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Niche construction is a process in which organisms modify the selection pressures on

themselves and others through their ecological activities, and ecological inheritance is

the consequence of niche construction inherited through generations. However, it is

still unclear how such mutual interactions between robots or embodied agents and

their physical environments can yield complex and divergent evolutionary processes or

an open-ended evolution. Our purpose is to clarify what kind of complex and various

niche-constructing behaviors evolve in a physically grounded environment under various

conditions of ecological inheritance of constructed structures and spatial relationships.

We focus on a predator-prey relationship, and constructed an evolutionary model in

which a prey creature has to avoid predation through the construction of a structure

composed of objects in a 2D physically simulated environment supported by a physics

engine. We used a deep auto-encoder to extract the defining feature of adaptive

structures automatically. The results in the case of no ecological inheritance revealed that

the number of available resources can affect the diversity of emerging adaptive structures.

Also, in the case with ecological inheritance, it was found that combinations of two types

of ecological inheritance, which are the inheritance of adaptive structures and birthplace,

can have strong effects on the diversity of emerging structures and the adaptivity of

the population. We expect that findings in evolutionary simulations of niche-constructing

behavior might contribute to evolutionary design of robotic builders or robot fabrication,

especially when we assume physically simulated environments.

Keywords: niche construction, ecological inheritance, artificial creatures, embodiment, evolution, artificial life

1. INTRODUCTION

All creatures, to a greater or lesser extent, change their own and others’ niches through their
ecological activities, which modify the selection pressure on themselves and others. This process
is called “niche construction” (Odling-Smee et al., 2003; Laland et al., 2016). A typical example
of niche-constructing organisms are earthworms that change both the structure and chemistry of
soils through their burrowing behaviors. These changes are accumulated over generations, and then
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bring about different environmental conditions,
which expose the successive population to different
selection pressure. This effect is also called “ecological
inheritance,” as it makes the generation inherit a legacy
of modified selection pressures from ancestral organisms
(Odling-Smee et al., 2003; Laland et al., 2016).

The effects of niche construction on evolution have been
investigated using both mathematical and simple computational
models, in which effects of niche-constructing behaviors are
represented as changes in variables that represent the quantitative
properties of environmental states [e.g., resources (Laland et al.,
1996; Han et al., 2009), optimal phenotypic values (Suzuki
and Arita, 2010), temperature (Harvey, 2004)]. They clarified
various effects of niche construction on evolution in the cases
when the environmental state is represented as a quantity (see
Chiba et al., 2016).

On the other hand, an important feature of niche construction
is that it can create physical and complex structures composed of
many components, which cannot be represented quantitatively.
Laland et al. (2016) pointed out that exploring a broader
range of different possible feedback scenarios might yield new
insights into the origin and maintenance of diversity beyond
the classic arguments of frequency-dependent selection based on
quantitative niche construction. A nest building is a typical and
ubiquitous example of such behavior. A beaver makes a damwith
branches, which stems the flow of a river and have an influence on
many organisms (Odling-Smee et al., 2003). Weber et al. (2013)
recently investigated effects of genes on burrowing behaviors of
complex tunnels in mice (Peromyscus). They showed that the
length of the tunnel is affected by at least three genomic regions,
while only a single locus affects presence of escape tunnels. This
indicates that complex niche-constructing behaviors can have
genetic backgrounds and can evolve genetically. While there are
a few computational models that focus on such complex and
structural properties of niches (Taylor, 2004; Kojima et al., 2014;
see Chiba et al., 2016), physically grounded interactions between
organisms and environments were not considered.

Our work addresses evolutionary ecology, but also has
implications for robotics and evolutionary designs of robot
builders. Thanks to recent developments in digital fabrication
techniques, the concept of niche construction is likely to
become related to evolutionary robotics when considering a
combination of evolutionary design of robots and robotic
fabrication (Reinhardt and Burry, 2016). Zhang et al. (2018)
constructed a 3D printing system that employs multiple mobile
robots printing a large, single-piece, structure concurrently.
Snooks and Jahn (2018) discussed relationships between multi-
agent algorithms and robotic fabrication focusing on feedback
betweenmaterial behavior and robotic operations.We can evolve
robots that can solve tasks by creating physical objects online, and
such objects can be a scaffold for solving the tasks more easily.
This type of behavior of solving problems by modifying external
environments is analogous to the concept of niche construction.
In other words, we can discuss evolutionary niche-constructing
robotics. We expect that findings in evolutionary simulations
of niche-constructing behavior might contribute to evolutionary

design of robotic builders, especially when we assume physically
simulated environments as we will discuss in this paper.

Especially, there are some projects that consider the
autonomous evolution of robots using 3D printers such as
self-replicating robots (Jones and Straub, 2017) and real-world
evolution of robot morphologies (Lipson and Pollack, 2000;
Jelisavcic et al., 2017). In such systems, it is possible to consider
that the effects of ecological inheritance of constructed materials
in ancestral generations can have positive or negative effects on
the subsequent generations. Niche construction is recognized as
an important factor when considering an open-ended evolution
because it can bring about a drive for continued evolution by
changing adaptive landscapes (Taylor, 2015). However, it is still
unclear how mutual interactions between robots or embodied
agents and their complex environments can yield open-ended
evolutionary processes via niche construction and ecological
inheritance in physical environments.

To clarify the evolutionary dynamics of physically niche-
constructing behaviors, we constructed an evolutionary model
of virtual organisms in which an organism has to arrive at the
goal by performing a physical niche construction that places
objects in a 2D physically simulated space with two valleys
(Chiba et al., 2016). The results showed that the degree of
ecological inheritance, represented as a weathering probability
of inherited objects, had a non-linear effect on the adaptivity
of the population. That is, the fitness showed a U-shaped curve
with the increase in the weathering probability because adaptive
structures in a generation tended to become non-adaptive
in subsequent generations when constructed structures were
unstably inherited. However, the variety in evolved structures was
limited because of the simplicity of the task and the analysis of the
evolved structures was still preliminary.

Our purpose is to further clarify what kind of complex
niche-constructing behaviors can evolve in a physically grounded
environment under various conditions of ecological inheritance
of constructed structures. There are various types of ecological
relationship between species within a shared environment
such as predation, competition, mutualism, commensalism, and
amensalism. We focus on a predator-prey relationship while
ecology in nature would be a combination of them all. This
is because the construction of physical structures has been
commonly used in both predatory (e.g., creating a trap) and anti-
predatory behaviors (e.g., creating a shelter). As a first approach,
we particularly focus on the evolution of the latter type of
behavior because there is a wide variety of anti-predator adaption
including the construction of defensive structures such as beaver
dams. We constructed an evolutionary model in which a prey
has to avoid predation through the construction of a structure
composed of objects in a 2D physical environment, by extending
the model in Chiba et al.’s work (Chiba et al., 2016). Nest building
or burrowing behaviors are ubiquitous in many taxa (mammals,
birds, reptiles, insects, etc.) (Odling-Smee et al., 2003) and nests
and burrows have more or less roles of anti-predatory defense
for niche-constructing individuals and their offspring. While still
abstract, we expect that our experimental setting reflects such
situations. We adopted a type of deep auto-encoder (Hinton and
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Salakhutdinov, 2006) for extracting defining features of emerging
adaptive structures.

In the case of no ecological inheritance, we discuss the effects
of the number of available resources on the diversity of adaptive
structures. In the case with ecological inheritance, we further
discuss how the inheritance of spatial relationship between
creatures and constructed structures can have a large effect on
not only the adaptivity of the population but also on the diversity
of emerged adaptive structures.

2. MATERIALS AND METHODS

2.1. Evolutionary Model
We constructed a framework for the evolution of physically
niche-constructing behaviors based on a predator-prey
relationship. In particular, we discuss the evolution of the
defensive strategy of a prey based on the construction of physical
structures against predation by a predator of which behavior
was pre-determined.

2.1.1. Field and Task
We use LiquidFun (Google, 2018), which is an open source
physics engine for 2D games, in order to introduce a physically
simulated environment into our model. It can simulate physical
interactions such as friction and collision between not only rigid-
bodies but also a rigid-body and a fluid-object (a soft object to
simulate liquid drops or flow), and between fluid-objects.

We assume a x-y coordinate plane that represents the
horizontal and vertical space, and there exists gravity along the
y-axis toward the bottom. The simulation is updated every time-
step S (second). Hence, the physical environment is updated
1/S times in 1 s. We use the default parameters in the physics
engine that define the properties of physical environment with a
few modifications1.

We assumed a 1, 000×400 virtual space as shown in Figure 1.
A field consists of squared “field tiles” with a side length of 20.
A prey and a predator have a circular-shaped body. At first, they
are placed on their starting positions and visible from each other
(explained later) in the field, which are shown in Figure 1.

The task of the prey is not being captured by the predator. If
the prey is captured (touched) by the predator, they are moved
back to their starting points. In order to measure the fitness
of a prey quantitatively, we assumed that being caught by a
predator does not represent complete predation (e.g., being eaten
by a predator) but represents incomplete or partial predation
having negative effects on the fitness of the prey. Instead, we also
assumed that a prey encounters another predator immediately
after the occurrence of the incomplete predation event.

Specifically, the fitness is calculated by the following equation
(Equation 1):

fitness =

{

10− {c+
d−df
d

} (df ≤ d)

10− c (otherwise),
(1)

1Gravity g = 9.8 (m/s2), density ρ = 1.0 (kg/m2), coefficient of friction of a prey

and a predator µi = 0.7 and coefficient of friction µ = 0.3.

where c is the number of times for which the prey was captured
within the time limit T (seconds), d is the distance between their
starting points, and df is the distance between them at the end
of fitness evaluation. If the fitness becomes negative, we set it
to zero in order to set a lower limit of the fitness to zero. In
more detail, 10 is the approximated number of times a predator
can catch the prey with the given simulation length and speeds.
The first term c in the braces in Equation (1) is expected to be
equal to or <10. The second term in the braces in Equation (1)
reflects the performance of the behavior after the last catch, by
measuring the reduced distance between prey and predator. It is
normally <1, which is smaller than the decrease in fitness due
to being captured. Therefore, the lesser the number of times of
being captured is and the larger the distance between a prey and
a predator at the end of fitness evaluation is, the higher the fitness
of the prey gets.

2.1.2. Prey
In our model, a circular-shaped prey with a radius of 20 canmove
in the field by rotating its body to the left or right. It also can
place objects2 in the field. This is a niche-constructing behavior in
our model in the sense that constructed structures can affect the
adaptivity of the prey. There are two types of objects: “box” with
a side length of 18 and “board” which is a 6 × 54 rectangle. The
prey has two areas around it: the visibility and the motion range
of its (invisible) arm (Figure 2, right). The visibility is a round
shaped region around the prey with a radius of Fprey and the prey
can recognize objects, field tiles, and the predator within this area.
The motion range of its arm is also a round-shaped region with a
radius of Lprey and the prey can place objects within this area. A
placed object will fall on other objects, field tiles, or the predator
due to the gravity if it is placed in the air. There is no cost of
placing objects.

A three-layer neural network, of which weights are defined
by the genotypes of the prey, determines its behavior (Figure 2,
left). We use a sigmoid function as an activation function
in a hidden and an output layer of the neural network
except for neurons which decide a type of an object being
placed. The values are input to the neural network every
time when the physical environment is updated. The following
values are input to the input layer: (1) the number of field
tiles, boxes and boards within the visibility; (2) the relative
x-y positions of their center of mass from the prey; (3)
the relative x-y position of the predator from the prey;
and (4) the ratio of the number of remaining objects to
its maximum number B. The parameter B determines the
maximum number of the objects that can exist in the
field. It reflects the number of available resources for niche-
constructing behaviors.

The output layer consists of one neuron which decides the
direction of rotation of the prey, which moves by rolling, and
the other six neurons are related to placing objects. The first
neuron decides the moving direction of the prey. If its output
value is higher than 0.5, the torque τprey is applied to the prey in

2In this paper, the term “objects” represents boxes and boards placed by the prey.

It does not include field tiles.

Frontiers in Robotics and AI | www.frontiersin.org 3 April 2020 | Volume 7 | Article 45

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Chiba et al. Evolution of Complex Niche Construction

FIGURE 1 | The field for fitness evaluation.

FIGURE 2 | The neural network of a prey.

a clockwise direction, otherwise, τprey is applied to it in an anti-
clockwise direction. The magnitude of τprey is calculated by the
following equation (Equation 2):

magnitude of τprey =
100000

vprey + 1
(kgf ·m), (2)

where vprey is the current speed of the prey, which is the
magnitude of the 2D velocity vector given by the physics engine
LiquidFun. This equation represents that the larger the velocity
of the prey is, the smaller the applied power becomes, which
prevents the velocity of the prey from being too large. We use
“vprey + 1” as a denominator for avoiding division by zero.

The second neuron decides whether the prey places
an object or not. If its value is larger than 0.5, which
means this neuron is active, the prey places an object in
the field, otherwise, it does not, and the output values
of the other neurons explained in the following will
be ignored.

The third and fourth neurons decide the type of an object
which the prey places in the field. If the output value of
the third neuron is larger than that of the fourth neuron,
the prey places a box, otherwise, it places a board. The fifth
and sixth neurons decide the position on which the prey
places the object within the motion range of its arm. The
position is represented by the polar coordinates as shown in
Equation (3):
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r = Lprey × o5

θ = 2π × o6, (3)

where o5 and o6 represent the fifth and the sixth output values,
respectively. The last neuron decides the angle of rotation of
an object being placed, calculated by the following equation
(Equation 4):

angle of rotation = 2π × o7, (4)

where o7 represents the seventh output value. If the focal object
will interfere with existing field tiles, objects, predator or prey
itself in the field, or will be outside of the field, the action of
placing the object is canceled and nothing happens.

2.1.3. Predator
A predator has the same body shape as a prey with the same
radius of 20. It can move in the field by rotating its body to
the left or right similar to the prey and jump across objects to
capture the prey. It also has a round-shaped visible area around
it with a radius of Fpredator and can recognize the prey within
this area.

The behavior of the predator is determined by a fixed
algorithm determined a priori as follows. If a prey is not within
the visibility of the predator, it does nothing. Otherwise, the
predator moves toward the prey. If the prey is on the right side
of the predator, the torque τpredator is applied to it in a clockwise
direction for chasing the prey, otherwise τpredator is applied to
it in an anti-clockwise direction. The magnitude of τpredator is
calculated by the following equation (Equation 5):

magnitude of τpredator =
150000

vpredator + 1
(kgf ·m), (5)

where vpredator is the current speed of the predator, which is
the magnitude of the 2D velocity vector given by the physics
engine LiquidFun.

If the predator gets stuck in objects and the bottom of it gets
in contact with boxes, boards or field tiles, the impulse of which
the magnitude is 50, 000 (kg ·m/s) is applied to it in the elevation
angle of 60◦ toward the prey. This enables the predator to jump
across objects.

2.1.4. Evolution
A prey has synaptic weights of its neural network of which values
are determined by its own chromosome. Each gene represents a
real value of its corresponding weight. The population of prey
evolves according to a genetic algorithm.

In the initial generation, there are N prey and the values of
its genes are randomly assigned between −1.0 and 1.0. After
the fitness evaluation of all prey, a pair of parents is selected by
a roulette-wheel selection in accordance with the fitness. They
produce a pair of two offspring with the same chromosomes
as themselves, and a two-point crossover occurs between the
chromosomes of offspring with a probability Pc. Each gene can
mutate with a small probability Pm. If a mutation occurs, a
random number ∈ [−R,R] is added to the value of the gene.

This process will be conducted until the number of offspring
reaches N.

2.1.5. Ecological Inheritance
We introduce an ecological inheritance into the model in order
to investigate its effect on the evolution of niche construction.
In a pair of offspring, the environmental state of one parent
is inherited to the environment of one offspring, and the
environmental state of the other parent is also inherited to the
other offspring.

Specifically, each offspring inherits the environmental state
of the corresponding parent at the end of its fitness evaluation
process. There are two different types of ecological inheritance
in our model. The first one is an inheritance of the physical
structure. All objects in the parent’s environment will be copied
to the offspring’s environment, keeping their types, positions,
and rotations the same. However, the degree of inheritance of
objects can vary depending on environmental conditions in the
real world. Thus, we introduce a probability W into our model,
which represents a probability of weathering of each object. Each
inherited object vanishes according to the probability W. Thus,
the higherW is, the less number of objects the prey inherits.

The second type of ecological inheritance is an inheritance
of the spatial relationship in the field from a parent creature.
The offspring inherits the place where its parent existed at the
end of its fitness evaluation and is born in that place. We
call this “inheritance of the birthplace,” hereafter. We introduce
a parameter P into the model in order to enable or disable
inheritance of the birthplace. If the parameter P is “True,” the
inheritance of the birthplace is enabled and a prey will be born in
where its parent was at the end of the fitness evaluation. However,
if the parameter P is “False,” the inheritance of the birthplace is
disabled and all prey will be born in a fixed place.

We conduct the whole process of evolution and ecological
inheritance through G generations.

2.2. Feature Analysis of Adaptive
Structures
In order to investigate adaptive structures constructed by the prey
in detail, we use a deep auto-encoder (Hinton and Salakhutdinov,
2006) to extract the defining feature of adaptive structures
automatically. Such a dimension reduction method has recently
been used for analyzing the evolution process of connection
weights of embodied agents (Khajehabdollahi and Witkowski,
2018). At first we conducted PCA but it did not work well in
that adaptive structures did not distribute widely on the feature
space. Thus, we adopted a deep auto-encoder and expected that
the reduced dimensions better reflect the global tendency while
it might be costly in comparison with some other dimension
reduction algorithms (e.g., t-SNE; Maaten and Hinton, 2008).

We conducted multiple experimental trials, each corresponds
to the execution of an evolutionary algorithm described above
for a fixed number of generations. For every generation in which
the best fitness was larger than 9.0 over all the trials, we make
a screenshot of the field at the end of the fitness evaluation of
the best individual. We re-size these screenshots (1, 000 × 400
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FIGURE 3 | The structures of deep auto encoder.

pixels) to 125 × 50 pixels and regard them as a data set of the
adaptive structures.

We conduct an unsupervised feature learning with a deep
auto-encoder using Chollet (2015), which is a deep learning
library in Python. We use deep neural networks illustrated in
Figure 3 for the analyses in sections 3.1 and 3.2. These networks
are composed of two parts: an encoder and a decoder part. The
former part receives the screenshot of an adaptive structure and
reduces its dimension to 2. The output values are then extracted
in the decoder part. These networks are trained to reconstruct
input screenshots. Through this training, the bottleneck layer of
the neural network is expected to represent features of input data
(Hinton and Salakhutdinov, 2006). Thus, we use the output of
the bottleneck layer composed of two neurons as a feature of the
inputted screenshot of an adaptive structure.

In the spatial distribution of adaptive structures, there were
no clear boundaries between clusters of typically emerging
structures, and they were not clearly classified using some
clustering algorithms. Thus, we decided to divide the structures
into several classes manually by specifying the region of each class
on the space, generated by the autoencoder, using an interactive
interface for this purpose, as shown in Figure 4. Each structure
is represented as a dot in the two-dimensional feature space. The
snapshot of each structure pops up when the corresponding dot
is clicked by a user to see what types of structures are located
on the space. The user can also specify a region with a polygon

and determine it as a class with its name. We try to determine
the boundary between classes so that the majority of structures
exist in the corresponding region of each class. We intend to
roughly grasp the distribution of classes of adaptive structures
and to estimate their sizes (the number of structures), while
this is a manual procedure. Note that the basic idea of this
method is initially devised for classification of the spectrograms
of bird songs (e.g., an automatic classification of songs with t-
SNE and DBSCAN; Sumitani et al., 2018), and is adapted to the
classification of adaptive structures in this paper.

3. RESULT

3.1. Experiments With No Ecological
Inheritance
First, in order to investigate basic behavior of our model and
typical defensive structures of prey, we conducted evolutionary
experimental trials with no ecological inheritance using the
following parameters: N = 40; G = 3, 000; S = 0.02; T = 200;
B = 10, 20, 30, and 40; Fprey = 500; Lprey = 250; Fpredator =

1, 000; Pc = 0.7; Pm = 0.001; R = 0.003;W = 1.0; P = False.
Because of the extremely high computational cost of

conducting multiple experimental trials, we particularly focused
on the effects of the parameter B, which is the number of available
objects for niche-constructing behavior, on evolution, as one of
the important factors that reflects the richness of environments
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FIGURE 4 | An interface for manual classification of adaptive structures on the

feature space.

for niche-constructing organisms. Thus, we conducted 10 trials
for each parameter setting of B.

3.1.1. Basic Analysis
Figure 5 shows the average fitness over all the trials for each
case of the maximum number of objects B. The horizontal
axis represents B and red dots represent the average fitness.
We used the fitness values of the last 1, 500 generations for
calculating the average fitness in each trial to eliminate the effects
of initial conditions.

This figure also shows a box plot of the fitness in each case of
10 trials. There were significant differences in the fitness except
for the case between B= 10 and 20.When a prey was able to use a
smaller number of objects, B= 10 and 20, the average fitness was
6.61 and 6.89, respectively. This means that the prey was captured
by a predator several times. On the other hand, when the prey was
able to use more objects, B = 30 and 40, the average fitness was
8.56 and 9.07, respectively. These results show that prey evolved
not to be captured by a predator if they could use a larger number
of objects.

It turned out that three typical and adaptive strategies emerged
in the experimental trials. Figure 6 shows their snapshots during
their fitness evaluations. See Supplemental Videos (V1: shell,
V2: barnacles, V3: wall, and V4: complex). A “shell strategy,”
like a shellfish, encloses the whole body of a prey with many
objects without moving (Figure 6A). A “barnacles strategy” uses
both field tiles and objects to enclose the whole body of a
prey by moving toward the left (Figure 6B). A “wall strategy”

FIGURE 5 | The fitness and the maximum number of objects B in the case of

no ecological inheritance. Symbols denote statistical comparisons of the

fitness between cases of B using the Wilcoxon rank sum test.

creates a wall between a prey and a predator (Figure 6C). These
strategies could be recognized as “primary or secondary defense”
in a predator-prey relationship (Edmunds, 1974) in the sense
that the prey was prevented from being captured by a predator
using the adaptive structure. Thus, we mainly focus on how
the experimental conditions can affect the emergence of these
adaptive structures using the feature analysis.

In addition, Figures 6D,E also show examples of complex
structures in the cases of the inheritance of birthplace and/or
objects. In the case of the inheritance of birthplace and boards
(Figure 6D, P= True andW = 0.1), the structure was composed
of both boxes and boards. This prey placed multiple box and
boards when a predator climbed the inherited structures and was
going to touch the prey. Also, in the case of the inheritance of
birthplace only (Figure 6E, P= True andW = 1.0), the structure
looked like the one of a barnacle strategy but the predator was
locked in a pile of boards. In these cases, a small difference in the
angle or positions of objects being placed could affect whether the
prey survives or not.

3.1.2. The Feature Analysis of Adaptive Structures
In order to extract features from the adaptive structures, wemade
a data set of 72, 062 adaptive structures from all trials above and
trained a deep neural network in Figure 3 (left) in the procedure
described before. We use the parameters and settings of learning
processes with Keras as follows: activation function: hyperbolic
tangent; optimization function: adadelta; loss function: binary
cross entropy; batch size: 10; and epochs: 200 for section 3.1 and
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FIGURE 6 | The typical strategies which evolved in our model. (A) Shell strategy, (B) barnacles strategy, (C) wall strategy, (D) complex structure (P = True and W =

0.1), and (E) complex structure (P = True and W = 1.0).

2,000 for section 3.2. We found that the error rate (loss) did not
decrease so significantly and it was expected to be due to the large
size and variations in our data set. Thus, we decided to adopt
a result from multiple learning trials that showed a relatively
clear distribution of adaptive structures. Figure 7 represents the
distribution of the adaptive structures in a two-dimensional
feature space and we can see that there were some clusters in the
feature space.

Figure 8 is a feature plot of adaptive structures colored by the
parameter setting of the maximum number of objects B. It can
be seen that B became larger as the y-coordinate value of each
point decreased. This means that a vertical axis approximately
reflects the parameter setting of B. On the other hand, Figure 9 is
a feature plot of adaptive structures colored by the x-coordinate
of the center of mass (COM) of each adaptive structure (i.e., the
COM of the all placed objects). We can see that the color of
each point changed from blue (i.e., the x-coordinate of COM
was small) to red (i.e., the x-coordinate of COM was large) as
the x-coordinate of the point decreased. This indicates that the
horizontal axis approximately reflects the center of mass of the
placed objects.

These analyses showed that our trained neural network
extracted two features, the parameter setting of the maximum
number of objects B and the x-coordinate of COM of the placed

objects. That is, the experimental condition can strongly affect
emerging adaptive structures.

We also roughly classified adaptive structures into three
typical strategies explained before focusing on types of objects
used in a constructed structure. Figure 10 shows the result of
manual classification. We investigated each region in a feature
space and labeled the points in each region as a strategy
which are expected to be the most commonly observed in the
region. Each color represents the type of adaptive structure. We
regarded the area in which there were changes in the dominant
structures and the composition of blocks as boundaries. While
the interactive interface for classification (Figure 4) helped us
with visually inspecting snapshots of adaptive structures around
the boundaries, there could be some subjective bias in the
classification results around boundaries. We expect that more
sophisticated algorithms for embedding might contribute to this
potential problem.

We see that barnacles strategies were located to the left side
of the feature space, while shell strategies were located to the
right side. This result was consistent with the fact that the center
location of a shell strategy was close to the center of the field,
whereas that of the barnacles strategy was to the left end of the
field. Also, there were several types in the same strategy focusing
on the types of placed objects. For example, both a “shell strategy
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FIGURE 7 | The feature plot of adaptive structures in the case without

ecological inheritance.

FIGURE 8 | The feature plot of adaptive structures colored by the parameter

setting of the maximum number of objects B in the case of no ecological

inheritance.

with boxes” and a “shell strategy with boards” are shell strategy,
but components of adaptive structures are different between
these strategies.

Moreover, we can see that locations of a wall strategy varied
depending on the types of placed objects. This is because the

FIGURE 9 | The feature plot of adaptive structures colored by the x-coordinate

of COM of each adaptive structure in the case of no ecological inheritance.

FIGURE 10 | The result of manual classification of adaptive structures in the

case of no ecological inheritance.

center locations of adaptive structures were different between
these wall strategies. A “wall strategy with boxes” created a tall
wall around the center, whereas a “wall strategy with boards”
created a low wall near the left end. Thus, the characteristics of
these two strategies were reflected in the location of each strategy
in the feature space.

We counted the number of adaptive structures of each strategy
based on the result of manual classification (Figure 11). The
horizontal axis represents strategies, the vertical axis represents
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FIGURE 11 | The number of adaptive structures of each strategy in the case

of no ecological inheritance.

the number of adaptive structures, and the color represents the
parameter setting of the maximum number of objects B.

In the cases where the number of resources was small (B =

20, 30), the barnacles strategy, which utilizes components of the
environment (i.e., field tiles), was likely to evolve. In the case
where the number of resources was large (B = 40), the shell
strategy, which uses a lot of resources without moving, was likely
to evolve. On the other hand, the wall strategy was likely to evolve
in specific conditions (i.e., B = 10 and 30). It should be noted
that when the number of available resources was intermediate
(B = 30), all the strategies in our model emerged.

In sum, the environmental condition can significantly affect
the diversity of emerging adaptive structures in terms of large
variations in emerging typical structures. The intermediate
degree of the richness of environments could bring about
the highest diversity of structures. Also, a feature extraction
based on unsupervised feature learning can contribute to a
broad understanding of the distribution and estimation of the
dominant structures.

3.2. Experiments With Ecological
Inheritance
Next, in order to examine how ecological inheritance affects
the evolution of adaptive structures, we conducted evolutionary
experiments with ecological inheritance of constructed niches
focusing on the parameters W and P. We used the following
parameters: N = 40; G = 1, 000; S = 0.02; T = 200; B =

10, 20, 30, and 40; Fprey = 500; Lprey = 250; Fpredator = 1, 000;
Pc = 0.7; Pm = 0.001; R = 0.003; W = 0.01, 0.1, and 1.0;
P = False and True. We used G = 1, 000 instead of G = 3, 000
for reducing the large computational cost of conducting multiple
trials with various combinations of settings, but we observed that
the population almost converged by the end of each trial. We
conducted 5 trials for each combination of the parameters B,W,
and P.

Each box plot in Figure 12 shows a relationship between
average fitness on the whole population in the last 500
generations (vertical axis) and parameter setting of B (horizontal
axis) in each combination of the parameters W and P. In each
box plot, there was a significant difference in the fitness between
the case with B = 10 and some other cases of B (= 20, 30, and
40), showing that the smaller number of objects had significantly
negative effects on the fitness.

As for the comparison between box plots, in the case of P =

False andW = 1.0, in which there was no ecological inheritance
and the setting of parameters was the same as that of the previous
section except for the number of generationG, Figure 12A shows
a positive relationship between B and the average fitness as with
the cases of no ecological inheritance (Figure 5). In the cases of
P = False, and W = 0.1 or 0.01, in which when placed objects
were inherited, each of them vanished according to a probability
0.1 or 0.01, respectively, there was also a positive relationship
between B and average fitness (Figures 12B,C). However, when
compared to the cases without ecological inheritance, the average
fitness was very low in both cases of weathering probability. This
result shows a negative effect of the inheritance of objects on the
adaptivity of the prey.

On the other hand, in the case of P = True and W = 1.0,
in which there was only an inheritance of the birthplace, the
average fitness was the highest in all cases of the parameter
settings. This is expected to be that the inherited place was a
beneficial environment for constructing an adaptive structure
from scratch. In the cases of P = True, and W = 0.1 or 0.01, in
which there was the inheritance of both objects and birthplace,
Figures 12E,F show that the average fitness was higher than
the case with inheritance of objects only (Figures 12B,C). These
results show that the inheritance of the birthplace combined with
the inheritance of objects had a positive effect on the adaptivity
of the prey. Even in these cases, the evolved niche-constructing
behavior was important to repair the inherited structures and
keep them adaptive because they can be broken by an occasional
weathering of some objects and an attack by a predator. The
statistical analyses showed that there were significant differences
in the fitness between the cases with (W = 0.1 and 0.01) and
without (W = 1.0) ecological inheritance of objects, and the
ecological inheritance of the birthplace also had significant effects
on the fitness, as mentioned above.

The reason why the inheritance of objects had a stronger
negative effect on the adaptivity of the prey in the cases without
inheritance of the birthplace was that the prey was born outside
of a structure constructed by its ancestors. In this case, the
prey is not able to utilize the structure created by the shell
and the barnacles strategies because it is hard to enter into
them. Therefore, the prey was captured several times by a
predator and thus got very low fitness. On the other hand, the
inheritance of the birthplace enabled prey to born inside of
the constructed structure because its ancestors were also born
inside of it and thus it was able to use the adaptive structure.
That is why the inheritance of the birthplace had a positive
effect on the adaptivity of the prey in our model. In other
words, the inheritance of the birthplace maintained adaptivity of
inherited structures.
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FIGURE 12 | The fitness (y-axis) and the maximum number of objects B (x-axis) in the case of ecological inheritance. Symbols denote statistical comparisons of the

fitness between possible cases of ecological inheritance (W and P) using the Wilcoxon rank sum test. We aggregated values of the fitness among all conditions of B

for each case of ecological inheritance, and conducted the test on the aggregated fitness values. (A) W = 1.0, P = False; (B) W = 0.1, P = False; (C) W = 0.01, P =

False; (D) W = 1.0, P = True; (E) W = 0.1, P = True; and (F) W = 0.01, P = True.

The combined effect of the inheritance of objects and
birthplace also brought about the diversity of adaptive structures.
Figure 13 shows the number of adaptive structures of each
strategy in each combination of the parameter W and B when
P = True3. In the bar charts, the horizontal axis represents
strategies, the vertical axis represents the number of adaptive
structures, and color represents the parameter setting of the
maximum number of objects B as in Figure 11. Note that we
combined some wall and barnacles strategies in one category
because that category could not be divided into two dominant
categories of two strategies by manual inspection, and also added
“unclassified” category in which their structures could not be
classified into any of the typical strategies.

3We conducted classification processes of adaptive structures on the set of evolved

adaptive structures when W = 1.0 and W = (0.1 and 0.01), in similar manner to

the one in the previous section.

We see that while the most of adaptive structures
were barnacles strategies in the case of no ecological
inheritance of objects (W = 1.0), there were more shell
strategies when there exists the ecological inheritance
of objects (W = 0.1 and 0.01). This means that the
succeeded structures and the spatial relationship from the
parent organisms were expected to affect the construction
of structures, and further affected the evolutionary
dynamics of niche-constructing behavior, making it
more diverse.

In addition, we also see that barnacles strategy was still
dominant when W = 0.1 and 0.01. This is might be due
to the robustness of the barnacles strategy against external
perturbations such as stochastic weathering of objects or
physical effects from a predator, because the barnacles strategy
makes use of field tiles that cannot be collapsed by such
external factors.
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FIGURE 13 | The results of manual classification in the case of inheritance of

the birthplace. (A) W = 1.0, (B) W = 0.1 and (C) W = 0.01.

4. CONCLUSION

In order to investigate the evolution of complex niche-
constructing behaviors in a physically grounded environment,
we developed a framework of an evolutionary model in which
a virtual organism can construct structures by placing objects in
a 2D physically simulated environment. We assumed a task in
which a prey has to avoid predation through the construction
of structures composed of objects, and evolved the strategy of
prey organisms with andwithout ecological inheritance of objects
and birthplace.

Evolutionary experiments without ecological inheritance
showed that three typical strategies evolved depending on
the maximum number of objects, affecting the adaptivity of
the population. The proposed feature extraction techniques
contributed to the classification of evolved adaptive structures.
We also showed that there was a large diversity in the
evolved adaptive structures when the number of objects
was intermediate. These results indicate that the number of

environmental resources can affect the diversity of emerging
adaptive structures.

In the case with ecological inheritance, the inheritance of the
birthplace increased the average fitness whereas the inheritance
of objects decreased it. In addition, the combination of the
inheritance of environmental structures and spatial relationships
brought about diversity in emerging adaptive structures, showing
that conditions of ecological inheritance can have strong
effects on the divergent evolutionary dynamics of complex
niche-constructing behaviors. This implies that both complex
niche construction and ecological inheritance can significantly
contribute to an open-ended evolutionary process in real and
physically grounded environments, such as long-term embodied
evolution of robots.

Future work includes conducting feature analyses using
different dimensionality reduction algorithms to see if adaptive
structures can be more clearly clustered, experiments with
multiple tasks (e.g., anti-predatory and foraging behavior) and
different abilities of prey (e.g., removal of placed objects)
and coevolution of prey and predator species. Another future
directions is to consider an application of this framework tomore
ecologically grounded questions, which might not be clearly
discussed from empirical data. For example, it is reported that
hermit crabs can only survive in remodeled shells handed down
from conspecifics, implying that inherited niche (remodeled
shells) can affect evolution of social relationships (Laidre, 2012).
We would be able to discuss such complex interplays between
biological and cultural evolution processes by extending our
framework to multi-agent systems.
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