaccine types) NAbs. The levels of HPV16 NAbs induced by both 
vaccines were higher than those of HPV18 NAbs, which matches the 
findings of studies done on Cervarix™ and Gardasil® [34,46–51]. Un-
like KLWS 3v HPV vaccine, Gardasil® did not induce HPV52 NAbs in 
rhesus macaques. 

In terms of species, KLWS 3v HPV vaccine induced cross-NAbs 
against HPVs of the α9 (HPV31, 33, and 52) and α7 (HPV45) species. 

Fig. 1. Levels of HPV type specific neutralizing antibodies reported as IC50 in sera of rhesus macaques collected two weeks after the third immunization with (a) high 
dose, (B) middle dose, (c) low dose of KLWS 3v vaccines and (d) middle dose Gardasil®. GMT and 95% CI are shown as bars; IC50 values of each serum sample are 
indicated as dots. Bars and dots of the vaccine types are colored in black: HPV 16, 18, 58 for KLWS 3v vaccine and HPV 6, 11, 16, 18 for Gardasil®; those of the non- 
vaccine types are colored in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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In the sera of Gardasil® vaccinees, we detected cross-NAbs against 
HPV31, 33, and 58, which belong to the α9 species. The results suggest 
that different types of HPV of the same species share some epitopes. One 
thing worth noticing is that, the KLWS 3v HPV vaccine, which does not 
contain HPV antigens belonging to the α10 species, showed some level 
of cross-neutralization ability against HPV6 and HPV11 – the α10 spe-
cies HPVs. Similar results were observed during a post hoc analysis on 
data of a Cervarix™ phase III PATRICIA (PApilloma TRIal against 
Cancer In young Adults) trial [52]. We therefore reached a preliminary 
conclusion from these results that the KLWS 3v HPV vaccine is no less 
than Gardasil® in terms of the ability to induce NAbs against both 
vaccine and non-vaccine types of HPV in rhesus macaques. 

This is of great importance for Chinese women: in China, HPV vac-
cines are Class II vaccines that are currently not covered by the Social 
Medical Insurance System, and the three imported HPV vaccines 
currently available on the Chinese market (namely Cervarix™, Garda-
sil®, and Gardasil® 9) cost 2000–4000 RMB to complete the immuni-
zation procedure, meaning a population of approximately 0.7 billion 
belonging to the Low-income Group (defined as have an annual house-
hold income of less than 80,000 RMB (approx. 11,6000 USD)) would not 
be able to afford the cost of the vaccination. The utility of Escherichia coli 
as the expression host reduces the production cost of KLWS 3v HPV 
vaccine, making it a strong competitor to the imported HPV vaccines 
economically; and the findings of this study provided evidence from 
vaccine immunogenicity point of view for its strong competitiveness to 
vaccine of the same kind. Furthermore, KLWS 3v HPV vaccine has 
recently been approved by the CFDA for clinical trials, and its immu-
nogenicity, especially the generation of NAbs against non-vaccine HPV 
types, and the cross-protection ability of this vaccine in humans will be 
analyzed in clinical trials. 
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