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Abstract

Background: In many important life activities, the execution of protein function depends on the interaction
between proteins and ligands. As an important protein binding ligand, the identification of the binding site of the
ion ligands plays an important role in the study of the protein function.

Results: In this study, four acid radical ion ligands (NO2
−,CO3

2−,SO4
2−,PO4

3−) and ten metal ion ligands (Zn2+,Cu2+,
Fe2+,Fe3+,Ca2+,Mg2+,Mn2+,Na+,K+,Co2+) are selected as the research object, and the Sequential minimal optimization
(SMO) algorithm based on sequence information was proposed, better prediction results were obtained by 5-fold
cross validation.

Conclusions: An efficient method for predicting ion ligand binding sites was presented.
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Introduction
Ions play an important role in the structure and function
of proteins: for example, the SO4

2− participate in the syn-
thesis process of Cysteine [1], the sulfation process after
protein translation [2], the synthesis process of proteogly-
can, the sulfate absorption and decomposition process of
plant and others [3]; the PO4

3− is an important compo-
nent of bones and teeth which can maintain the neutrality
of body fluids; alkali metal K+and Na+ control the charge
balance in cells, tissue fluids and blood, which plays an
important role in maintaining the normal circulation of
body fluids and controlling the acid-base balance in the
body; alkaline earth metal Ca2+ plays a regulatory role in
nerve conduction and blood coagulation; transition metal
Fe3+ plays an important role in the oxidative damage
process of proteins, lipids, sugars and nucleic acids [4].
The interaction of proteins with ion ligands determines
the realization of these biological functions, so the recog-
nition of ion ligand binding sites is important for the study
of its function [5–10].
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In 2002, Richard et al. [11] have tested sulphate ion bind-
ing site of proteoglycan, and they identified the sites that is
interaction with heparan sulfate. In 2017, Li et al. [12] used
protein structural classification (SCOP) and Protein Data
Bank (PDB) databases to extract 1251 protein chains using
Ligand-Protein Contacts (LPC) software, and gave predic-
tions of 8112 binding residues, and the Support vector ma-
chine (SVM) algorithm was used to predict the sulfate ion-
binding residues of proteins. In recent years, the Zhang Lab
team has compiled a database of ligand-binding residues
named as the BioLip [13] database, a semi-manual database
that collects interactions between ligands and proteins,
functional annotations are relatively comprehensive com-
pared with other databases, which contain extremely exten-
sive and accurate ligand protein data.
During the last few years, many approaches have been

developed to predict the binding sites of protein-metal
ions. In 2008, Babr et al. [14] predicted the binding sites of
protein chains and transition metal ions by CHED algo-
rithm; when predicting 349 whole proteins, 95% specificity
was obtained, and 82 prions were predicted to obtain 96%
specificity. In 2012, Lu et al. [15] used the “fragment trans-
formation” method to predict metal ion (Ca2+, Mg2+,
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Table 1 Benchmark datasets of the sequence segment with
length 17

Ion ligand Protein chains Positive set Negative set

NO2
− 22 98 8144

CO3
2− 62 316 22,766

SO4
2− 303 2125 99,729

PO4
3− 339 2168 112,279

Zn2+ 1428 6408 405,113

Cu2+ 117 485 33,948

Fe2+ 92 382 29,345

Fe3+ 217 1057 68,829

Ca2+ 1237 6789 396,957

Mg2+ 1461 5212 480,307

Mn2+ 459 2124 156,625

Na+ 78 489 27,408

K+ 57 535 18,777

Co2+ 194 875 55,050
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Cu2+, Fe3+, Mn2+, Zn2+) ligand binding sites, and the pre-
diction results were obtained with a total accuracy of
94.6% and a true positive of rate 60.5%. In 2016, Hu et al.
[16] identified four metal ions in the BioLip database by
both sequence-based and template-based methods, and
the Matthew’s correlation coefficient (MCC) values were
greater than 0.5. In 2017, Cao et al. [17] used the SVM al-
gorithm to identify ten metal ion binding sites based on
amino acid sequences, which obtained a good result by 5-
fold cross validation. In 2018, Greenside et al. [18] used an
interpretable confidence-rated boosting algorithm to pre-
dict protein-ligand interactions with high accuracy from
ligand chemical substructures and protein 1D sequence
motifs, which got a great result.
In this paper, the dataset of acid radical ion and metal ion

ligands was extracted from BioLip database, the Sequential
minimal optimization (SMO) algorithm was proposed to
predict the binding site with component information, pos-
ition conservation information and refinement characteris-
tics, experiment results show that the MCC values of the
four acid radical ion ligands by 5-fold cross validation
exceeded 0.470, the accuracy values were not less than
74.0%; the MCC values of six metal ion ligands of Zn2+,

Cu2+, Fe2+, Fe3+, Mn2+ and Co2+ exceeded 0.620, the accur-
acy values were not less than 80%; the MCC values of four
metal ions of Ca2+, Mg2+, Na+ and K+ exceeded 0.430, the
accuracy values were not less than 71%.

Materials and methods
Dataset
The construction of the dataset is directly related to the
reliability of the prediction accuracy. The dataset con-
structed in the paper was from the BioLip database.
The binding protein chains, including four acid radical ion

ligands (NO2−, CO3
2−, SO4

2−,PO4
3−) and ten metal ion li-

gands (Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+,
Co2+), were downloaded from the BioLip database, wherein
the sequence length is greater than 50 residues, the reso-
lution is less than 3Å, and the sequence identity threshold is
less than 30%. Then, the sliding window method is adopted
to get the overlapping segment on the protein chain, if the
center of the segment is the ligand binding site, it is defined
as a positive sample; otherwise it is defined as a negative
sample. We selected the datasets with the sequence segment
length of 17 as an example to simply explain the multiple re-
lationships of segments’ number in positive and negative
sets; the detailed datasets are summarized in Table 1.
Since the number of samples in negative set is sev-

eral tens of times the number of samples in positive
set, in order to ensure stable of the results, the nega-
tive set with equal numbers of positive set was ran-
domly selected ten times in the 5-fold cross
validation, and finally the final result was obtained by
selecting an average of ten times.
The statistical analysis of dataset
Amino acid composition information
According to the literature [12, 17], amino acid compos-
ition information is an important feature in the recogni-
tion of binding sites. Therefore, we analyzed the
composition information of acid radical ion and metal ion
ligand. The SO4

2− ligand was taken as an example, the vio-
lin plot was shown in Fig. 1. The violin plot is a combin-
ation of a box plot and a kernel density, and is mainly
used to display the distribution state of the data. The left
side of each group represents the amino acid composition
in the negative set, the right side represents the amino
acid composition in the positive set, the ordinate repre-
sents the frequency of occurrence of the amino acid, and
the white dot represents the median. The black box pat-
tern ranges from the lower quartile to the upper quartile,
representing the concentrated distribution of amino acid;
the outer shape represents the kernel density estimation,
the more concentrated the data, the fatter the graph. Fig-
ure 1 showed that the concentrated distribution interval
of R, S and T in the positive set was larger than the con-
centrated distribution of the negative set, while the D, E,
G in the negative set were more concentrated than the
positive set. Since the concentrated distribution interval of
amino acid composition in the positive and negative sets
was significantly different, we used the amino acid com-
position information as a characteristic parameter.

The position conservation of amino acids
The WEBLOGO [19] software was used to analyze the
position conservation of acid radical ion and metal ion li-
gands. Since the ion ligands are small ligands, they usually
only bind with a few residues. So we selected a window



Fig. 1 Violin plot of positive and negative segments of amino acid composition of SO4
2−
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length L of 17 as an example to analyze. The x-axis repre-
sents 17 positions, the y-axis represents the conservation
of amino acids in every position, with the height of each
letter corresponding to the occurrence probability of the
corresponding amino acid, the center of the positive set
indicates the ion ligand binding residue. As shown in
Fig.2, the position conservation of the SO4

2− binding
residues and environmental residues are strong, but
binding residues are more conservative, the preferred
residues are R, G, K, S, H, T, and there is a significant
difference of amino acid conservative between positive
Fig. 2 The position conservation of positive and negative amino acid in SO
sequence segments and the right figure indicates the position conservatio
set and negative set. For example, at the eighth pos-
ition, the highest frequency of the amino acid is G, S,
A, L in positive set; the highest frequency of the amino
acid in negative set is L, A, G, V. In the tenth positive,
the highest frequency of amino acid is G, T, S, A in
positive set; the highest frequency is L, A, G, V in nega-
tive set. The above analysis shows that the position
conservation of amino acid residues is a good indicator
of protein ion binding, so it was selected as the charac-
teristic information to further develop an effective iden-
tification model.
4
2−. Note: the left figure indicates the position conservation in positive

n in negative sequence segments
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The selection of characteristic parameters
The characteristic parameters from statistical analysis
According to the statistical analysis of component infor-
mation and position conservation information for amino
acid, these two kinds of information were selected as
characteristic parameters.

Physicochemical properties of amino acids
According to the biological background, the physicochemi-
cal properties of amino acid residues play an irreplaceable
role in the binding of proteins to ions. Therefore, we chose
the hydropathy and polarization charge of amino acids as
characteristic parameters. The 20 amino acids are grouped
into 6 kinds [20] according to hydropathy characteristic
(Table 2) and 3 kinds [21] according to polarization charge:
positive charged(K,R,P), negative charged(D,E), unchar-
ged(N,Q,H,L,I,V,A,M,F,S,T,Y,W,C,G).

Predicted structural information
The prediction of secondary structure and solvent accessi-
bility reflect the spatial structure information of the back-
bone and side chains [22], so we also extracted these
information as characteristic parameters using ANGLOR
[23] software. According to the predicted secondary struc-
ture information, the 20 amino acids are divided into 3
categories: α-helix, β-sheet and coil; according to the pre-
dicted relative solvent accessibility (SA), the 20 amino
acids are divided into 2 categories: SA value is greater than
0.25 for exposure; SA value is less than 0.25 for burial.

The extraction of characteristic parameters
According to the statistical analysis, the component infor-
mation of five characteristic parameters of amino acid, hy-
dropathy, charge, secondary structure and relative solvent
accessibility were selected, and the Increment of Diversity
algorithm was used to reduce the dimension of the above
five components to extract their refinement features; the
Position matrix scoring algorithm was used to extract the
site information of five characteristic parameters and re-
duce the dimension to extract their refinement features.

Position matrix scoring algorithm
The Position matrix scoring algorithm constructs a pos-
itional frequency matrix using known sequence patterns
to describe the composition of amino acids at various
positions in an unknown sequence pattern, and to
characterize the position conservation of amino acids in
Table 2 The hydropathy characteristic of amino acid

Classification Amino Acids Classification Amino Acids

strongly hydrophilic R,D,E,N,Q,K,H Proline P

strongly hydrophobic L,I,V,A,M,F Glycine G

weakly hydrophilic S,T,Y,W Cysteine C
the sequence. Through statistical analysis of the ion li-
gands in this study, it is found that they have obvious
position conservation, so the Position matrix scoring al-
gorithm was selected to extract the feature parameters.
Position matrix scoring algorithm is a classification al-

gorithm. It has been successfully used in predicting tran-
scription factor binding sites in genomes and super-
secondary structures [24, 25].
The position frequency matrix is defined as:

pi; j ¼
ni; j þ

ffiffiffiffiffiffi
Ni

p
21

� �

Ni þ
ffiffiffiffiffiffi
Ni

p� � ð1Þ

In the above equation, j is 20 amino acids and one
pseudo amino acid “X”, ni, j is the frequency of the jth

amino acids at the ith position, Ni is total number of all
amino acids occurring at the ith position, Pi,j is the ob-
served probability of the jth amino acids at the ith

position.
The matrix element of the position weight matrix is

defined as:

mi; j ¼ log
pi; j
po; j

 !

ð2Þ

P0,j is background probability of the jth amino acid, mi,j

is the weight probability of the jth amino acids at the ith

position.
The scoring(S) value is given by the following

equation:

S ¼

XL

i¼1

Ci mi; j−mi; min
� �

XL

i¼1

Ci mi; max−mi; min
� �

ð3Þ

Here,

Ci ¼ 100
log21

X21

i¼1

pi; j logpi; j þ log21

 !

ð4Þ

S is the scoring matrix function, L is length of amino
acid sequence segment, Ci is conservation index at the i-
th position, mi,min is the minimum value at the ith pos-
ition, mi,max is the maximum value at the ith position.
Taking the position amino acid residue as a parameter,

two standard scoring matrices were constructed using
the training set. In the test set, two scoring (S) values
can be obtained for an arbitrary sequence segment,
which can be used as the refinement characteristic pa-
rameters. Besides, the characteristic parameters of the 2
L dimensional site information can also be obtained by
using the position weight matrix.
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Increment of diversity (ID) algorithm
Dispersion is a measure of information diversity. It can
quantitatively describe certain feature information con-
tained in an amino acid sequence, and the measure of di-
versity can describe the overall diversity. The increment of
diversity is one of the information coefficients. It is applied
to the information classification as a classification algo-
rithm. It can reduce the dimension and use the refined
features as the characteristic parameters of classification
prediction. It has been successfully applied to protein fold-
ing and protein structure classification prediction [26, 27].
Therefore, the Increment of Diversity algorithm was used
to extract the feature information from sequence.
In the state space of dimension S, for a vector X: [n1,

n2, …,ns] the measure of diversity source was

D Xð Þ ¼ N logN−
Xs

i¼1

ni logni ð5Þ

For two state spaces of dimension S, for vectors X: [n1,
n2, … ns] and Y: [m1, m2, …, ms], the measure of mixed
diversity source X + Y was

D X;Yð Þ ¼ N þMð Þ log N þMð Þ−
Xs

i¼1

ni þmið Þ log ni þmið Þ

ð6Þ
The increment of diversity between the source of di-

versity X and Y was

ID X;Yð Þ ¼ D X þ Yð Þ−D Xð Þ−D Yð Þ ð7Þ
The amino acid composition information was input

into the ID algorithm. The standard discrete source is
constructed by training. Two discrete increment (ID)
values can be obtained for each segment of the test set.
Then, the obtained two-dimensional ID value can be
used as the characteristic parameter.

Algorithm
The SMO algorithm was proposed by Platt in 1998, which
is also known as the sequence minimum optimization
method. It is the fastest quadratic programming
optimization algorithm that can effectively improve com-
putational efficiency. The SMO algorithm optimizes only
two variables at a time, regards all other variables as con-
stants, transforms a complex optimization problem into a
relatively simple two-variable optimization problem, and
adopts analytical method to avoid the error accumulation
caused by iteration method, which ensures its accuracy. In
this paper, we established our identification model using
the SMO algorithm based on the weka3.8 [28, 29] and
using the Precomputed Kernel Matrix (PUK) kernel func-
tion. PUK is a general kernel function based on Pearson’s
seventh function [30]. It has good robustness and has
equivalent or even stronger mapping ability than standard
kernel functions. It can be used as a general kernel func-
tion to replace ordinary linear, polynomial and radial basis
kernel functions. To a certain extent, it can eliminate the
trouble of how to select the kernel function in the SVM
algorithm, saving time.

Performance measure
We used the following four standard measures [31] to
evaluate the performance of the identification of ion
binding residues: sensitivity (Sn), specificity (Sp), accur-
acy of prediction (Acc) and Matthew’s correlation coeffi-
cient (MCC). These were calculated by the following
formulae:

Sn ¼ TP
TP þ FN

� 100% ð8Þ

Sp ¼ TN
TN þ FP

� 100% ð9Þ

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

� 100% ð10Þ

MCC ¼ TP � TNð Þ− FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð11Þ
Where TP is the number of correctly identified acid

radical or metal ion binding residues, FN is the number
of binding residues wrongly identified as non-binding
residues, TN is the number of correctly identified non-
binding residues, and FP is the number of non-binding
residues identified as binding residues.

Results and discussion
The optimal window size
Whether the amino acid residue can be combined with
the ion ligand depends not only on amino acid residue
itself but also on neighboring residues [32]. In order to
extract more comprehensive information, we used the
sliding window method, where different window sizes
range from 5 to 17, intercepting the sequence segments
from the N-terminal to the C-terminal, and ensuring
that all residues appear in the center of the segment, we
added an (L-1)/2 dummy residue “X” at both terminals
of the proteins. If the central residue of the segment was
an ion binding residue, we assigned the segment as posi-
tive; otherwise it was assigned as negative. Taking SO4

2−

ligand as an example (Fig. 3), the x-axis represents the
window size, the y-axis represents the MCC, ACC, Sn
and Sp values under different window sizes, we per-
formed a large range search on the window size of 7
kinds of amino acid residues and combined the
WEBLOGO diagram of the ion ligand to finally deter-
mine the optimal window size of SO4

2− is 11, other ion



Fig. 3 The results of SO4
2−‘s evaluation index under different window sizes. Note: (a) MCC values of SO4

2− under different window sizes; (b) Acc
values of SO4

2− under different window sizes; (c) Sn values of SO4
2− under different window sizes; (d) Sp values of SO4

2− under different
window sizes
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ligand of NO2
−, CO3

2−, PO4
3−, Zn2+, Cu2+, Fe2+, Fe3+,

Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+ are: 11, 13, 9, 7, 13,
9, 9, 9, 9, 7, 9, 11, 11.
The following calculations were made under the opti-

mal window sizes and the 5-fold cross validation com-
monly used in the literature [33–35].

The results under component information parameters
Under the optimal window size, amino acid component
information, hydropathy component information, charge
component information, secondary structure component
information, and relative solvent accessibility component
information were collectively used as characteristic pa-
rameters and input to the SMO algorithm. The calculation
results of 5-fold cross validation were shown in Table 3.
It can be observed from Table 3 that the ACC values of

the four acid radical ion ligands were all greater than
61.0%, the MCC values of CO3

2−, SO4
2− and PO4

3− exceed
0.360, and only the MCC value of NO2

− was lower than
0.225; among the recognition results of metal ion ligands,
Zn2+, Cu2+, Fe2+, Fe3+ and K+ were preferable, and the
MCC values were not less than 0.5. It can be considered
that these five metal ion ligands were sensitive to the com-
ponent information; the results were consistent with the
previous research results. The reason can be seen from
the statistical diagram of the amino acid composition
given in [17] that the differences of positive and negative
sets of transition metal ions were relatively large, so their
prediction results were better, and the remaining ion
ligands will continue to be identified by adding other char-
acteristic parameters.

The results under position conservation information
parameters
Under the optimal window size, we identified the ion lig-
and binding sites using position amino acid, position hy-
dropathy, position charge, position secondary structure
and position relative solvent accessibility as characteris-
tic parameters via the SMO algorithm. The calculation
results by 5-fold cross validation were shown in Table 4.
From Table 4, it can be concluded that the MCC value

of NO2
− was 0.350, the MCC value of CO3

2− was 0.462,
the MCC value of SO4

2− was 0.460, and the MCC value
of PO4

3− was 0.548. Compared with all component in-
formation as characteristic parameters, the recognition
result has been improved.
For the identification results of ten metal ion ligands,

the six metal ion ligands of Zn2+, Cu2+, Fe2+, Fe3+, Mn2+

and Co2+ have good prediction results, and the MCC
values were not less than 0.600; Na+ and K+ have worst
recognition results, we considered that these two ion li-
gands were less sensitive to the position conservation in-
formation and can continue to identify their refinement.
Compared with the identification of all the component
information as characteristic parameters, the MCC
values of Na+ and K+ decreased slightly, but other’s
MCC values showed an upward trend, indicating that
these ion ligands were more sensitive to the position



Table 3 Recognition results of ion binding sites based on
component information

Ligand Sn (%) Sp (%) Acc (%) MCC

NO2
− 65.3 57.1 61.2 0.225

CO3
2− 68.7 67.7 68.2 0.364

SO4
2− 68.9 67.2 68.0 0.360

PO4
3− 67.8 63.8 65.8 0.435

Zn2+ 75.9 81.6 78.8 0.576

Cu2+ 73.8 80.6 77.2 0.546

Fe2+ 77.0 80.1 78.5 0.571

Fe3+ 75.1 78.1 76.6 0.533

Ca2+ 68.1 72.5 70.3 0.406

Mg2+ 66.7 74.8 70.8 0.417

Mn2+ 72.5 77.3 74.9 0.498

Na+ 72.6 70.8 71.7 0.434

K+ 75.0 75.7 75.3 0.507

Co2+ 71.7 74.3 73.0 0.460
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conservation information, as can be seen from the
WEBLOGO in [17]. The positive and negative sets are
more different than the statistical analysis of the compo-
nents in [17], so the ion ligands were more sensitive to
the position conservation information.

The results under refinement characteristic parameters
The ID algorithm was used to reduce the dimensionality
of the amino acid component information, hydropathy
component information, charge component information,
secondary structure component information, and relative
solvent accessibility component information to obtain a
Table 4 Recognition results of ion binding sites based on
position conservation information

Ligand Sn (%) Sp (%) Acc (%) MCC

NO2
− 73.5 61.2 67.4 0.350

CO3
2− 67.4 78.5 72.9 0.462

SO4
2− 74.2 71.8 73.0 0.460

PO4
3− 75.3 79.4 77.4 0.548

Zn2+ 91.6 87.2 89.4 0.789

Cu2+ 84.5 88.9 86.7 0.735

Fe2+ 90.1 79.6 84.8 0.700

Fe3+ 80.9 85.7 83.3 0.667

Ca2+ 69.4 75.7 72.5 0.451

Mg2+ 69.5 76.5 73.0 0.461

Mn2+ 78.1 84.4 81.2 0.626

Na+ 65.8 73.2 69.5 0.392

K+ 73.8 58.7 66.3 0.329

Co2+ 75.7 84.1 79.9 0.600
10-dimensional ID value; the Position matrix scoring al-
gorithm reduced the dimensionality of the position
amino acid, position hydropathy, position charge, pos-
ition secondary structure and position relative solvent
accessibility to obtain a 10-dimensional S value. The ob-
tained 10-dimensional ID value and 10-dimensional S
value were collectively recognized as the 20-dimensional
refinement characteristic by the SMO algorithm, and the
results (OUR’S) by 5-fold cross validation were shown in
Table 5.
At the same time, for the sake of comparison, the

results of the SVM algorithm in paper [17] and the
calculation results of SMO using the characteristic
parameters of literature [17] were also included in
Table 5.
As seen, the four acid radical ion ligands under the re-

finement characteristic parameters were very good, the
MCC values were over 0.460, and the Acc values were
all greater than 73.0%. Compared with the recognition
results of all component information and all position
conservation information, the values of Sn, Sp and Acc
were gradually improved, indicating that the detailed
characteristic parameters contain more complete
information.
The MCC values of Zn2+, Fe2+, Fe3+and Cu2+ have

reached above 0.7, the MCC values of Mn2+and Co2+ ex-
ceed 0.6, and the MCC value of K+ was only 0.362; the
MCC values of the eight metal ion ligands of Zn2+,
Cu2+, Fe2+, Fe3+, Mn2+, Na+, K+ and Co2+ were improved
in a small range compared with the results in Table 4,
indicating that the eight ion ligands were more sensitive
to the refinement characteristic; the evaluation indexes
of Ca2+ and Mg2+with the refinement characteristic pa-
rameters were not higher than that with the position
conservation information, indicating that these two ion
ligands were more sensitive to position conservation in-
formation; the Na+ and K+ have higher MCC values
when the refinement characteristic was used as a param-
eter, compared with the results of all component infor-
mation as characteristic parameters, it can be
understood that Na+ and K+ were more sensitive to all
component information under three characteristic pa-
rameters, but still lower than the results of other metal
ion ligands, the MCC values of the residual ion ligands
under the refinement characteristic parameters were im-
proved compared with the results of all component in-
formation, which was the best results under the three
characteristic parameters.
In general, the recognition result under the refined

characteristic parameters was generally higher than the
recognition result under the single combination charac-
teristic parameter, which fully demonstrated that the
compatibility performance of the SMO algorithm is
good.



Table 5 Comparison results with SVM

Ligand Method Sn (%) Sp (%) Acc (%) MCC

Zn2+ OUR’S 94.2 84.2 89.2 0.789

SMO 94.8 83.7 89.3 0.790

SVM 99.8 99.5 99.7 0.993

Cu2+ OUR’S 91.3 86.8 89.0 0.782

SMO 90.3 88.9 89.6 0.792

SVM 95.5 97.1 96.3 0.926

Fe2+ OUR’S 90.1 81.9 86.0 0.722

SMO 89.3 82.5 85.9 0.719

SVM 91.9 90.7 91.3 0.826

Fe3+ OUR’S 86.2 85.5 85.9 0.717

SMO 85.5 86.0 85.8 0.715

SVM 86.9 88.7 87.8 0.756

Ca2+ OUR’S 68.8 75.3 72.1 0.443

SMO 69.5 75.4 72.5 0.450

SVM 71.3 79.1 74.8 0.502

Mg2+ OUR’S 71.1 73.1 72.1 0.442

SMO 70.0 72.3 71.2 0.423

SVM 76.6 73.9 75.3 0.505

Mn2+ OUR’S 82.0 83.9 83.0 0.659

SMO 80.3 83.3 81.8 0.636

SVM 82.1 84.4 83.2 0.664

Na+ OUR’S 68.9 74.0 71.0 0.430

SMO 70.8 71.8 71.3 0.425

SVM 82.2 76.2 79.4 0.586

K+ OUR’S 71.6 64.5 68.0 0.362

SMO 74.2 62.6 68.4 0.371

SVM 77.3 83.2 80.3 0.607

Co2+ OUR’S 75.3 86.4 80.9 0.621

SMO 75.1 86.2 80.6 0.616

SVM 80.8 85.1 83.0 0.660

NO2
− OUR’S 80.6 88.8 84.7 0.696

SMO – – – –

SVM – – – –

CO3
2− OUR’S 79.4 81.6 80.5 0.611

SMO – – – –

SVM – – – –

SO4
2− OUR’S 75.6 72.2 74.0 0.478

SMO – – – –

SVM – – – –

PO4
3− OUR’S 76.2 78.0 77.1 0.542

SMO – – – –

SVM – – – –
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Comparison with the results of SVM
The data showed that although the results under the
SVM algorithm were better overall than those under the
SMO algorithm, their overall prediction trends were the
same. The prediction results of individual ions were
close to those of SVM. For example, Mn2+, the MCC
value reached 0.663 under SVM algorithm, and the
MCC value reached 0.636 under SMO algorithm.
In addition, new characteristic parameters were added

based on the SMO results, and the prediction results for
some ion ligands were improved, that is, the results of
OUR’S in Table 5, indicating that the new characteristic
parameters we added were useful parameters, suitable
for the SMO algorithm.
Overall, in the process of ion ligand binding sites pre-

diction, the SMO algorithm adopts analytical method to
avoid the error accumulation caused by iteration
method, so the accuracy of the prediction result is guar-
anteed; the PUK kernel function of this algorithm can
deal with the nonlinear classification data of the binding
sites prediction well and reflect the distribution charac-
teristics of the training sample data, since it maps fea-
tures from low-dimensional space to high-dimensional
space, and achieves linear separability. Therefore, the
SMO algorithm has a good performance for the predic-
tion of ion ligands.
Conclusion
In this paper, the ligand binding sites of four acid radical
ions and ten metal ions were predicted. Firstly, BioLip
database was selected, and the optimal window sizes
were determined by calculation; secondly, component
information, position conservative information and de-
tailed characteristics were extracted as characteristic pa-
rameters; then different characteristic parameters were
input into the SMO algorithm, under the 5-fold cross
validation, the identification of four kinds of acid radical
ion ligand binding sites got a good result, among the re-
sults of the identification of ten metal ion ligands, the
prediction results of transition metals were better than
those of alkaline earth metals and alkali metals, the re-
sults of all position conservation information as charac-
teristic parameters were better than the results of all
component information as characteristic parameters, the
prediction results under the refinement characteristic
were better than the prediction results under the single
combination characteristic, so the characteristic parame-
ters can be refined as much as possible in the subse-
quent work.
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