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Introduction

HER2 activating mutations, most of which are exon 
20 insertion mutations, are present in 2–3% of lung 
adenocarcinomas (1,2). Despite the rapid development of 
molecular targeted therapies for non-small cell lung cancers 

(NSCLCs) with EGFR, ALK, ROS1, BRAF, NTRK or MET 
alterations, no drug has been approved for the treatment of 
HER2-mutant NSCLCs. Several clinical trials of HER2-
targeted drugs, such as afatinib, neratinib and dacomitinib, 
for HER2-mutant NSCLC have been conducted; however, 
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the activity of these drugs was limited (3-5).
Recently, we reported potent activity of poziotinib 

for HER2 exon 20 insertions by comparing nine HER2 
inhibitors in an in vitro study (6). Poziotinib has shown 
potent activity against EGFR and HER2 exon 20 mutant 
lung cancer in phase II trials and preclinical studies 
(7,8); however, 67% (8/12) of patients who had received 
poziotinib experienced dose reduction due to adverse 
events, and eight patients (67%) had grade 3–4 AEs (8). 
Therefore, for HER2-mutated lung cancers, a variety of new 
therapeutic strategies are currently being tested in clinical 
trials, including a new drug delivery system (tarloxotinib) 
and an antibody-drug conjugates [trastuzumab deruxtecan 
(T-DXd)] (9).

Tarloxotinib is a novel pan-HER-targeted drug (10), 
and a phase II study of NSCLCs harboring HER2-
activated mutations or EGFR exon 20 mutations is ongoing 
(NCT03805841). This drug is designed as a prodrug 
(tarloxotinib) that releases the activated pan-HER inhibitor 
[tarloxotinib-effector (tarloxotinib-E)] under pathological 
hypoxic conditions within the tumor (Figure S1) (11). This 
activation mechanism is expected to enlarge the therapeutic 
window and reduce toxicities such as diarrhea, rash and 
paronychia as a systemically active pan-HER inhibitor.

In this study, we evaluated the activity of tarloxotinib-E 
using in vitro models of HER2-mutated lung adenocarcinoma. 
In addition, we also investigated potential acquired resistance 
mechanisms to tarloxotinib-E. We present the following 
article in accordance with the MDAR reporting checklist 
(available at https://dx.doi.org/10.21037/tlcr-21-216).

Methods

Cell lines

We used the immortalized murine pro-B cell line Ba/
F3, which was obtained from the RIKEN Bio Resource 
Center (Tsukuba, Japan). NCI-H1781 (RRID:CVCL_1494) 
cells, which are a lung adenocarcinoma cell line harboring 
the HER2 exon 20 G776delins VC mutation (VC), were 
purchased from the American Type Culture Collection 
(Virginia, USA) and authenticated by short-tandem repeat 
profiling (Takara, Kusatsu, Japan). These cells were cultured 
in RPMI 1640 (Wako, Osaka, Japan) with 10% FBS (Sigma-
Aldrich, St. Louis, MO, USA) and penicillin-streptomycin 
(P/S, Wako) at 37 ℃ with 5% CO2. We routinely checked 
for mycoplasma contamination using the TaKaRa PCR 
Mycoplasma Detection Set (Takara).

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). All the in vitro  
experiments were performed in compliance with the 
institutional and national guidelines.

Establishment of Ba/F3 cells with HER2 mutations

Ba/F3 cells harboring the A775_G776insYVMA (YVMA), 
VC, or P780_Y781insGSP (GSP) HER2 mutation and 
Ba/F3 cells with wild-type (WT) HER2 were generated 
in our previous study (6,12). Ba/F3 cells with one of four 
HER2 point mutations (S310F, V659E, L755A, or L755P) 
were established using retroviral transfection as described 
previously (6,12). The list of designed primers is summarized 
in Table S1. Briefly, a pBABE retrovirus vector subcloned 
cDNA of the human WT HER2 gene was purchased from 
Addgene (Cambridge, MA, USA). We introduced each 
HER2 mutation into the pBABE vector of WT HER2 using 
a Prime STAR Mutagenesis Basal Kit (Takara) and designed 
primers (Table S1). The pBABE constructs were transfected 
with a pVSV-G vector [Takara (Clontech, Fremont, CA, 
USA), RRID:Addgene_138479] into gp-IRES 293 cells using 
FuGENE6 transfection reagent (Promega, Madison, WI, 
USA). Forty-eight hours after transfection, we collected the 
culture medium, and the viral particles were concentrated 
using a Retrovirus Concentration kit [Takara (Clontech)] 
and stored at −80 ℃. Ba/F3 cells (3×103/well) were seeded 
onto 24-well plates and cultured for 24 hours. A retroviral 
suspension was added to each well. After a few days of 
incubation, the infected Ba/F3 cells were selected using 
puromycin (1.0–1.5 μg/mL) in the presence of interleukin-3 
(IL-3). Then, we cultured puromycin-selected cells without 
IL-3 for approximately one week.

Reagents

Tarloxotinib and its activated drug, tarloxotinib-E, were 
provided by Rain Therapeutics Inc. We also used afatinib, 
poziotinib [second-generation (2G) EGFR TKIs], 
osimertinib [third-generation (3G) EGFR TKIs], and 
pyrotinib, which were purchased from Selleck Chemicals 
(Houston, TX, USA). Each drug was dissolved to a 
concentration of 10 mmol/L in dimethyl sulfoxide (DMSO, 
Sigma-Aldrich) and stored at −80 ℃ until use.

Cell proliferation assay

We seeded 3×104 transfected Ba/F3 cells into six-well 

https://cdn.amegroups.cn/static/public/TLCR-21-216-Supplementary.pdf
https://dx.doi.org/10.21037/tlcr-21-216
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plates. As a control, nontransfected Ba/F3 cells were also 
cultured in the presence and absence of IL-3. We counted 
the number of cells in each well using OneCell Counter 
(Biomedical Medical Science, Tokyo, Japan) in triplicate 
every 24 hours for 96 hours.

Cell viability assay

Cell viability assays were performed using Cell Counting 
Kit-8 (Dojindo Laboratories, Kumamoto, Japan). A total 
of 3×103 cells were plated onto 96-well plates in technical 
triplicates and incubated for 24 hours. The cells were 
treated with each TKI at ten different drug concentrations. 
After 72 hours, 10 μL of tetrazolium salt WST-8 was added 
to each well, and plates were incubated for 2–4 hours. To 
determine bioluminescence, the formazan dye generated 
from tetrazolium in the reduction reaction with NADH, 
which reflects cell viability, was measured by reading the 
absorbance at 450 nm using a multiplate reader (Tecan, 
Mannedorf, Switzerland). Cell viability assay was performed 
at least twice.

Statistical analysis

The growth inhibitory curves were generated using 
GraphPad Prism 9 (GraphPad Software, San Diego, CA). 
Calculation of the standard deviation and estimation of the 
IC50 values were also performed using GraphPad Prism 9.

Generation of tarloxotinib-E resistant clones

We established tarloxotinib-E-resistant (TR) clones 
using HER2-mutant Ba/F3 cells through the N-ethyl-N-
nitrosourea (ENU, Sigma-Aldrich) mutagenesis technique, 
as previously reported (13). HER2 mutant Ba/F3 cells were 
exposed to 100 μg/mL ENU for 24 hours. After removal of 
ENU, 1×105 cells were plated onto 96-well plates. These cells 
were incubated with 200 nM tarloxotinib-E for 14-21 days 
(the medium was changed every a few days), and TR clones 
were selected.

In the chronic exposure assay, H1781 cells were cultured 
with an increasing concentration of tarloxotinib-E starting at 
2 nM. Acquired resistance was defined by the 50-fold higher 
IC50 of the TR cells than that of the parental H1781 cells.

HER2 mutation analyses

Total RNA from the transfected cells and resistant clones 

was extracted using a mirVana miRNA Isolation Kit 
(Qiagen, Hilden, Germany) and transcribed to cDNA using 
ReverTra Ace (TOYOBO, Osaka, Japan). Each transduced 
region and HER2 tyrosine kinase domains (TKD, exons 
18 to 24) were amplified using designed primers. Sanger 
sequencing was conducted by a Genetic Analyzer 3130 or 
3500XL (Applied Biosystems, Waltham, MA).

Western blot analysis

The cells were treated with the indicated concentrations 
of tarloxotinib-E or DMSO for 6 hours and washed with 
PBS. Total cell pellets were dissolved in lysis buffer, and 
a total of 15–30 μg of protein was loaded into SuperSep 
TM Ace (Wako) and blotted. Protein was transferred to 
the membrane [Trans-Blot® Turbo™ Mini PVDF Transfer 
Pack (Bio-Rad, Hercules, CA)], and membranes were 
probed using one of following antibodies: anti-HER2 (Cell 
Signaling Technology Cat# 2242, RRID:AB_331015), 
phosphory la ted  (p ) -HER2 (Tyr1221/1222 ,  Ce l l 
Signaling Technology Cat# 2243, RRID:AB_490899), 
anti-HER3 (Cell Signaling Technology Cat# 4754, 
RRID:AB_10691324), p-HER3 (Tyr1289, Cell Signaling 
Technology Cat# 4791, RRID:AB_2099709), anti-Akt 
(Cell Signaling Technology Cat# 9272, RRID:AB_329827), 
p-Akt (Ser473, Cell Signaling Technology Cat# 9271, 
RRID:AB_329825), anti-Erk1/2 (p44/42 MAPK, Cell 
Signaling Technology Cat# 9102, RRID:AB_330744), 
p-Erk1/2 (p44/42 MAPK, Thr202/Tyr204, Cell Signaling 
Technology Cat# 9100, RRID:AB_330741), and β-actin 
(Cell Signaling Technology Cat# 4967, RRID:AB_330288) 
overnight at 4 ℃. Horseradish peroxidase (HRP)-conjugated 
anti-rabbit IgG (Cell Signaling Technology Cat# 7074, 
RRID:AB_2099233) was used as the secondary antibody. All 
antibodies were purchased from Cell Signaling Technology 
(Danvers, MA, USA). In the chemiluminescence assay, the 
membranes were reacted with enhanced chemiluminescence 
(ECL) solution (GE Healthcare, Chicago, Illinois) and 
scanned by an Amersham imager 680 (GE Healthcare).

p-receptor tyrosine kinase (RTK) array analysis

To detect the changes in the phosphorylation status of  
49 different RTKs, we used a Human Phospho-RTK Array 
(R&D, Minneapolis, MS, USA). Parental H1781 and TR 
cells were treated with DMSO or 100 nM tarloxotinib-E 
for 24 hours, and then, cell lysates were prepared using lysis 
buffer according to the protocol. After blocking the array 
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sheets, 200 µg of prepared sample was added to the array 
sheets and incubated overnight at 4 ℃. After washing with 
wash buffer, the diluted anti-p-tyrosine-HRP detection 
antibody was pipetted into each array sheet. The array 
sheets were exposed to Chemi-Reagent Mix and scanned by 
an Amersham imager 680 (GE Healthcare).

Small interfering RNA

TR clones generated from H1781 cells were reverse-
transfected with scrambled or HER3-targeting small 
interfering RNA (siRNA) purchased from Sigma-Aldrich 
(scramble siRNA, siHER3). Briefly, siRNA dissolved in 
OptiMEN (Thermo Fisher, Waltham, MA, USA) was 
spread to 60 mm dishes or 96-well plates, and H1781 TR 
cells were seeded in the plates. After 24 hours of incubation, 
H1781 TR cells were treated with tarloxotinib-E or 
DMSO. We collected H1781 TR cells after 12 hours of 
treatment and used them for western blotting.

Copy number analysis

Genomic DNA was extracted using a DNA extraction 
kit (Qiagen). Quantitative real-time PCR (qPCR) was 
performed using CYBR Green Real-time PCR Master Mix 
(Applied Biosystems) and the designed primers described in 
Table S2 with the StepOnePlus System (Applied Biosystems, 
Foster City, CA). The copy number of the LINE-1 gene was 
utilized as the internal control as described previously (14).

mRNA expression analysis

We extracted the total mRNA from H1781 and TR cells 
and then reverse-transcribed it to cDNA as described above. 
qPCR was performed using TaqMan probes targeting 

HER3 and TaqMan Fast Advanced Master Mix (Applied 
Biosystems). We quantitated the mRNA expression of 
HER3 by the delta-delta CT method using the expression 
of 18S ribosomal RNA as the internal control as described 
previously (14).

Results

HER2 mutations in non-small cell lung cancer

We searched for the frequency of HER2 mutations in 
NSCLC using the cBioPortal database (https://www.
cbioportal.org) on March 1st, 2019 (Figure 1). To avoid 
overlapping data, we referred to eight studies to identify 
the common HER2 mutation in NSCLC (2,15-21). As 
previously reported (6,12), HER2 exon 20 insertions, 
YVMA, VC and GSP, were the most common HER2 
mutations in NSCLC. In addition to these insertions, four 
single base substitutions, namely, S310F, V659E, L755A and 
L755P, were identified as common HER2 gene alternations 
in NSCLC.

In our previous study (6), we observed that Ba/F3 cells 
harboring YVMA, VC, GSP and WT HER2 proliferated 
well independent of IL-3. In this study, we found that Ba/
F3 cells harboring one of the three point mutations (V659E, 
L755A and L755P) were also viable in the absence of IL-3 
but not Ba/F3 cells with the S310F mutation (Figure S2).

Activity of tarloxotinib-E in HER2 mutated in vitro 
models

In the growth inhibitory assay, tarloxotinib-E showed potent 
efficacy against all Ba/F3 cells harboring HER2 exon 20 
insertions as well as those harboring HER2 point mutations 
(Figure 2A,B). The IC50 values of tarloxotinib-E for HER2-
mutant Ba/F3 cells and H1781 cells were less than 5 nM, 
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Missense Mutations
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Figure 1 Mutation spectrum of HER2 in NSCLC detected in the cBioPortal database. In the cBioPortal database, we identified three HER2 
exon 20 insertions and four HER2 point mutations that are common in NSCLCs from eight studies that performed comprehensive genetic 
screening (2,15-21). NSCLC, non-small cell lung cancer.
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which were lower than afatinib, osimertinib and pyrotinib 
and equivalent to that of poziotinib. The IC50 values of 
tarloxotinib (prodrug) for WT HER2 were much higher 
than those of other TKIs; for example, tarloxotinib had an 
800-fold higher IC50 value than poziotinib. Western blotting 
showed that tarloxotinib-E inhibited the phosphorylation 
of HER2 exon 20 insertions and point mutations at 10 nM 
(Figure S3). On the other hand, tarloxotinib had no effect 
on the phosphorylation of HER2, even at a concentration 
of 100 nM (Figure S3).

To compare the therapeutic window, we calculated 
the selectivity index (SI) of these drugs according to a 
previous report (22). The SI was calculated as the ratio of 
the IC50 of each TKI for WT HER2 and for each HER2 
mutation (Figure 2C). Because tarloxotinib circulates 
as a prodrug and is activated under hypoxic intratumor 
conditions, the SI was indicated as [IC50 of tarloxotinib for 
WT HER2 cells]/[IC50 of tarloxotinib-E for HER2 mutant 
cells]. Many of the SIs of afatinib, poziotinib, osimertinib 
and pyrotinib were <1, meaning that these TKIs have 
inhibitory activity against WT HER2 compared with 
HER2 mutants. In contrast, the SI of tarloxotinib/
tarloxotinib-E was >10 for all HER2-mutant Ba/F3 cells, 
indicating that tarloxotinib will have a wide therapeutic 
window in the clinical setting.

C805S mutation as an acquired resistance mechanism to 
tarloxotinib-E

To investigate the mechanisms of acquired resistance to 
tarloxotinib-E, we performed ENU mutagenesis using 
Ba/F3 cells with HER2 mutations. In this assay, we 
obtained a total of 50 clones that acquired tarloxotinib-E 
resistance from HER2-mutant Ba/F3 cells (Figure 3A). 
Thirty clones among these 50 developed HER2 secondary 
mutations, all of which were C805S substitutions, which 
are homologous to C797S of EGFR (Figure 3B). No 
secondary mutation was found in the HER2 TKD of the 
remaining 20 clones.

The IC50 values of tarloxotinib-E and poziotinib for Ba/
F3 cells that acquired C805S were 50–200 times higher than 
those of parental cells (Figure 3C,3D). We also observed 
that Ba/F3 cells with secondary C805S mutations were 
resistant to all currently available HER2-TKIs (Figure 3D  
and Figure S4A). As shown in the immunoblots, the 
phosphorylation of HER2 in resistant cells treated with 
C805S was not reduced by tarloxotinib-E, even at a 
concentration of 100 nM (Figure S4B).

Activation of HER3 as an acquired resistance mechanism 
to tarloxotinib-E

We also established H1781 cells with acquired resistance to 
tarloxotinib-E (H1781 TR cells) via a chronic exposure assay 
at increasing concentrations of tarloxotinib-E from 2 nM  
to 100 nM. This clone showed approximately 100 times 
higher IC50 values than the parental H1781 cells (Figure 4A).  
There was no morphologic change that suggests the 
acquisition of epithelial to mesenchymal transition in 
H1781 TR cells (Figure 4B). HER2 phosphorylation was 
suppressed in H1781 TR cells, while Erk1/2 and Akt 
phosphorylation remained after 100 nM tarloxotinib-E 
treatment (Figure 4C). We detected no secondary mutations 
in the HER2 TKD, including C805S, in H1781 TR cells.

To explore the resistance mechanism of H1781 TR cells, 
we used the Human Phospho-RTK Array (Figure 4D). In this 
immunoassay, the phosphorylation of HER3 was increased 
in H1781 TR cells treated with 100 nM tarloxotinib-E 
compared with H1781 parental cells treated with 100 nM 
tarloxotinib-E. Using western blotting, we confirmed that 
p-HER3 was higher in H1781 TR cells than in parental cells 
in the presence of tarloxotinib-E (Figure 4E). We identified 
that the mRNA expression of HER3 was increased in TR 
cells compared with parental H1781 cells (Figure 5A). In 
addition, we found that H1781 TR cells acquired a gene 
copy number gain of HER3 by 1.5 times compared with  
parental cells (Figure 5B).

To analyze the role of HER3 in H1781 TR cells, we 
silenced HER3 using siRNA in this cell line. We observed 
that the combination of tarloxotinib-E and siRNA-mediated 
HER3 knockdown effectively killed H1781 TR cells  
(Figure 5C) .  Western blotting revealed that pAkt 
was significantly suppressed by the combination of 
tarloxotinib-E and siRNA-mediated HER3 knockdown 
(Figure 5D).

Discussion

In this in vitro study, tarloxotinib-E demonstrated potent 
activity against Ba/F3 models with HER2 exon 20 insertions 
or with HER2 point mutations that have been detected 
in NSCLCs. Recently, some novel agents have shown 
promising activity against HER2-altered NSCLCs in early-
phase clinical trials. Socinski et al. (23) reported a 27.8% 
overall response rate (ORR) and 5.6-month progression-
free survival (PFS) in twelve patients in a phase II study 
of poziotinib. T-DXd, a HER2-targeted antibody-drug 

https://cdn.amegroups.cn/static/public/TLCR-21-216-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-216-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-216-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-216-Supplementary.pdf
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Figure 3 The secondary C805S mutation was identified in TR clones of Ba/F3 cells harboring a HER2 mutation through ENU 
mutagenesis. (A) Number of TR clones established from ENU mutagenesis. The only secondary mutation identified in the HER2 TKD 
was C805S. (B) Chromatogram of the secondary C805S mutation identified in TR clones. (C) Ba/F3 cells harboring either HER2 exon 
20 insertions or HER2 point mutations with the secondary C805S mutation acquired resistance to tarloxotinib-E and poziotinib. The 
killing curves of parental cells with HER2 exon 20 insertions or point mutations were extracted from Figure 2A as a control. (D) A mosaic 
table of the measured IC50 values of the acquired C805S clones shows that the secondary C805S mutation causes significant resistance to 
all HER2 TKIs. Yellow indicates moderate sensitivity, corresponding to when the IC50 is higher than 5 nM but lower than 50 nM. Red 
indicates resistance, corresponding to when the IC50 is higher than 50 nM. YVMA, A775_G776insYVMA; VC, G776_delinsVC; GSP,  
P780_Y781insGSP; TKD, tyrosine kinase domain; CS, C805S; TR, tarloxotinib-E-resistant; ENU, N-ethyl-N-nitrosourea; IC50, half 
maximal (50%) inhibitory concentration.
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conjugate, achieved a 61.9% ORR in eleven NSCLC 
patients with HER2 mutations in a dose-escalation phase I 
study (9). Most recently, pyrotinib showed efficacy against 
HER2-mutant lung adenocarcinomas with an ORR of 
30.0% and a PFS of 6.9 months in a phase II study (24). 
However, it is also true that these novel HER2 inhibitors 

have high toxicity, such as diarrhea, skin rash, and drug-
induced interstitial lung disease. In the early-phase trials 
mentioned above, dose reduction was needed in 67% of 
patients who received poziotinib and in 24% of patients 
who received T-DXd due to adverse events (8,25).

In this study, we demonstrated that tarloxotinib (prodrug) 

Figure 4 p-HER3 activation was identified as the acquired resistance mechanism to tarloxotinib-E in H1781 cells through chronic exposure. 
(A) Growth inhibition curves of the H1781 TR clone and its parental H1781 cells. (B) Images of parental H1781 and TR cells through the 
chronic exposure assay (EVOS XL Core, 4×). (C) Western blotting revealed that downstream signals were not inhibited by tarloxotinib-E 
in TR cells. (D) Compared with parental H1781 cells treated with DMSO (upper-left), the phosphorylation level of HER3 in H1781 cells 
treated with 100 nM tarloxotinib-E (upper-right) was decreased in the human phospho-RTK array. On the other hand, the phosphorylation 
level of the H1781 TR clone remained the same after exposure to 100 nM tarloxotinib-E (lower right). (E) Western blotting of p-HER3 
and total HER3 in parental and H1781 TR cells. TR, tarloxotinib-E-resistant; tar-E, tarloxotinib-E; p-HER3, phosphor-HER3; p-Erk1/2, 
phosphor-Erk1/2; t-Erk1/2, total-Erk1/2; p-Akt, phosphor Akt; t-Akt, total-Akt.
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was not toxic against Ba/F3 cells with WT HER2 in contrast 
to other HER2 TKIs (afatinib, poziotinib, pyrotinib, and 
osimertinib). Because tarloxotinib-E (active form) inhibited 
the growth of Ba/F3 cells with HER2 mutations at a similar 
range as poziotinib, we expect high efficacy and lower 
toxicity of tarloxotinib in patients with HER2 mutations. 
In fact, in the first report of an ongoing phase II study 
of tarloxotinib in NSCLC patients, tumor response by 
RECIST was observed in 44% (4/9) of a cohort of NSCLC 
patients with a HER2-activating mutation, while dose 
reduction was required only in 21.7% (5/23) of patients in a 

whole cohort (NSCLCs harboring EGFR exon 20 insertion 
or HER2 mutations and solid tumors with NRG1/ERBB 
gene fusions) (26).

In this study, we also explored acquired resistance 
mechanisms to tarloxotinib-E in vitro. In the Ba/F3 models, 
we identified a secondary HER2 C805S mutation. HER2 
C805 is homologous to C797 in the EGFR gene, in which 
irreversible TKIs form covalent bonds; therefore, it is 
reasonable that the C805S secondary mutation conferred 
resistance to all irreversible HER2 inhibitors, including 
tarloxotinib-E.

Figure 5 HER3 copy number increased in TR cells, and interfering with HER3 expression restored sensitivity to tarloxotinib-E. (A) HER3 
expression levels are higher in TR cells than in parental H1781 cells, regardless of tarloxotinib-E exposure. (B) The HER3 DNA copy 
number of TR cells was approximately 1.5 times higher than that of parental H1781 cells. (C) TR cells were resensitized to tarloxotinib-E by 
combined treatment with siHER3. (D) The phosphorylation of HER3 and its downstream signal, p-Akt, were suppressed by the combination 
of tarloxotinib-E and siHER3. On the other hand, the decrease in p-Erk1/2 was limited. tar-E, tarloxotinib-E; TR, tarloxotinib-E-resistant; 
siHER3, small interfering HER3; p-Erk1/2, phosphor-Erk1/2; t-Erk1/2, total-Erk1/2; p-Akt, phosphor Akt; t-Akt, total-Akt.
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In addition to the secondary C805S mutation, we 
identified an acquired resistance mechanism by increased 
HER3 expression in H1781 cells. To the best of our 
knowledge, this is the first report of HER3 activation as an 
acquired resistance mechanism to HER2 inhibitors in lung 
cancer cells with HER2 mutations, although HER3 has been 
reportedly involved in the acquisition of resistance to gefitinib 
[an EGFR-TKI (27)] and alectinib [an ALK-TKI (24)].  
Western blot analysis revealed an increased pAkt level in 
H1781 TR cells with HER3 activation (Figure 4C,4E), 
which is reasonable because HER3 contains six Tyr-Xaa-
Xaa-Met (YXXM) consensus binding sites for the SH2 
domains of the p85 regulatory subunit of PI3K (28). We 
found that siRNA-mediated HER3 knockdown resensitized 
H1781 TR cells to tarloxotinib-E, confirming the role of 
HER3 in the acquisition of resistance to tarloxotinib-E in 
H1781 cells. Therapeutically, we expect that anti-HER3 
monoclonal antibodies, such as patritumab or lumretuzumab, 
or bispecific HER2/HER3 antibodies, such as istiratumab 
or duligotumab, may be able to overcome tarloxotinib-E 
resistance with HER3 activation (29). In this study, we 
explored acquired resistance mechanisms mediated by 
secondary HER2 mutations using Ba/F3 models and those 
mediated by bypass signaling using H1781 cells. However, it 
is not clear which mechanism, secondary mutations vs. bypass 
pathway, is more likely to occur in the actual treatment 
of HER2-mutated lung cancer patients. In addition, it is 
possible that other types of resistances, such as histological 
transformation or modification of tumor microenvironment, 
may arise. Therefore, future analyses using clinical specimens 
obtained from tarloxotinib-E refractory patients are necessary 
to confirm our in vitro findings. 

In conclusion, tarloxotinib-E showed potent activity 
against cell lines expressing HER2 mutations, both exon 
20 insertions and HER2 point mutations. In addition, we 
identified a secondary C805S HER2 mutation as well as 
increased HER3 expression as molecular mechanisms of 
acquired resistance to tarloxotinib-E in our in vitro models.
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