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Abstract: Indospicine, a hepatotoxic arginine analog, occurs in leguminous plants of the Indigofera
genus and accumulates in the tissues of grazing animals that consume these plants. Furthermore,
indospicine has caused toxicity in dogs following consumption of indospicine-contaminated meat;
however, the potential impact on human health is unknown. The present study was designed to
determine the effect of simulated human gastrointestinal digestion on the release and degradation
of indospicine from contaminated camel meat following microwave cooking. Results showed
no significant (p > 0.05) indospicine degradation during cooking or in vitro digestion. However,
approximately 70% indospicine was released from the meat matrix into the liquid digesta during
the gastric phase (in the presence of pepsin) and increased to >90% in the intestinal phase (with
pancreatic enzymes). Following human consumption of contaminated meat, this soluble and more
bioaccessible fraction of intact indospicine could be readily available for absorption by the small
intestine, potentially circulating indospicine throughout the human body to tissues where it could
accumulate and cause detrimental toxic effects.

Keywords: indospicine; hepatotoxicity; meat; in vitro digestion; human

Key Contribution: Indospicine is released from naturally contaminated camel meat following
cooking and in vitro human digestion but does not undergo significant breakdown. Therefore,
hepatotoxic indospicine could be readily available for absorption across the small intestine following
human consumption and digestion of naturally contaminated meat.

1. Introduction

The non-proteinogenic amino acid indospicine (L-6-amidino-2-amino-hexanoic acid) is a
hepatotoxic arginine analog (Figure 1) found widely in plants of the Indigofera genus [1]. This genus
contains over 700 species distributed across tropical Africa, Asia, Australia, and North and South
America, and includes species such as I. spicata, I. hendecaphylla, I. linnaei, I. lespedezioides, I. vicioides
and I. volkensii that have all been reported to contain in excess of 500 mg indospicine/kg dry matter of
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foliage. Indospicine has been found to be directly toxic to livestock [2], and to also act as a secondary
toxin due to its unusual ability to accumulate in tissues of livestock grazing on these plants [3–5].
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Indospicine hepatotoxicity has been demonstrated in rats following a single dose of indospicine
that inhibited protein synthesis and induced fatty changes in, and enlargement of, the liver [6].
Livestock consuming Indigofera develop similar indospicine-induced liver hepatotoxicity; however,
symptoms of toxicity frequently become apparent only after extended periods of Indigofera
consumption [7]. Before the toxicity of Indigofera to livestock was recognized in the 1950s, several
Indigofera species (notably I. spicata and I. hendacphylla) were introduced as pasture legumes in the
USA and Australia. As a result, these species are now widely found in tropical regions far beyond
their native range, across Africa, Asia, Australia, the Americas, and islands of both the Pacific and
Indian Oceans [2]. I. linnaei and I. lespedezioides are also regionally abundant with extensive native
ranges in Australia and South America respectively [2]. Indigofera plants are palatable legumes that
are readily consumed by livestock leading to the reported indospicine accumulation in the meat of
cattle [3], camels [4], and horses [5,8].

Indospicine is non-proteinogenic and instead occurs in both plant and animal tissues as a free
amino acid [3–5]. It is a competitive inhibitor of arginase [9] and DNA synthesis [10], and has been
shown to cause liver degeneration [11] and abortion [12]. In fact, indospicine hepatotoxicity has
been demonstrated in all animal species investigated to date with reports of acute and sub-chronic
hepatotoxic evidence for rats, [13] mice, [14] rabbits, [15] guinea pigs, [7] sheep, [7] dogs [5], and
cattle [7]. However, the severity of the toxicity appears to vary considerably between species with
dogs being particularly vulnerable [16]. Indeed, secondary poisoning of dogs has been reported in
dogs consuming meat naturally contaminated with indospicine arising from livestock that had grazed
on Indigofera plants [5,17].

With respect to digestion of indospicine following consumption of Indigofera plants, previous
in vitro rumen studies have shown that indospicine can be metabolized by the rumenal microbial
system [18]. However, little is known about the stability, release, and potential degradation of
indospicine within monogastric digestive systems, such as the human gastro-intestinal tract, in which
a single-chambered stomach secretes enzymes and acid to facilitate digestion prior to passage into
the small and large intestines. When considering the digestive stability of one component, it is
important to consider not only the chemical structure of a compound but also the nature of its
bond to the food matrix. Therefore, static and/or dynamic in vitro digestion models that mimic the
human gastrointestinal digestion process are a common approach to determine the matrix release
(bioaccessibility) and stability of food components (like nutrients and toxins) as an initial measure to
predict their potential bioavailability [19–22].

In the present study, an in vitro model was utilized to investigate stability, release, and degradation
of indospicine to better understand the potential human exposure following the consumption of
indospicine-contaminated meat. Specifically, the aims of this research were to investigate the effect
of cooking (microwave) on indospicine stability in camel meat naturally containing indospicine, and
most importantly, predict the bioaccessibility and digestive fate of indospicine using a static in vitro
digestion model mimicking the human gastric and small intestinal digestion process. To date and to
the authors’ knowledge, this is the first study investigating the bioaccessibility of indospicine within a
monogastric model system.
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2. Results and Discussion

The hepatotoxic amino acid indospicine is found only in plant species of the Indigofera genus [1]
and has been linked with poisoning of grazing livestock [2], and the deaths of dogs consuming
contaminated meat from livestock that had grazed on these plants [5,17]. These canine deaths in
Australia following the consumption of indospicine-contaminated camel [17] and horse meat [5] have
raised both industry and consumer concern with regard to the potential contamination of meat for
human consumption. The possible impact on human health is particularly concerning as all livestock
grazing pastures that contain Indigofera plant species have the potential to accumulate indospicine as
a free amino acid in their meat [3,4,23,24]. These indospicine residues are not readily excreted and
can persist in tissues for up to 6 months after the cessation of Indigofera consumption, suggesting a
strong affinity of indospicine with the meat matrix. Surveys of camel meat collected in Australia from
animals killed in the field (in situ) and in abattoirs have demonstrated significant levels of indospicine
residues above detectable limits (0.05 mg/kg), with meat from individual camels having levels up to
3.73 mg/kg [25]. Canine poisonings have occurred in the past following repeated consumption of
indospicine-contaminated meat from the same or similar source repeatedly over several months [5,17].
The Australian supply of camel meat is sourced from more than 350,000 rangeland animals grazing
arid inland regions of Australia [26], where Indigofera is also seasonally prevalent. These animals are
slaughtered in abattoirs located within these regions before being supplied to growing niche markets
in urban Australian Middle East and North African communities, as well as Central Australian local
populations [26]. It is plausible that this lack of supply chain diversity could contribute to the same
repeated exposure in these human consumers, and the potential health risk needs to be considered.

There are currently no identified studies providing epidemiological evidence or observational
data indicating indospicine-induced adverse effects in humans. In the absence of such data, exposure
risk can only be derived from available toxicity studies in dogs (often considered a model for human
studies). The most substantial data available relates to thirteen different indospicine doses derived
from two dog feeding experiments conducted for between 4 and 70 days [5,16]. A “lowest observed
adverse effect level” (LOAEL) of 0.13 mg indospicine/kg bw/day is suggested based on observational
data from the 70-day sub-chronic animal feeding experiment [5]. In this study, only minor histological
liver lesions were observed in four dogs fed diets containing between 0.13 and 0.25 mg indospicine/kg
bw/day [5]. A guidance value for human consumption of 1.3 µg indospicine/kg bw/day is thus
proposed by dividing the selected LOAEL for dogs by an uncertainty factor of 10 to take into account
mild degenerative changes to the liver in low dose dogs in the 70-day feeding trial, and by an additional
factor of 10 to take into account intra species variation [27]. However, it can be postulated that a
person with an average bodyweight of 70 kg [27] consuming the average Australian total daily meat
intake of 143 g [28] could potentially consume 7.6 µg indospicine/kg bw/day if the dietary meat
source was camel meat containing the reported 3.73 mg indospicine/kg [25]. This calculated intake of
indospicine exceeds the proposed guidance value by a factor of 5. An additional factor of 10 could
also be considered in the derived guidance value [27] due to the short duration of the literature study
(70 days), and if this was implemented, then the calculated intake of indospicine could exceed the
guidance value by a factor much higher than 5. Also, based on in vitro assessments of indospicine
absorption using human intestinal cells [29], indospicine exhibits a 2-fold higher apparent permeability
across an in vitro intestinal barrier compared to arginine (the amino acid analogue of indospicine).
These findings indicate that indospicine is more readily absorbed than dietary arginine, suggesting
preferential uptake that could potentiate further risks of toxicity.

Indospicine has been investigated in plant material by amino acid analyzer [5,30], high
performance liquid chromatography (HPLC) with derivatization and UV detection [8,24] and
liquid chromatography–tandem mass spectrometry (LC−MS/MS) [1,31]. However, the analysis
of indospicine in meat is challenging due to low levels of contamination together with the complexity
of the meat matrix. The incorporation of D3-L-indospicine as an internal standard in sample extracts as



Toxins 2018, 10, 356 4 of 12

used in this study can be beneficial in LC−MS/MS analysis as it overcomes the matrix effects observed
in previous studies [17].

In the present study, indospicine-contaminated camel meat (microwave cooked) was subjected to
in vitro digestion through sequential addition of pepsin in 0.1 M HCl and pancreatin-bile solutions
with an appropriate adjustment of pH to mimic human in vitro digestion (Figure 2). Liquid and
solid digesta from the in vitro gastric and small intestinal digestion were separated by centrifugation,
prior to determination of indospicine concentration by LC-MS/MS (Figure 3), utilizing the previously
reported and validated method [32]. Indospicine concentration was also measured in uncooked and
cooked camel meat using the same method. All studies were carried out in triplicate with results
shown in Figure 4 and expressed as the mean and standard deviation (SD). To enable a comparison
of the liquid and solid phases, results are presented as indospicine content (µg) in each phase rather
than concentration.

Results from this study indicate that there were no significant changes (p > 0.05) in the total
indospicine content, suggesting that indospicine was not degraded during microwave cooking or
gastrointestinal digestion in vitro (Figure 4). Cooking causes shrinkage of collagen fibres [33] and
also increases meat protein surface hydrophobicity [34]. Indospicine is a water-soluble free amino
acid, and this meat matrix breakdown during cooking and subsequent in vitro digestion resulted in
an almost complete release of this amino acid from the solid phase into the liquid phase (Figure 4).
This is evident from the observed release of approximately 70% indospicine from solid to liquid phase
after the incubation of cooked meat with pepsin (during the gastric phase). Moreover, digestion with
pancreatin and bile in the small intestinal phase resulted in a total release of more than 90% indospicine
into the liquid digesta.

In contrast to the observed lack of indospicine degradation in the present in vitro model of
gastrointestinal digestion in a monogastric system, indospicine was almost 100% degraded when
Indigofera plant material was incubated in camel foregut fluid for 48 h [18]. This differing result
is indicative of the presence of microbes able to degrade indospicine in the camel gastric system.
Indospicine was similarly degraded when incubated with bovine ruminal fluid [18], and further studies
are underway to isolate the responsible microbes with the potential to be utilized as a preventive
probiotic. However, the observed accumulation of indospicine in camel tissues suggest that even
though indospicine can be degraded by foregut fermentation, complete degradation does not occur
before passage of the digesta into the intestine and a significant portion of indospicine is then available
for absorption [18].

It must be noted that in vitro digestion models have several limitations that should be considered
when interpreting the results. For example, no current in vitro model is capable of replicating all
aspects of in vivo digestion, absorption, distribution, biodegradation (including the metabolic activity
of the gut microbiota), and elimination [35,36]. Nevertheless, our results indicate that indospicine is
released from the meat matrix and appears resistant to human gastrointestinal conditions, potentially
making it available for absorption in the small intestine from liquid digesta. Postprandial indospicine
may circulate throughout the human body to tissues and organs, such as the liver, where it could
accumulate over time and cause detrimental, toxic effects.
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There is no known mammalian enzyme that can degrade the amidino group of indospicine [37],
and the preferred route to avoid indospicine toxicity is thus to prevent digestive uptake through
degradation of the toxin during food processing. Our results suggest that the human digestive
system does not have the capacity to degrade indospicine. Tan et al. [38] have recently reported that
microwaving indospicine-contaminated camel meat under mild alkaline conditions (0.05% sodium
bicarbonate, pH 8.8, 15 min) achieved 100% degradation of indospicine, with products identified
as 2-aminopimelamic acid (major) and 2-aminopimelic acid (minor) (Figure 5). Such processing
treatments may have ready applicability in the pet food industry given the recorded sensitivity of
dogs to indospicine-contaminated meat, but are perhaps not appropriate in the processing of food for
human consumption. Additionally, the metabolic fate and toxicity of indospicine hydrolysis products
remains unknown and requires further investigation [38].Toxins 2018, 10, x FOR PEER REVIEW  7 of 11 
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3. Conclusions

Simple cooking of contaminated camel meat in a microwave, as carried out in the present study,
does not degrade indospicine. Moreover, in vitro human gastrointestinal digestion conditions also
had no effect on indospicine degradation and only helped to release the toxin from the solid meat
matrix into the liquid digesta. These observations imply that following human consumption and
digestion of contaminated meat, indospicine could be readily bioaccessible for absorption across the
small intestine. The toxicity of indospicine for humans is uncertain [39], but the known toxicity in dogs
(often considered a model for human studies) is particularly concerning. Camel meat is not commonly
consumed by the broader Australian population, but is eaten by local indigenous populations and
some immigrant ethnic groups within Australia. Further risk assessments, particularly for these high
exposure groups, need to be undertaken with additional consideration given to possible indospicine
contamination of other red meat supply chains.

4. Materials and Methods

4.1. Reagents

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (Castle Hill, Sydney,
NSW, Australia), and were of analytical or HPLC grade. De-ionized water was used throughout
all experiments.

4.2. Study Design

In this study, cooked indospicine-contaminated camel meat (both meat and juices) was subjected
to in vitro digestion through the sequential addition of pepsin and pancreatin-bile solutions with an
appropriate adjustment of pH as outlined in Figure 2 to simulate the human gastro-small intestinal
digestion process. All samples were digested in triplicate for both gastric digestion alone and for
gastric plus small intestinal digestion. Liquid and solid digesta after gastric and small intestinal
digestion were separated by centrifugation, and the concentration of indospicine in the digesta (liquid
and solid) and uncooked and cooked camel meat was measured by LC-MS/MS.
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4.3. Camel Meat Samples

Camel meat samples were obtained from a previously described experimental feeding trial in
which camels were fed a diet containing the pasture legume Indigofera spicata with consequential
accumulation of indospicine in meat tissues [3,4]. This feeding trial was conducted under approval
of the Animal Ethics Committee of the University of Queensland, QLD, Australia (AEC Approval
No. SAFS/047/14/SLAI; Date of approval: 19 March 2014). Indospicine-contaminated camel meat
samples collected at autopsy [4] were utilized in this present study. Camel meat samples were minced
using a commercial meat mincer (PRO 1400 meat grinder, Kenwood, Prestons, NSW, Australia) to
provide a homogenous sample and stored frozen at −20 ◦C until used for further analysis.

4.4. In Vitro Digestion of Camel Meat

The in vitro digestion of camel meat samples was performed following the method described by
Netzel et al. [36] with some modifications (Figure 2). The gastric phase was 120 min to account for
reported variations in gastric emptying following consumption of meals that produce larger particle
sizes like meat [40,41]. A 120 min intestinal phase was also employed.

Prior to in vitro digestion, camel meat (minced, 1 g each) in 15 mL screw–cap Falcon tubes was
cooked in a microwave oven (Panasonic Genius NN5752–750 Watts, Sydney, NSW, Australia) for 4 min
at medium heat (55% power, approximate temperature 70 ◦C).

4.4.1. Gastric Digestion

After cooking, samples were allowed to cool to room temperature and water (1 mL) was added to
form a slurry. To prepare the samples for gastric digestion, the pH was lowered to 2.0 by the dropwise
addition of HCl (6 M). To perform gastric digestion, 250 µL of pepsin solution (40 mg/mL pepsin from
porcine gastric mucosa (1:2500 U/mg, Chem-Supply, Gillman, SA, Australia) dissolved in 0.1 M HCl)
was added into the meat slurry and shaken manually to mix well. The mixture was incubated with
continuous shaking at 37 ◦C for 120 min using an orbital mixer (RATEK Instruments, Boronia, VIC,
Australia) placed in an incubator (Clayson IM550, Sydney, NSW, Australia). After 120 min constant
shaking, tubes for gastric digestion were immediately centrifuged (4500 rpm, 20 min, 18 ◦C) to separate
solid and liquid digesta.

4.4.2. Small Intestine Digestion

The sample tubes identified for small intestinal digestion were processed further. To these tubes,
4 mL of buffer containing 0.1 M NaHCO3 and 12 mM CaCl2 was added dropwise to slowly raise the
pH to 5.7. The digesta samples were mixed well and incubated for a further 30 min at 37 ◦C under
constant shaking. This intermediate step was integrated to mimic the transition from the gastric to the
small intestine environment. To start the small intestinal digestion, the pH of the mixture was further
raised to 7.0 by the dropwise addition of 1 M NaOH followed by the addition of 1 mL of pancreatin-bile
solution (8 mg/mL pancreatin from porcine pancreas (102557, USP Grade, MP Biomedicals, LLC,
Illkirch, France) and 12 mg/mL porcine bile extract (B8631, Sigma-Aldrich, St. Louis, MO, USA) in
0.1 M NaHCO3). The digesta was again incubated at 37 ◦C for 120 min with constant shaking.

4.4.3. Separation of Liquid and Solid Digesta

After completion of each digestion step (gastric and small intestinal) sample tubes were
centrifuged with a Sigma 6K15 centrifuge (Sigma Centrifuges, Osterode, Germany; 4500 rpm, 20 min,
18 ◦C) to separate solid and liquid digesta. Liquid and solid digesta were stored separately at −40 ◦C
until extracted and analyzed for indospicine.
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4.5. Preparation of External and Internal Standards for LC-MS/MS Analysis

Indospicine analysis of all samples was conducted by LC-MS/MS utilizing synthetic indospicine
as an external standard for preparation of a calibration curve and deuterium-labelled D3-L-indospicine
as a stable isotopically labeled internal standard added to all samples and standard solutions to
overcome matrix effects.

Synthesized indospicine as the external standard (>99% pure) and deuterium-labelled
D3-L-indospicine (>99% pure) as the internal standard were kindly provided by Dr. Robert Lang and
Prof. James De Voss, School of Chemistry and Molecular Biosciences, The University of Queensland,
St. Lucia, QLD, Australia [42]. Stock solutions for both internal and external standards were prepared
in de-ionized H2O with 0.1% heptafluorobutyric acid (HFBA) and were frozen at −20 ◦C until
used. Internal (1 mg/L) and external (0.002–2 mg/L) standard solutions for indospicine LC-MS/MS
quantification were prepared from the stock solutions and were stored frozen at −20 ◦C for no longer
than a month before used.

4.6. Extraction of Indospicine from Camel Meat Samples and Digesta

Camel meat samples (uncooked, cooked, and both solid and liquid digesta) were extracted and
analyzed by a previously validated and published liquid chromatography-tandem mass spectrometry
method [32]. Prior to analysis, centrifugal filter units (Amicon® Ultra 0.5 mL 3K, Merck, Bayswater,
VIC, Australia) were pre-rinsed and centrifuged (Microcentrifuge 5424, Eppendorf, North Ryde, NSW,
Australia) at 10,000 rpm for 20 min with de-ionized water (2 × 300 µL) to remove glycerine, then
inverted and spun for 1 min at 1000 rpm.

Minced un-cooked camel meat was thawed, weighed (0.5 g), and mixed with 0.1% HFBA (25 mL),
followed by homogenization (Polytron T25, Labtek, Brendale, QLD, Brendale, Australia) for 15 s.
The homogenized samples were chilled (4 ◦C) for 20 min and then centrifuged at 4500 rpm for 20 min
at 18 ◦C. Aliquots of 1.0 mL of the resulting supernatants were spiked with 100 µL internal standard
(D3-L-indospicine, 1 mg/L in 0.1% HFBA), vortexed for 10 s, and a 450 µL portion was transferred into
pre-rinsed centrifugal filters. The filtered sample mixture was then centrifuged (10,000 rpm, 20 min)
and transferred to a limited volume insert (≈350 µL) for LC-MS/MS analysis.

Cooked meat and solid digesta were extracted and processed in a similar fashion to the raw
meat. Liquid digesta (500 µL) was mixed with 0.1% HFBA (5 mL) and processed in a similar manner.
All quantitations were calculated back to total indospicine content (µg) in either solid or liquid phase.

4.7. LC-MS/MS Analysis of Samples

Separation of the indospicine was achieved using a Waters ACQUITY UPLC® system (Waters,
Lane Cove, NSW, Australia) equipped with a Waters BEH C18 column (1.7 µm, 100 mm length, 2.1 mm
i.d.) at 30 ◦C and a flow rate of 0.2 mL/ min. The mobile phase was a mixture of (A) H2O with 0.1%
HFBA (v/v; pH 2.15) and (B) acetonitrile with 0.1% HFBA with the following gradient: 99% A to 70%
A in 4 min, 70% A isocratic for 3 min, 70% A to 99% A in 1 min and 99% A for 2 min.

MS/MS detection was carried out using a Waters Micromass Quattro Premier triple quadrupole
mass spectrometer with an electrospray ionisation (ESI) source operated in positive mode as previously
described [32]. Eluted indospicine was quantitated utilizing selected reaction monitoring (SRM)
transitions of m/z 174→ 111 (verified by transition of m/z 174→ 157) for indospicine, and m/z 177→
114 (verified by transition of m/z 177→ 113) for D3-L-indospicine as internal standard. The capillary
voltage was 2.79 kV; cone gas flow was 50 L/h; desolvation gas flow was 600 L/h. The source and
desolvation temperatures were set at 150 ◦C and 350 ◦C, respectively. Argon gas collision energy of
indospicine (15 and 12 eV) and D3-L-indospicine (15 and 15 eV) were set with cone voltage at 25 V.
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4.8. Statistics

The data generated were processed using Microsoft Excel® 2010 (Microsoft, Redmond, WA, USA).
Statistical analysis was conducted using ANOVA (GraphPad Prism, Version 6, La Jolla, CA, USA)
with a completely randomized design. Differences were considered significant when p-values were
below 0.05.
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