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The etiology and pathogenesis of “anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis” and the role of autoantibodies (AB) in
this condition are still obscure. While NMDAR1-AB exert NMDAR-antagonistic properties by receptor internalization, no firm evidence
exists to date that NMDAR1-AB by themselves induce brain inflammation/encephalitis. NMDAR1-AB of all immunoglobulin classes
are highly frequent across mammals with multiple possible inducers and boosters. We hypothesized that “NMDAR encephalitis”
results from any primary brain inflammation coinciding with the presence of NMDAR1-AB, which may shape the encephalitis
phenotype. Thus, we tested whether following immunization with a “cocktail” of 4 NMDAR1 peptides, induction of a spatially and
temporally defined sterile encephalitis by diphtheria toxin-mediated ablation of pyramidal neurons (“DTA” mice) would modify/
aggravate the ensuing phenotype. In addition, we tried to replicate a recent report claiming that immunizing just against the
NMDAR1-N368/G369 region induced brain inflammation. Mice after DTA induction revealed a syndrome comprising hyperactivity,
hippocampal learning/memory deficits, prefrontal cortical network dysfunction, lasting blood brain-barrier impairment, brain
inflammation, mainly in hippocampal and cortical regions with pyramidal neuronal death, microgliosis, astrogliosis, modest immune
cell infiltration, regional atrophy, and relative increases in parvalbumin-positive interneurons. The presence of NMDAR1-AB enhanced
the hyperactivity (psychosis-like) phenotype, whereas all other readouts were identical to control-immunized DTA mice. Non-DTA
mice with or without NMDAR1-AB were free of any encephalitic signs. Replication of the reported NMDAR1-N368/G369-immunizing
protocol in two large independent cohorts of wild-type mice completely failed. To conclude, while NMDAR1-AB can contribute to the
behavioral phenotype of an underlying encephalitis, induction of an encephalitis by NMDAR1-AB themselves remains to be proven.
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INTRODUCTION
Since, the first report on a novel paraneoplastic autoimmune disease
with autoantibodies against the NMDA receptor subunit NR1
(NMDAR1-AB=GluN1-AB) appeared >12 years ago [1, 2], this
condition attracted considerable attention both by clinicians and
basic researchers worldwide, resulting in currently nearly 2000 entries
in PubMed. Variably associated with psychosis, cognitive decline,
extrapyramidal symptoms, or seizures, this “NMDAR encephalitis”
was already early on described to be mediated by lower surface
expression of neuronal NMDAR after exposure to NMDAR1-AB of the
immunoglobulin G (IgG) class [3]. The resulting NMDAR antagonistic
or “ketamine-like” effects, demonstrated also in various rodent
models via passive transfer of NMDAR1-AB [4–13], were interpreted
as potential mechanisms of action. Thus far, however, they have
failed to explain the inflammatory or encephalitic component of this
condition. Interestingly, comparison of NMDAR1-AB-positive and
-negative human encephalitis cases did not reveal differences, except
for few perhaps NMDAR-antagonistic (ketamine-like) symptoms [14].
Even sophisticated preclinical approaches raised further ques-

tions rather than providing answers. For example, immunization of

mice with liposome-embedded tetrameric NMDAR was stated to
induce NMDAR-AB and fulminant encephalitis. Highly variable
behavioral changes in this model included hyperactivity, immo-
bility, circling, seizures, hunched back/lethargy, and increased
mortality, including neuroinflammation, and immune cell infiltra-
tion [15], all nonspecific features of any severe encephalitis.
Adequate “negative” controls like the use of other liposome-
embedded holoreceptors or of control proteins of similar size
would have been required to link NMDAR-AB causally with the
occurrence of an encephalitis. To validate that “disease induction
depends on conformationally restricted epitopes” [15], infusion of
purified NMDAR-AB should have been used to clarify whether they
act encephalitogenic on their own [16].
During performance of the present work, a report claimed that

immunizing mice against the NMDAR1-N368/G369 region alone at
high dose induced encephalitis-like behavioral and morphological
impairments, including blood brain-barrier (BBB) breakdown [17].
We thus decided to follow this initially exciting report’s protocol,
hoping to answer several important questions related to our own
research. However, using two large independent cohorts of wild-
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type mice, we were unable to reproduce any of the described
findings. This replication failure is now also included in the
present paper.
To summarize, despite all efforts, etiology and pathogenesis of

the “NMDAR encephalitis” are still as uncertain as the role of
NMDAR1-AB in this condition. We note that multiple brain-
directed AB apart from NMDAR1-AB have been reported in serum
of healthy humans and of various other mammalian species, likely
belonging to the normal pre-existing “autoimmune repertoire.”
These AB do have potential functionality and also potential
pathogenicity [18–22]. In fact, functional serum NMDAR1-AB of all
immunoglobulin classes are a highly frequent finding across
mammals, with multiple possible inducers or boosters identified
thus far, ranging from genetic predisposition, various viral
infections (e.g., influenza, herpes), oncological conditions, and
brain lesions to chronic life stress [1, 6, 23–26]. However, no solid
proof exists to date that NMDAR1-AB by themselves can induce an
encephalitic process.
The present study addresses the hypothesis that “NMDAR

encephalitis” may result from a primary brain inflammation
coinciding with the presence of NMDAR1-AB, which ultimately
shape the encephalitis phenotype. Therefore, a spatially and
temporally defined" sterile encephalitis was induced in young
female NexCreERT2xRosa26-eGFP-DTA (= “DTA”) mice after
immunization with a cocktail of 4 NMDAR1 peptides, also
including a peptide covering the NMDAR1-N368/G369 region.
Females were chosen to account for the ~4:1 female/male ratio
observed in human “NMDAR encephalitis” [27]. As shown in vivo
earlier, this cocktail induces functionally highly active NMDAR1-AB,
leading to psychosis-like symptoms in mice with compromised
BBB but no brain inflammation [28]. Here, we report that
NMDAR1-AB can contribute to the behavioral abnormalities of
an underlying gray-matter encephalitis, but that the multifaceted
encephalitic phenotype itself, involving pyramidal neurons and
their NMDAR, is nearly identical between NMDAR1-AB carriers and
noncarriers.

MATERIALS AND METHODS
Mice
Mouse experiments (all C57BL/6 background) were approved by the Local
Animal Care and Use Committee (LAVES, Niedersächsisches Landesamt für
Verbraucherschutz und Lebensmittelsicherheit, Oldenburg, Germany) in
accordance with the German animal protection law. Sample sizes were
based on previous experience under consideration of the RRR-principle
and technical limitations (i.e., maximum of 16 animals per IntelliCage). All
experiments were performed by investigators unaware of group assign-
ment (fully-blinded). Mice were separated by genotype and treatment to
avoid inclusion effects [29] or aggressive behavior against potentially
affected animals. Unless otherwise stated, mice were maintained in
temperature- and humidity-controlled environments in 12 h light/dark
cycle (light on at 7am) with wood-chip bedding, nesting material (Sizzle
Nest, Datesand, Bredbury, UK) and, ad libitum food and water.
DTA cohort: Mice with the tamoxifen-inducible gray-matter inflamma-

tion were generated by crossing homozygous Neurod6tm2.1(cre/ERT2)Kan

(NexCreERT2) [30] with heterozygous Gt(ROSA)26Sortm1(DTA)Jpmb (Rosa26-
eGFP-DTA) [31], resulting in double-heterozygous (DTA) mice and
heterozygous NexCreERT2 littermate (control) mice lacking the DTA allele.
Detailed genotyping protocols are available upon request. Experiments
involving DTA mice were performed on females to account for the ~4:1
female/male ratio observed in human “NMDAR encephalitis” patients [27].
Female transgenic mice were weaned at postnatal day 21 into type IV
cages (55 × 38.5 × 20.5 cm, Tecniplast, Hohenpeißenberg, Germany) in
groups of 16.
Replication cohorts comprised male C57BL/6 J wildtype mice immu-

nized at 8–9 weeks of age [17]. Wildtype mice were obtained from Janvier
(Le Genest-Saint-Isle, France), transported to our behavior unit at 3 weeks
of age, and housed in type II cages (36.5 × 20.7 × 14 cm, Tecniplast) in
groups of 3–5.

Treatments
Immunization of the DTA cohort was conducted as previously described
[28], except that immunizations were performed on postnatal day 30. Mice
were immunized with a cocktail of 4 GluN1 extracellular peptides (GluN135-53,
GluN1361-376, GluN1385-399, and GluN1660-811 coupled to keyhole limpet
hemocyanin; Synaptic Systems, Göttingen, Germany) and/or chicken ovalbu-
min (“OVA”, A5503, Sigma-Aldrich, Darmstadt, Germany) emulsified in an equal
volume of complete Freund’s adjuvant (CFA) containing 1mg/mL heat-killed
Mycobacterium tuberculosis H37 Ra (#231141, Difco, BD, Heidelberg, Germany)
in incomplete Freund’s adjuvant. GluN1 peptide cocktail (50 µg) and/or
ovalbumin (20 µg) were injected subcutaneously at the tail base.
Immunization of the replication cohorts followed the protocol of

Wagnon et al. [17]. Male C57B/6 J mice were immunized at 8–9 weeks of
age with either GluN1168-187 (control peptide), GluN1359-378 (active peptide)
or for our additional comparison with ovalbumin, each emulsified in an
equal volume of CFA (as described above). Antigens (200 µg) were equally
distributed over 4 subcutaneous injections, 2 at shoulders and 2 at hind
limbs. In addition, mice received 2 intraperitoneal injections of 200 ng of
Bordetella pertussis toxin (#180, List Biological Laboratories) in PBS,
immediately after and 48 h after immunization.
Tamoxifen induction: Tamoxifen (CAS#10540-29-1, T5648, Sigma) was

dissolved in corn oil (C8267, Sigma) on injection days at 10mg/mL. Mice
received 2 intraperitoneal injections of 100mg of tamoxifen/kg body
weight on 2 consecutive days.
Transponder placement: For the experimenter-independent pheno-

typing of mice in the IntelliCage® apparatus (TSE Systems, Bad Homburg,
Germany) ISO standard transponders (8.5 mm length, 1.2 mm diameter,
PM162-8) were implanted below the skin of the neck after intraperitoneal
injection of 24 µL of 1.36% 2,2,2,-tribromoethanol (T48402, Sigma) in
ddH2O/g body weight (Avertin). One week after implantation, mice were
placed into IntelliCages.
Blood sampling: Intermediate blood samples (100 µL) were collected

from the retro-orbital sinus. Terminal blood (500 µL) was sampled by
cardiac puncture before transcardial perfusion. EDTA-plasma aliquots were
stored at −80 °C.

Behavioral phenotyping
Experiments of the DTA cohort were performed in the following
order: LABORAS (baseline–prior to tamoxifen induction), bar test, hurdle
test, IntelliCage-based phenotyping including pheromone preference,
LABORAS, Morris water maze, hole board, prepulse inhibition (PPI),
marble-burying test, and complex wheel running.
Behavioral testing of the replication cohort followed the design of

Wagnon et al. [17]. Behavioral analyses comprised open-field activity, Y-
maze working memory, elevated plus maze (anxiety), and forced-swim test
(depression-like behavior). For the second replication cohort, we rear-
ranged the test schedule to assess anxiety-like behavior in behaviorally
naive mice, followed by testing in open field and Y-maze.
Except for home cage-based tests, all tests ran during the light phase.

Behavioral testing was performed as previously described in detail
[17, 29, 32–38]. Only home cage-based tests are briefly summarized below.

LABORAS
To characterize the spontaneous home cage behavior of mice prior to and
after a tamoxifen-induced gray-matter inflammation, the LABORAS system
(Metris B.V.) was employed [32–34, 37]. Briefly, mice habituated for 2 nights
to the experimental room and single housing in clear polycarbonate cages
(Makrolon type I, 22 cm × 16 cm × 14 cm, Tecniplast) with wood-chip
bedding, food, and water ad libitum. After two nights, cages were placed
on a sensor platform (Carbon Fiber Plate 1000mm× 700mm× 700mm×
30mm, Metris B.V., Hoofddorp, Netherland) and the resulting electrical
signals recorded throughout the dark phase (12 h) and classified into
behavioral categories, i.e., eating, drinking, scratching, circling, climbing,
immobility, locomotion, and grooming.

IntelliCage-based phenotyping
To assess a variety of cognitive measures with minimal experimenter
intervention on a 24/7 basis in a social home cage-based setting, 16 mice
per group were placed in standard laboratory rodent cages (55 × 38.5 ×
20.5 cm, Tecniplast) equipped with the IntelliCage® apparatus (TSE-
Systems) controlled by NewBehavior software (version 3.1.7), as we
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described in great detail previously [29]. Water was accessible in four
triangular conditioning chambers (15 × 15 × 21 cm), located in cage
corners. The conditioning chambers were equipped with temperature
sensors and RFID antennas to identify entering mice. If mice entered a
correct corner during the allocated time window, doors blocking access to
water or sucrose bottles (dependent on test setting) could be opened via
nosepokes sensed by light barriers. Lickometers registered licks on bottles.
The experimental setup comprised measurement of place learning (day

1), reversal learning (day 2), sucrose preference (day 3), acquisition and
recollection of a place time-reward/episodic-like memory (days 4 and 5),
and behavioral extinction of operant responses (days 6 and 7). General
activity and day/night pattern were assessed by recording number and
timing of visits to operant chambers (corner visits). On days 1–2, each
mouse had access to water at a single corner (4 mice/corner), during days
3–5 to a 2% sucrose solution on one corner and water at the opposite site
(8 mice/corner). On days 6–7, mice had access to only water at previously
rewarded corners. In-between test sessions, corners were re allocated. The
efficiency of place and reversal learning was assessed for 24 h each by
calculating the percentage of place errors (visits to blocked corner/total
corner visits *100%). Sucrose preference means the percentage of licks at
sucrose bottle/total licks within 24 h. To evaluate episodic-like memory,
access to water and sucrose solution was restricted to the first 2 h after
dark-phase onset. Within this 2 h period, preference to sucrose corner was
calculated as percentage of visits to sucrose corner/total corner visits.
Two weeks after this IntelliCage testing, mice returned to IntelliCages to

evaluate pheromone preference using two social boxes, supplemented
with fresh wood-chip bedding, connected to the left and right side of the
IntelliCage via two plastic tubes, equipped with two ring RFID antennas to
track individual mouse. The time each mouse spent in the IntelliCage, the
neutral or the target social box was recorded along with the number of
social box visits. After habituation of 1 h, social boxes were replaced by
novel cages filled with either fresh wood-chip bedding (neutral site) or
bedding from male C3H mice (target site) and mice again had 1 h to
explore the social boxes. In addition to time spent on the target site, the
time spent exploring either social box was evaluated as the readout for
exploratory behavior.

Complex wheel running
To assess locomotor activity and motor-cognitive learning, a complex
running-wheel-setup (CRW) was used. Mice were single-housed in type-III
cages (42 × 26 × 18 cm, Tecniplast), equipped with CRW (TSE-Systems).
CRW are characterized by randomized omitted bars [39–41]. Mice were
habituated to the experimental room and CRW for 2 h prior to the dark
phase. After dark-phase onset, voluntary running was automatically
tracked for 4 h via Phenomaster software (TSE-Systems) and the total
running distance per mouse calculated.

Antibody determinations
ELISA: Immunizations were confirmed by antigen ELISA, at 21–27 days
after immunization in the DTA cohort and at 17–18 days in replication
cohorts. ELISA was performed as described [28]. ELISA plates (96-well F-
bottom Immuno MediSorp, Nunc) were coated overnight at 4 °C with
either 0.2 µg ovalbumin, 0.5 µg GluN1-antigen cocktail, 1 µg GluN1168-187
or 1 µg GluN1359-378 in 50 µL PBS per well. After blocking with 5% bovine
serum albumin (BSA, #8076.3, Roth) in PBS, mouse plasma (1:1000 dilution
with 5% BSA/PBS 50 μl/well) was added for 2 h at RT. Antigen-specific IgG
antibodies were detected using HRP-coupled anti-mouse-IgG-specific
antibodies (1:10,000, A9917, Sigma) and 3,3′,5,5′-tetramethylbenzidine
substrate (#555214, BD OptEIA, BD). Absorbance at 450 nm was measured
and corrected for values at 620 nm by microplate reader (Tecan-Trading
AG, Männedorf, Switzerland). The threshold for a positive classification
was set as three standard deviations above the mean of control
samples.
Cell-based assay (CBA) for NMDAR1-AB detection: To determine

NMDAR1-AB IgG titers against full-length GluN1, a commercially available
cell-based assay comprising Grin1-transfected and control-transfected
HEK293 cells (FB 112d-1010-51, EUROIMMUN, Lübeck, Germany) was used
according to the manufacturer’s instructions with minor modifications. The
anti-human secondary antibody solution was replaced by Alexa Fluor 488-
labeled anti-mouse IgG (1:1000, A21202, Thermo Fisher Scientific,
Darmstadt, Germany) in 0.2% Tween20/PBS. Titers were determined
starting at 1:100 dilutions with subsequent testing of positive samples at
1:1000 and 1:10,000 and independently evaluated by three investigators.
For colocalization experiments, diluted plasma samples were spiked with a

non overlapping rabbit IgG anti-GluN1 antibody directed against the C-
terminal domain (1:1000, G8913, Sigma) and an Alexa Fluor 647-labeled
anti-rabbit IgG antibody (1:1000, A31573, Thermo) was added to the
secondary antibody solution. Images were acquired on a confocal
microscope (LSM880, Zeiss, Oberkochen, Germany).

Measurements assessing blood–brain-barrier integrity
BBB integrity was evaluated as previously described [28, 42]. Briefly, mice
received intravenous injections of Evans blue (50 µg/g body weight,
E2129, Sigma) and sodium fluorescein (200 µg/g body weight, F6377,
Sigma). After 4 h, mice were anesthetized and transcardially perfused.
Brains were collected, frozen on dry ice, and lyophilized. Tracers were
extracted from hemispheres with formamide and quantified in triplicates
on a fluorescent microscope (Observer Z2, Zeiss). The concentrations of
tracers were calculated using a standard curve and normalized to
controls.

Histology
Mice were anesthetized with Avertin, transcardially perfused with Ringer
(B. Braun, Melsungen, Germany) and subsequently 4% formaldehyde/PBS
solution. Brains were collected, post fixed in 4% formaldehyde/PBS for
12 h, dehydrated in 30% sucrose/PBS for 48 h, embedded in optimal
cutting medium (Tissue-Tek, #4583, Sakura, Umkirch, Germany) and frozen
on dry ice. Frozen brains were cut into 30 µm coronal sections on a
cryostat (CM1950, Leica, Wetzlar, Germany), and stored at −20 °C in 25%
ethylene glycol/25% glycerol/PBS. Quantifications were performed on
regularly spaced sections (every 300 µm) between Bregma coordinates
−1.34 to −2.24mm and 4–6 hippocampi from 2 to 3 sections were used
per mouse. CA2/CA3 region is referred to as CA3 in text and figures.
Free-floating frozen sections were blocked and permeabilized for 1 h at

RT with 5% normal horse serum (NHS, 26050-088, Thermo) in 0.5% Triton
X-100/PBS, incubated overnight at 4 °C with primary antibodies and
subsequently stained with the corresponding fluorescently labeled
secondary antibodies, for 2 h at RT. Nuclei were stained for 10min at RT
with 0.2 µg/mL 4′,6-diamidino-2-phenylindole in PBS (DAPI, D9542, Sigma)
and sections mounted on SuperFrost®-Plus slides (J1800AMNZ, Thermo)
with Aqua-Poly/Mount (#18606, Polysciences, Warrington, PA, USA). The
following primary antibodies were used: Mouse anti-GFAP (1:500, NCL-
GFAP-GA5, NovoCastra-Leica, Newcastle upon Tyne, UK), guinea pig anti-
S100b (1:750, #287004, Synaptic Systems), rabbit anti-Iba1 (1:1000, #019-
19,741, Wako, Neuss, Germany), rat anti-CD68 (1:500, MCA1957GA, BioRad,
München, Germany), rat anti-CD45 (1:100, #103101, BioLegend, Koblenz,
Germany), and guinea pig anti-parvalbumin (1:1000, #195004, Synaptic
Systems). The corresponding secondary antibodies included Alexa Fluor
555 anti-rabbit (1:1000, A21428, Thermo), Alexa Fluor 555 anti-mouse
(1:1000, A31570, Thermo), Alexa Fluor 647 anti-mouse (1:1000, A31571,
Thermo), Alexa Fluor 633 anti-guinea pig (1:1000, A21105, Thermo), Alexa
Fluor 647 anti-rat (1:1000, A21247, Thermo). For Fluorojade C-staining
(AG325, Sigma) of dying neurons, sections were incubated in 0.06%
potassium permanganate solution for 10min. Following a 1min water
rinse, tissue was transferred for 10min to a 0.0001% solution of Fluorojade
C, dissolved in 0.1% acetic acid. Slides were rinsed with ddH2O and dried
at 60 °C. Slides were mounted with Aqua-Poly/Mount (#18606, Poly-
sciences). Overview images of whole-brain sections were obtained on
Eclipse-TI 2 epifluorescence microscope (Nikon, Düsseldorf, Germany),
equipped with 4× objective (4×/0.2 NA PLAN APO #MRD00045, Nikon).
For quantification, 1 µm-thick optical sections of hippocampi were
acquired as tile scans on a confocal laser scanning microscope (LSM
880, Zeiss), furnished with a 40× oil objective (40 × /1.4 NA Plan-
APOCHROMAT, #420762-9900, Zeiss). Image-acquisition parameters were
kept constant within experiments. Quantifications and image processing
were performed with FIJI-ImageJ software [43]. Iba1+ cells (mostly
microglia), parvalbumin+ cells (inhibitory neurons), and CD45+ Iba1−
cells (leukocytes) were manually counted. GFAP+ area was quantified
densitometrically upon uniform thresholding. Cell counts and GFAP+ area
were normalized to quantified areas. Data from 4 to 6 hippocampi/mouse
was averaged.

Flow cytometry
Mice were anesthetized with Avertin and transcardially perfused with 40
mL of Ringer solution (B. Braun). Brains were stored on ice in 10% fetal
bovine serum (FBS, #10500-064, Thermo)/DMEM (#41965, Thermo).
Olfactory bulbs and brain stems were removed and brains meshed
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through 70 µm cell strainers. Cells were suspended in isotonic Percoll
(17-0891-01, Sigma) to a final concentration of 30% and centrifuged to
remove myelin. Cells were washed with FACS buffer (2% FBS, 10mM EDTA
in PBS) and filtered through 40 µm cell strainers. Fc receptors were blocked
for 10min at 4 °C with anti-mouse CD16/32 antibodies (1:100, 14-0161,
Thermo). Cells were stained for 30min at 4 °C with the following antibody
mix: APC anti-CD45 (1:200, clone 104, BioLegend), PE anti-CD11b (1:200,

clone M1/70, BioLegend), PECy5 anti-CD4 (1:1000, clone H129.19,
BioLegend), PECy7 anti-CD8 (1:500, clone 53-6.7, Biolegend), APCCy7
anti-CD19 (1:200, clone 6D5, BioLegend), FITC anti-B220 (1:250, clone RA3-
6B2, BioLegend), and PerCP-Cy5.5 anti-CD138 (1:200, clone 281-2,
BioLegend). After staining, cells were washed and suspended in 400 µL
of FACS buffer and 100 µL of APC quantification beads (#340487, BD).
Samples were measured on a FACSAria Sorp (BD) and CytoFLEX S

Fig. 1 Acute inflammatory response upon tamoxifen-induced Cre recombination in NexCreERT2xRosa26-eGFP-DTA (DTA) mice.
A Schematic description of the Rosa26-eGFP-DTA allele. Upon tamoxifen-dependent Cre translocation, a loxP- (triangles) flanked eGFP-STOP
cassette is excised, resulting in expression of diphtheria toxin chain A and ultimately cell death. B Experimental validation of the acute
inflammatory response in DTA mice. Female DTA mice, 8-week old, received 2 intraperitoneal injections of either tamoxifen or solvent control
(corn oil). C, D Brains were collected after 7 days and stained for neurodegeneration/cell death with Fluorojade C, as well as microglia (Iba1)
and astrocytes (GFAP) as indicators of reactive gliosis. High-resolution images of CA1, CA3, and dentate gyrus (DG) regions were acquired as
10 µm Z-stacks and are displayed as maximum-intensity projections.
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(Beckman Coulter, Krefeld, Germany). Cell numbers were corrected for the
number of recorded APC beads. Leukocytes (CD45high, CD11blow) and
microglia/macrophages (CD45mid, CD11bhigh) were quantified within
single-cell gate determined by forward and side scatter. CD4+ and CD8+

T-cells were quantified within leukocyte gate. CD19+ B cells and CD138+

plasma cells were quantified in CD4- CD8- leukocyte gate.

Statistical analysis
Statistical analyses were performed using Prism software (GraphPad
Software) with the exception of the mixed ANOVA that was conducted
on PPI data with R4.0.3 [44] using the rstatix package [45]. The results are
presented as mean ± standard deviations (SD), with few exceptions as
indicated in the figure legends. Data normality was assessed using the
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Shapiro–Wilk test with an alpha error of 0.05. Dependent on data
distribution, two-tailed unpaired Welch’s-corrected t-tests or Mann–Whitney
U-tests were used to compare groups of 2. Similarly, repeated-
measure ANOVA, one-way ANOVA or Kruskal-Wallis test were used to
compare multiple groups. P values < 0.05 were considered statistically
significant.

RESULTS AND DISCUSSION
Diphtheria toxin-mediated ablation of pyramidal neurons to
mimic encephalitis affecting primarily gray matter
To mimic features of a viral encephalitis in a spatially and
temporally defined sterile experimental approach, we employed
young female NexCreERT2xRosa26-eGFP-DTA (= “DTA”) mice with
an inducible transgene for diphtheria toxin-mediated ablation of
pyramidal neurons, generating gray-matter inflammation
[30, 31, 46]. Cell death can be controlled by dosing tamoxifen.
Thus, in a series of dose-titrating pilot experiments, we selected a
2-day tamoxifen-injection design (Fig. 1A, B). After 7 days, we
histologically confirmed acute neurodegeneration, pyramidal
neuron loss, and a distinct inflammatory response comprising
micro- and astrogliosis (Fig. 1C, D).

Generation of primary brain inflammation coinciding with the
controlled presence of NMDAR1-AB following immunization
We next addressed our hypothesis that “NMDAR encephalitis”may
result from a primary brain inflammation concurring with the
presence of NMDAR1-AB, which ultimately shape the encephalitis
phenotype. Therefore, the above-described, defined sterile
encephalitis was induced in young female DTA mice after active
immunization with a cocktail of four peptides of extracellular
NMDAR1/GluN1 domains, including a peptide covering the
NMDAR1-N368/G369 region, versus ovalbumin as control immu-
nization. This cocktail induces sufficient titers of highly functional
NMDAR1-AB of the IgG class [28]. Active-immunization was
performed at postnatal day 30, followed by an experimental
scheme as detailed in Fig. 2A, comprising induction of encepha-
litis, extensive behavioral testing, blood sampling, and finally
perfusion.
Immunization of mice against the 4 NMDAR1 peptides led to

high circulating levels (even though somewhat variable between
subjects) of specific AB, as shown by ELISA and cell-based assay,
which persisted throughout the experiment, i.e., over 4 months.
Titers did not differ between DTA mice and controls (Fig. 2B–D).

Comparison of multidimensional behavioral readouts among
DTA and control groups with or without NMDAR1-AB
Testing mice in a multifaceted battery should reveal behavioral
domains affected by the induced gray-matter encephalitis and
shaped by NMDAR1-AB (Fig. 2E–R; Table 1). Indeed, spontaneous

home cage behavior, measured by LABORAS, and corner visits as
activity readout in the IntelliCage setup, revealed considerable
hyperactivity of the DTA mice, interpretable as psychosis-like
behavior or “loss of inhibition” [47]. The hyperactivity measures
substantially inter correlated and were more pronounced upon
the presence of NMDAR1-AB (Fig. 2E–G). Additional evidence of
pathological hyperactivity is presented in Table 1. In fact, this
psychosis-like feature seemed to persevere, since also the final
test performed before perfusion, complex wheel running, similarly
indicated hyperactivity (Fig. 2H).
For hippocampal learning and memory, the classical Morris

water maze (MWM) test was employed [48]. Whereas the visible
platform days showed comparable ability of task learning among
groups (Fig. 2I–K), substantial deficits arose regarding the hidden
platform learning curves (Fig. 2L) and the probe trial results
(Fig. 2M). Here, DTA mice, independent of the presence of
NMDAR1-AB, demonstrated inferior performance consistent with
hippocampal damage. This was also seen as a clear tendency in
MWM reversal testing as hippocampus-dependent cognitive
flexibility measure, again without an appreciable NMDAR1-AB
effect (Fig. 2N–O).
Prepulse inhibition of the startle response (PPI) was employed

as a surrogate marker for gating defects in the prefrontal
cortex–known also as a highly relevant translational test in human
patients with psychosis. PPI deficit is among the most reliable
objective features of severe neuropsychiatric phenotypes, likely
affecting the ability to adequately filter and interpret environ-
mental stimuli [47, 49–52]. Indeed, DTA mice, again independent
of NMDAR1-AB, showed an overall tendency of a PPI deficit,
pointing to prefrontal cortical network dysfunction as a conse-
quence of the induced pyramidal neuronal death (Fig. 2P).
To some surprise, our previously designed extensive cognitive,

emotional, and social phenotyping of mice in an observer-
independent setting, using IntelliCages [29], did not reveal any
considerable differences, except for the above-delineated distinct
hyperactivity. This is most likely explained by lower sensitivity or
ceiling effects of this paradigm (requiring a higher level of damage
to show impairment), and the just partial involvement of
hippocampal functions that are apparently fully compensated
(example of IntelliCage readouts in Fig. 2Q, R). Similarly, all other
behavioral tests failed to show appreciable alterations. Few just
marginally significant and sometimes rather counter intuitive
results proved invalid upon multiple-testing correction (Table 1). In
conclusion, behavioral testing uncovered the expected conse-
quences of pyramidal neuronal degeneration, i.e., substantial
hippocampal dysfunction (MWM), a strong tendency of gating
deficits as prefrontal cortex measure (PPI), and lasting psychosis-
like hyperactivity, with only the latter augmented by the presence
of NMDAR1-AB.

Fig. 2 Pathophysiological relevance of NMDAR1-AB (=GluN1-AB) in the context of gray-matter inflammation. A Experimental outline
indicating experimental groups, as well as order and time of behavioral tests (DPI= days post induction, i.e., after the last tamoxifen injection).
B NMDAR1-AB validation by ELISA. C Cell-based (HEK293T) clinical standard assay for NMDAR1-AB (Euroimmun). D Immunocytochemical
colocalization (CBA, Euroimmun) with a commercial rabbit GluN1-AB directed against the C-terminal domain. E Intra individual change of
locomotor activity assessed in LABORAS at baseline and after tamoxifen induction. For each mouse, time in locomotion after tamoxifen
induction was normalized to time in locomotion prior to tamoxifen application (baseline). F Activity (number of corner visits) over a 7-day
IntelliCage session. G Pearson correlation between IntelliCage activity and intra individual changes of LABORAS locomotor activity.
H Locomotor activity assessed by 4 h voluntary complex wheel running. I–O Cognitive testing in Morris water maze (MWM). I–K Visible
platform task comprising 2 training days, demonstrating the ability for fast escape and simple task learning using within-maze cues. L Training
of hidden platform task using extra-maze cues. DTA mice performed significantly worse than control mice (repeated-measures ANOVA, p <
0.0001), whereas no effect of NMDAR1-AB was observed in either DTA (p= 0.3273) or control mice (p= 0.5972). M Evaluation of spatial
memory in the probe trial. N Spatial reversal of the hidden platform. O Evaluation of cognitive flexibility and reversal learning in a second
probe trial after spatial reversal training. P Prepulse inhibition of acoustic startle. Intra group comparisons performed using repeated-measure
one-way ANOVA; inter group comparison between genotypes for 75 and 80 dB prepulses performed using mixed ANOVA. Q IntelliCage-based
evaluation of place learning and R reversal learning within 24 h sessions shows similar performance across groups. Dashed lines indicate
performance at chance level (75%). Experiments were performed with 14–16 mice/group, except for CRW (H, n= 6 mice/group). Data
presented as mean ± SD, except for repeated measure data (L, N, P; mean ± SEM) and AB titers (C, median, range).
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BBB integrity and measures of chronic inflammation in DTA
and control groups with or without NMDAR1-AB
Using fluorescent tracers, as described in detail previously [28, 42],
we addressed BBB leakiness in our DTA encephalitis model as a
prerequisite for substantial NMDAR1-AB transfer to the brain and
exertion of measurable effects. Tracer extravasation was enhanced
for Evans blue and displayed a strong trend for fluorescein,
confirming persistent BBB dysfunction. Brain water-content data
showed remarkable scatters but were comparable in DTA and
control mice at 3 months after encephalitis induction (Fig. 3A–D).
The chronic microglia and astrocyte response after tamoxifen-

induced neuronal death in DTA mice was slightly milder as
compared with the acute situation (see Fig. 1C, D), but still very
obvious already from overview images (Fig. 3E, F). Histological
quantification yielded distinct reductions of the areas of whole
hippocampus, CA1 and CA3, whereas the dentate gyrus just
revealed a similar tendency (Fig. 4A). Both Iba1 and GFAP
quantifications followed the same pattern: strong microgliosis
and astrogliosis in the whole hippocampus, CA1 and CA3, but only
moderate in dentate gyrus of both DTA groups, with no significant
differences in NMDAR1-AB carriers (Fig. 4B, C). NMDAR1-
immunized control mice showed no signs of inflammation as
reported previously [28]. Change of inhibition could be demon-
strated by the relative increases in parvalbumin-positive inter-
neurons upon DTA-induced encephalitis, sparing the dentate
gyrus. Also regarding these interneurons, NMDAR1-AB presence
did not modulate the ensuing picture (Fig. 4D, E). Hippocampal
immune cell infiltration, determined by counting CD45+ cells,
was modest but clear in DTA mice (Fig. 4F). Collectively, these data
document persistent BBB disruption and distinct chronic inflam-
mation in our DTA model but no obvious amplifying influence of
NMDAR1-AB on any of these readouts. This additionally argues
against any appreciable proinflammatory role of NMDAR1-AB of
the IgG class.

Failure to induce any signal of encephalitis by immunizing
mice solely against the NMDAR1-N368/G369 region
During performance of the present work, a report claimed that
immunizing mice against the NMDAR1-N368/G369 region alone
induced an encephalopathy with remarkable B-cell response,
provoking an autoimmune reaction against NMDAR, and
encephalitis-like behavioral deficiencies [17]. We were first excited
and wondered whether this model would finally help us to answer
several burning questions of our own research, addressing for
instance, the cellular–molecular mechanisms of NMDAR1-AB-
mediated brain inflammation, which we had not been able to
observe [28], or late consequences of an autoimmune encepha-
litis, or reasons for NMDAR1-AB titer fluctuations including the
occurence and nature of late boosters [53]. Therefore, we started
an extensive experiment, ultimately using two large independent
cohorts of wild-type mice, and followed meticulously this report’s
protocol [17]. However, as detailed in Fig. 5 and Table 2, none of
the described findings could be reproduced, although the
adopted immunization protocol worked well. We found specific
GluN1359-378-AB of the IgG class in serum and no immune
response using the non immunogenic control peptide GluN1168-
187 (Fig. 5A–D). There was no BBB disturbance (Fig. 5E), all
behavioral tests were normal (Fig. 5F–I), histology did not show
any abnormalities (Fig. 5J–L), and brain FACS results were
physiological and did not reveal any differences between groups
(Fig. 5M–R). Therefore, a second mouse cohort was employed to
exclude potential by-chance failure of replication but, disappoint-
ingly, yielded the same overall negative results (data not shown).
Simultaneous with our anticlimactic replication failure, Ding

et al. published a study, using a similar immunization strategy to
investigate the pathogenicity of various GluN1 peptides (each also
at a dose of 200 µg), including the GluN1359–377. Yet, in contrast to
the claims of Wagnon et al., the authors did not find GluN1359-377-Ta
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AB in the CSF of immunized mice [54]. In addition, these authors
validated the functionality of GluN1356-385-specific AB and
assessed the in vivo consequences after triple immunization in
combination with pertussis toxin, resulting in a behavioral
phenotype (impaired social memory and novel object recognition,
normal anxiety-, and depressive-like behavior), distinct from the

one reported by Wagnon et al. (impaired spatial memory,
abnormal anxiety-, and depressive-like behavior) [17, 54]. Unfortu-
nately, Ding et al. did not investigate histopathological conse-
quences of their immunization strategy, hence, it remains unclear
whether they induced any features of an encephalitis. Another
active immunization model, lately published as preprint, focused
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Fig. 3 Long-lasting inflammatory response at 3 months after tamoxifen induction. A Abbreviated experimental outline (detailed schematic
in Fig. 2A). Blood–brain barrier (BBB) permeability, irrespective of NMDAR1-AB status, assessed by Evans blue (B) and fluorescein (C)
extravasation, as well as brain-water content (D) in the forebrain and cerebellum of DTA and control mice. Data presented as mean ± SD.
E, F Representative images demonstrating persistent inflammatory changes in the hippocampus of DTA mice, including increased microglia
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on the chronic effects of NMDAR1-AB upon immunization against
GluN1402–421 peptide. Similar to our experience with these
immunizations, mice remained healthy and did not develop any
encephalitic signs, despite the presence of persistent and
functional NMDAR1-AB. The only behavioral alteration reliably
observed in GluN1402–421-immunized mice was impaired spatial
memory and/or novelty recognition, assessed as spontaneous
alternation in T-maze [55]. These findings are highly interesting
since they underscore the possibility that chronic presence of
circulating NMDAR1-AB can mildly modulate behavior, even in the
absence of an appreciable BBB dysfunction. This is in line with a
previous expert review [18] and our experimental observation that
NMDAR1-AB can reach the brain to bind there at low titers even in
healthy wild-type mice [26].
We are aware that—for comparison—in experimental auto-

immune encephalitis (EAE), fluctuations can occur regarding the
severity of the clinical/pathological picture [56–58]; however, the

absence of all claimed readouts as obtained in our replication
approaches, is unheard of and quite surprising. This is more so,
since the message of the report by Wagnon et al. will remain, if
not questioned, and be taken for granted. This in turn can become
an ethical issue, leading to (pre)clinical conclusions that are
ultimately damaging for other scientists and unfortunately also for
patients, as we observe on a regular basis.

Conclusions from the NMDAR1-immunized DTA model:
NMDAR1-AB modify rather than cause an encephalitis
Using a well-standardizable, spatially and temporally defined
mouse model of viral encephalitis by employing controlled DTA
induction in pyramidal neurons, we find a multifaceted encepha-
litic phenotype, which persists over months. This phenotype
involves pyramidal neurons and thus of course also their NMDAR,
but is only marginally aggravated in NMDAR1-AB carriers versus
non carriers. The aggravation essentially rests on hyperactivity as
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psychosis-like behavioral readout but is not reflected in any
histological quantification. Similarly, comparison of NMDAR1-AB-
positive and -negative human encephalitis cases did not reveal
appreciable differences, except for few NMDAR-antagonistic
(ketamine-like) symptoms [14]. Most likely, human “NMDAR
encephalitis” is simply not a separate condition, but rather marks
an encephalitis where the highly prevalent NMDAR1-AB and/or
the respective B cells happen to be present in the brain and shape
the clinical picture. Therefore, it may be problematic, if the search
for encephalitis causes stops after detection of NMDAR1-AB (of the
IgG class). Reassuringly, “polypragmatic” treatment of any
encephalitis of unknown origin (constituting the majority of cases)
should anyhow include antibiotics, antivirals, and eventually
corticosteroids/immunosuppressants on top of supporting
measures.
The N-terminal domain containing the G7 epitope (N368/G369)

was first deemed pathognomonic for “NMDAR encephalitis,” and
believed to be the target region of the pathological NMDAR1-AB
of the IgG class seen responsible for this condition [59]. Therefore,
the respective immunization model, leading to encephalitis as
described by Wagnon and colleagues [17], seemed attractive at
first view and worthwhile pursuing. Unfortunately, it was not
reproducible in our hands, and is not supported by a similar recent
paper [54]. Searching for an explanation by speculating about

possible reasons why Wagnon and colleagues found signs of an
encephalitis that we did not see, interfering “iatrogenic” issues
may be worthwhile considering, like e.g., undetected subclinical
infections in their animal facility, leading to “occult” brain
inflammation. Also, other factors, e.g., differences in the gut
microbiota, which have the potential to modulate disease
progression in EAE models [60], cannot be entirely excluded.
However, it seems rather unlikely that the overall discrepancy,
including BBB dysfunction, can be explained by such physiological
factors.
Considering our own previous findings on epitopes recognized

by the highly frequent NMDAR1-AB found in human serum, the
negative outcome of the replication attempts is actually not too
surprising. Epitope mapping using 7 different NMDAR1 constructs
revealed recognition by NMDAR1-AB-positive sera of different
epitopes, located in the extracellular ligand-binding and the N-
terminal domain, as well as the intracellular C-terminal and the
extended pore domain. NMDAR1-AB seropositivity was polyclonal/
polyspecific in half of the investigated sera and likely mono- or
oligoclonal/oligospecific (mainly IgG) in the other half. Overall, no
particular disease-related pattern appeared. NMDAR1 epitopes
were comparable across health and disease [61]. Also, the
accentuated role of IgG in “NMDAR encephalitis” is still a matter
of speculation, but likely related to inflammation-induced class

Table 2. Detailed presentation of behavior results obtained in replication study (protocol following Wagnon et al. [17]).

OVA GluN1359-378 GluN1168-187 ANOVA

Mean ± SD n Mean ± SD n Mean ± SD n test p value

Health status

Pre immune: Body weight (g) 24.2 ± 1.0 18 24.5 ± 0.9 20 24.6 ± 1.1 20 1way 0.4515

Post immune (+7d): Body weight (g) 23.3 ± 1.2 18 23.0 ± 0.8 20 23.4 ± 1.0 20 1way 0.3503

Depression-like behavior

FST total time immobile (s) 127.8 ± 54.9 12 143.4 ± 48.0 12 118.2 ± 49.8 20 1way 0.4048

Locomotor activity

Open field: Total distance (m) 16.3 ± 10.0 18 19.8 ± 7.5 20 23.0 ± 11.8 20 1way 0.1284

Activity

Elevated plus maze: Total arm visits (#) 11.4 ± 4.0 18 11.7 ± 4.7 20 10.5 ± 5.1 20 KW 0.8547

Y maze (habituation): Total arm visits (#) 10.0 ± 4.0 18 13.3 ± 5.8 19 13.9 ± 6.9 19 1way 0.0956

Anxiety-related behavior

Open field: Escape latency (s) 56.1 ± 47.1 18 27.8 ± 16.0 20 40.3 ± 40.5 20 KW 0.1941

Open field: Time in periphery (s) 376.9 ± 31.9 18 383.2 ± 22.2 20 378.3 ± 23.8 20 KW 0.7324

Open field: Time in intermediate zone (s) 33.0 ± 26.7 18 27.7 ± 17.3 20 32.6 ± 18.7 20 KW 0.6139

Open field: Time in center (s) 9.5 ± 8.0 18 8.4 ± 9.1 20 8.3 ± 6.7 20 KW 0.6410

Elevated plus maze: Visits to open arm (#) 3.3 ± 2.2 18 3.1 ± 1.8 20 2.9 ± 2.0 20 1way 0.7994

Elevated plus maze: Time in open arm (s) 9.0 ± 8.5 18 11.6 ± 6.1 20 9.1 ± 7.3 20 KW 0.2046

Y maze (habituation, 5min)

Y maze: Visits arm 1 (#) 4.4 ± 2.4 18 6.4 ± 3.5 19 7.4 ± 4.5 19 KW 0.1004

Y maze: Visits arm 2 (#) 5.6 ± 2.5 18 6.9 ± 3.0 19 6.5 ± 2.9 19 1way 0.3567

arm1 vs. arm2 U test p= 0.1120 t test p= 0.5860 t test p= 0.4426

Y maze (test phase, 3min)

Y maze: Visits arm 1 (#) 1.9 ± 1.6 18 2.5 ± 1.8 19 2.1 ± 2.1 19 KW 0.5813

Y maze: Visits arm 2 (#) 2.4 ± 2.6 18 2.6 ± 1.7 19 2.1 ± 1.2 19 KW 0.4752

Y maze: Visits novel arm (#) 2.8 ± 1.7 18 3.5 ± 2.2 19 3.3 ± 1.8 19 KW 0.5482

1way ANOVA p= 0.2367 p= 0.3093 p= 0.0454

novel vs. arm1 U test p= 0.1403 U test p= 0.1728 U test p= 0.0364

novel vs. arm2 U test p= 0.1479 U test p= 0.2151 U test p= 0.0334

Significant p values (α < 0.05) in bold.
FST forced swim test, 1way one-way ANOVA; KW Kruskal-Wallis test, t two-sided Welch’s corrected t-test, U two-sided Mann–Whitney U-test.
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switch in the brain [62]. As mentioned in the Introduction,
NMDAR1-AB are only one of many possible autoantibodies
directed against brain epitopes [18–22]. The finally resulting
phenotype would then depend on (i) the specific site(s) of brain
inflammation, with either resident plasma cells producing AB or a
local extent of BBB breach at that site (to allow sufficient AB
transfer to the brain), and (ii) the specific circulating brain-reactive
autoantibody profile of each individual.
To conclude, while NMDAR1-AB can contribute to the

behavioral phenotype of an underlying encephalitis, there is no
proof at present for induction of an encephalitis by NMDAR1-AB
themselves. Thus, based on the results presented here, the
answer to the question of whether or not NMDAR1-AB can, by
themselves, induce encephalitis is probably no, with the caveat
that perhaps it may be possible in extremely rare patients with an
exceptionally high NMDAR1-AB titer. However, this would assume
that a very high titer is somehow linked to brain inflammation (as
cause or consequence) and/or local increases in BBB permeability,
which is neither supported by the data from this nor from other
studies.

DATA AVAILABILITY
All data are available upon request.
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