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Abstract

Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nema-

todes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies

have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial

nematodes of their endosymbiont, thus reducing female fecundity. However, it remains

unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan

of the adult worms. Concerns about resistance arising from mass drug administration

necessitate a careful exploration of potential Wolbachia recrudescence. In the present

study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in

the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia

in adult worms and simultaneously impaired female worm fecundity. However, during an 8-

month washout period, Wolbachia titers rebounded and embryogenesis returned to normal.

Genome sequence analyses of Wolbachia revealed that despite the population bottleneck

and recovery, no genetic changes occurred that could account for the rebound. Clusters of

densely packed Wolbachia within the worm’s ovarian tissues were observed by confocal

microscopy and remained in worms treated with rifampicin, suggesting that they may serve

as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To

our knowledge, these clusters have not been previously described and may be the source of

the Wolbachia rebound.

Author summary

Onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) are two neglected

tropical diseases caused by filarial nematodes, which harbor the endosymbiotic bacteria,

Wolbachia. Major efforts to discover new drugs to treat these diseases have led to the
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discovery of novel compounds including those that target Wolbachia. We investigated the

long-term effects of rifampicin on the filarial nematode, Brugia pahangi, and its endosym-

biont, Wolbachia, in an in vivo rodent model of infection. Initially, Wolbachia titers were

significantly reduced by 95% and female fecundity was impaired shortly after treatment. 8

months later however, Wolbachia rebounded and embryogenesis returned to normal.

Sequence analysis of the Wolbachia genome revealed that despite the population bottle-

neck and recovery, no genetic changes occurred that could account for the rebound. Clus-

ters of Wolbachia were observed within the ovaries of female worms throughout the

entire 8-month study. These clusters may sequester Wolbachia and allow the bacteria to

persist during antibiotic treatment, thereby enabling them to repopulate ovarian tissues

and ensuring their vertical transmission to future generations of microfilariae.

Introduction

Onchocerciasis, commonly known as river blindness, and lymphatic filariasis (LF), commonly

known as elephantiasis, are neglected tropical diseases caused by filarial worms that together

affect an estimated 86 million people worldwide [1]. Approximately 1.2 million people are

visually impaired due to river blindness, while 12 million people with LF have complications

due to elephantiasis [1]. River blindness is caused by the release of thousands of microfilariae

(mf) from adult Onchocerca volvulus females residing in subcutaneous tissues. Mf migrate

through the skin causing severe itching and skin depigmentation and also migrate to the ocu-

lar region where they induce an inflammatory response that can lead to blindness [2]. LF is

caused by Wuchereria bancrofti, Brugia malayi and B. timori worms that reside in the lym-

phatic tissues where they cause tissue damage. While many infections are asymptomatic, indi-

viduals that develop the disfiguring disease often experience pain and severe lymphedema

typically in the arms, legs, breasts and genitalia [2]. This can result in stigma associated with

elephantiasis and extreme economic loss for individuals suffering from this disease [3]. The

years lived with disability (YLDs) for LF and onchocerciasis are estimated to be 1.4 million

and 1.3 million, respectively [1].

Current treatments primarily target the mf and not the adult worms, which are capable of

surviving in their human host for 10–14 years for O. volvulus and 6–8 years for Brugia spp.

[2,4–9]. For this reason, international control programs require annual or biannual mass drug

administration of drugs in order to reduce transmission rates. However, given the longevity

and high fecundity of these worms and the current lack of drugs that kill the adult worms, it is

unlikely that the WHO goal of eliminating LF and onchocerciasis by 2030 will be met when

microfilaricidal drugs are used alone [10–15]. The inability to reduce transmission rates with

microfilaricides is compounded by the fact that ivermectin (IVM) cannot be distributed in

areas co-endemic for another filarial nematode, Loa loa, due to the risk of severe adverse

events, especially toxic encephalopathy when individuals are co-infected with high loads of L.

loa mf [16,17].

Onchocerca, Wuchereria and Brugia spp., like many other species of filarial nematodes, har-

bor an intracellular endosymbiont, Wolbachia, which is important for female worm fecundity

and survival [18–22]. Loa loa, however, lacks this bacterium, and efforts are underway to

develop anti-Wolbachia drugs to eliminate this bacterium, thereby resulting in death of adult

worms. In clinical trials conducted on patients with onchocerciasis and lymphatic filariasis,

doxycycline was shown to deplete Wolbachia and eventually eliminate the adult worms after

about 1–2 years [23,24]. Doxycycline however requires lengthy dosing regimens (100–200 mg
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daily for 4–6 weeks) and is therefore not practical for mass drug distribution. In addition,

doxycycline is contraindicated in children 8 years and younger and because it is in pregnancy

category D, should not be given to pregnant women [2].

Several studies have recently shown that short courses of 7- and 14-days of anti-Wolbachia
compounds hold promise as excellent drugs to treat onchocerciasis and LF [25–29]. Studies by

Hübner et al. however, showed that suboptimal treatment regimens of doxycycline in the Lito-
mosoides sigmodontis infection model did not lead to a sustained reduction in Wolbachia loads

in worms 14–18 weeks post-treatment and that longer term studies were needed to assess per-

manent sterilization of female adult worms [27,29]. Although West African cattle infected

with Onchocerca ochengi are excellent hosts for long-term studies to evaluate the efficacy of

antibiotics for the treatment of human onchocerciasis [30–36], the purpose of our study was to

investigate the long-term effects of rifampicin in a rodent model of infection. In the present

study, we investigated the use of jirds infected with Brugia pahangi to assess the effects of

rifampicin on Wolbachia and worm survival in an 8-month time course study in which Wolba-
chia titers were determined using adult worms recovered from animals treated with a one-

week dosing regimen of rifampicin.

Results

The endosymbiont Wolbachia rebound after 8 months following

rifampicin treatment without genetic change

The research objective was to determine the long-term effects of antibiotic treatment on filarial

worms and their endosymbiont, Wolbachia. We hypothesized that rifampicin would deplete

worms of Wolbachia which would eventually lead to adult worm death in jirds infected with

Brugia pahangi. Wolbachia titers in adult male and female worms were determined by qPCR

at 1 week, 6 weeks, 17 weeks and 8 months post-first dose following the protocol by McGarry

et al [37]. The relative abundance of single copy genes encoding the Wolbachia surface protein

(wsp) were normalized to that of Brugia glutathione-S-transferase gene (gst) [28,29,38–40]. At

the 1-week timepoint, Wolbachia titers were significantly reduced by 95.2% in female worms

(Fig 1A). By 6 weeks however, the reduction in Wolbachia titers was reduced by 81.3% com-

pared to those of control worms and by 17 weeks, titers were reduced by 77%. At 8 months,

Wolbachia titers returned to levels similar to those of control worms, i.e. there was a 0% reduc-

tion in Wolbachia titers (Fig 1A). Wolbachia titers from male worms followed a similar trend

of rebound (Fig 1B).

Although there was a significant effect of rifampicin on Wolbachia titers at early timepoints

(S1 Table), rifampicin did not reduce the number of adult worms recovered at the time of nec-

ropsy at any of the timepoints, i.e. no macrofilaricidal effects were observed (S1 Fig).

To determine if the rebound in Wolbachia occurred as a result of genome changes (e.g.

antibiotic resistance/tolerance), we sequenced Wolbachia genomes using hybridization probe-

capture method from the treatment and vehicle groups at the 1-week and 8-month timepoints

[41]. On average ~90,000 PacBio CCS reads were generated per sample, which amounts to

~150× coverage of the genome (S2 Table). A complete circularized reference genome

(1,072,983 bp) was assembled using the 1-week vehicle group and sequence variants were iden-

tified in each group with respect to the reference. Variants occurring within the genomic

regions likely representing nuclear Wolbachia transfers (nuwts [42]) were excluded from the

analysis.

One single nucleotide variant (SNV) and five insertion/deletion variants (INDEL) were

identified and their allele frequencies were estimated based on the number of reads that sup-

port each allele in each sample (S3 Table). The SNV (C-to-T substitution) occurred within the
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ORF of a short-chain dehydrogenase/reductase family (SDR) oxidoreductase and was pre-

dicted to be a synonymous variant and therefore a silent mutation. The allele frequency of this

variant increased from 5.1% in the 1-week vehicle group to 35.5% in the 8-month rifampicin

group (Fisher’s exact test P-value: 3.2×10−5), which was the only variant whose allele frequency

displayed a statistically significant change. The INDEL variants invariably occurred within

homopolymer regions (9–13 consecutive bases of A or T). Homopolymeric tracts are muta-

tional hotspots because they are vulnerable to slippage errors during replication and transcrip-

tion [43]. However, INDEL calling is error-prone around homopolymer runs (due to

sequencing and PCR errors), and we cannot exclude the possibility that these INDELs are

false-positive variants [44]. These data suggest that, despite the population bottleneck and

recovery, the genetic change in Wolbachia after rifampicin treatment likely did not occur.

Female worm fecundity is significantly reduced shortly after treatment but

returns to control levels by 17 weeks

Commensurate with the depletion of Wolbachia 1 week after the first dose of rifampicin, we

observed a significant impact on embryogenesis 6 weeks post-antibiotic treatment. This was fol-

lowed by a gradual rebound in Wolbachia and return to normal embryogenesis by 17 weeks.

The fecundity of female B. pahangi at each timepoint was assessed by counting the number

of mf released after worms were removed from the animals and incubated in vitro for 18

hours. Worms from rifampicin treated jirds at the 1- and 6-week timepoint showed a signifi-

cant reduction in the number of mf that were shed compared to worms from the vehicle group

(43.4% reduction, P<0.05 and 86.3% reduction, P<0.0001, respectively) (Fig 2). Female fecun-

dity returned to control levels after 17 weeks and remained at control levels for up to 8

months.

Embryograms of female worms were also analyzed to determine the effects of rifampicin on

the developing stages of mf within the reproductive tract of female worms. Results showed that

Fig 1. Wolbachia titers return to control levels 8 months after rifampicin treatment. Female and male Brugia pahangi from jirds treated with rifampicin

were analyzed by qPCR to determineWolbachia titers at each timepoint. Mean percent reductions of Wolbachia wsp/gst ratios from female (A) and male (B)

adult worms are shown at 1-week, 6-weeks, 17-weeks and 8-months post-first dose. Data shown are medians and the boxes are the 25th and 75th percentiles

with ���P<0.001 and �P<0.05. n = 2–9 jirds per treatment group per timepoint. Additional information is shown in S1 Table.

https://doi.org/10.1371/journal.ppat.1008623.g001
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developmental stages from female worms recovered from rifampicin treated jirds at the

6-week timepoint exhibited a significant decrease in healthy embryos and an increase in

degenerated embryos compared to those from both the control group at the 6-week timepoint,

and the rifampicin group at the 1-week timepoint, where little disruption was observed (Fig 3

and S4 Table). The decrease in fecundity and disruption of embryogenesis however were not

observed at later timepoints suggesting that embryonic development of mf returned to control

levels following the rebound of Wolbachia.

Cellular analysis reveals the rebound is derived from clusters of Wolbachia
As an independent method of analyzing Wolbachia titer, we performed fluorescence confocal

analysis to image Wolbachia and host cell nuclei as previously described by Landmann et al.,

Serbus et al. and Foray et al. [45–49].

Fluorescence imaging of the distal tip region of the ovaries revealed that Wolbachia were

nearly depleted from germline tissues at the 1-week timepoint, but they began to increase in

number at later timepoints (Fig 4A). Interestingly, large densely packed “clusters” of

Fig 2. Rifampicin decreases mf shedding from female worms up to 6 weeks, followed by a return to normal by 17 weeks. The number of mf shed

overnight by adult female worms that were recovered 1 week, 6 weeks, 17 weeks and 8-months post-first dose is shown for each timepoint. Mf shed

overnight at the 1- and 6-week timepoint were significantly reduced (�P<0.05 and ����P<0.0001, respectively). Data are shown as median ± 95% CI.

n = 10–26 female worms from n = 2–9 jirds per treatment group per timepoint.

https://doi.org/10.1371/journal.ppat.1008623.g002

Fig 3. Rifampicin treatment leads to impaired embryogenesis by the 6-week timepoint but normal developmental stages return by 17 weeks. Embryonic stages

found within the ovaries and uteri from female worms from the vehicle and treated groups were counted 1 week, 6 weeks, 17 weeks and 8 months post-first dose. There

was a significant decrease in the frequency of healthy embryos across all developmental stages of embryogenesis at the 6-week timepoint (����P<0.0001). Percentages of

degenerated embryos (gray) were also determined for each timepoint. Data are presented as mean ± SEM. n = 6–9 female worms from n = 2–9 jirds per treatment group

per timepoint.

https://doi.org/10.1371/journal.ppat.1008623.g003
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Wolbachia (Fig 4B) were observed in worms recovered from both the vehicle and treated

groups at each timepoint. When Wolbachia were quantified in each of the clusters from ova-

ries (Fig 4C), results showed there were no significant differences between the treated and con-

trol groups with respect to the Wolbachia density (puncta per area of cluster, Fig 4D).

However, Wolbachia in the peripheral areas around the clusters were significantly reduced

(P = 0.05) in the worms from the rifampicin group at 6-weeks but not at the later timepoints

(Fig 4D).

The presence of clusters with densely packed Wolbachia in ovaries from both rifampicin

treated and control worms suggests that despite clearance of bacteria from the areas outside

the clusters, the Wolbachia nevertheless persisted within the clusters and may be the source of

the rebound. Analyses were not conducted on male worms as the focus of the work was on

female fecundity and embryogenesis. We postulate that similar clusters will be associated with

male worms, possibly in the hypodermal areas and, as with females, are likely responsible for

the rebound.

Discussion

Major efforts to identify new drugs to treat the adult stage (macrofilariae) of Onchocerca volvu-
lus have led to the discovery of novel anti-Wolbachia compounds. These studies demonstrated

that their respective anti-Wolbachia compounds significantly reduced Wolbachia titers in

worms from animals treated with short courses of quinazolines and Tylosin analogs after 16–

18 weeks post-first dose [26,27,29,40,50]. In addition, a one-week combination treatment of

rifampicin and albendazole resulted in a greater than 99% reduction in Wolbachia levels in B.

malayi infected SCID mice [28]. Clinical trials further revealed that albendazole either alone or

in combination with antibiotics dramatically reduced Wolbachia levels [51,52]. With the

recent discoveries of new anti-wolbachial drugs, we explored the Wolbachia/worm relation-

ship in vivo to better understand the outcomes of antibiotic exposure. The aim of this study

was to determine the longer-term effects of rifampicin on female worm survival and fecundity

and Wolbachia titers using the Brugia pahangi infected jird model.

Although macrofilaricidal effects were not observed following treatment with rifampicin,

Wolbachia titers and female fecundity were significantly affected 1 week post-first dose. Wol-
bachia titers were reduced by>95% in female worms from rifampicin treated animals at the

1-week timepoint compared to those of worms from vehicle animals. The extensive reduction

of Wolbachia titers in adult worms has been previously described in other rodent studies with

filarial worms, but the studies were terminated 16–18 weeks post-treatment [26,27,29,40,50],

and the long-term effects of antibiotic treatment on filarial worms and their Wolbachia were

not evaluated in these models.

Our present long-term study showed that even though Wolbachia were almost completely

eliminated at early timepoints, Wolbachia rebounded to levels similar to those of control

worms 8 months after rifampicin dosing. Female worms recovered from this timepoint were

also fully reproductive, similar to female worms from the control group. Thus, despite qPCR

data that showed a>95% reduction in Wolbachia titers, Wolbachia rebounded and returned

Fig 4. Rebound of Wolbachia at later timepoints may be driven by clusters. Ovaries were removed from individual female worms, fixed and stained for host

nuclei (magenta) and Wolbachia (red). (A) Wolbachia are depleted at 1- and 6-weeks post-treatment but begin to rebound by 17 weeks. (B) Clusters of Wolbachia
are seen in ovaries from vehicle and rifampicin worms; actin (green) stained with phalloidin; Wolbachia (red) stained with propidium iodide and host nuclei

(magenta) stained with DAPI. (C) Wolbachia were quantified by counting number of puncta within the clusters (left) and in the periphery of the clusters (right). (D)

Clusters were analyzed from worms collected at 6 weeks (n = 36–46), 17 weeks (n = 6–8) and 8 months (n = 34–52). Vehicle control worms in yellow and worms

from rifampicin treated groups in red. Peripheral Wolbachia were reduced in females recovered from rifampicin treated jirds at the 6-week timepoint only

(P = 0.05). Data are presented as median ± 95% CI.

https://doi.org/10.1371/journal.ppat.1008623.g004
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to levels comparable to those of control worms, suggesting that this level of elimination is not

sufficient to ensure permanent elimination and permanent female sterility. This finding paral-

lels the rebound of Wolbachia titers in O. ochengi from cattle treated with a short, intensive

regimen of oxytetracycline (10 mg/kg QD for 14 days) reported by Gilbert et al. [32], and sug-

gests that this jird model is a suitable alternative for long-term studies (up to 8 months) in situ-

ations where cattle models cannot be conducted.

The dosage of rifampicin used in the present study was not likely suboptimal since previous

studies with B. malayi infected SCID mice showed that 25 mg/kg rifampicin twice a day for 7

days resulted in reductions in Wolbachia comparable to the clinical dosage of doxycycline that

caused>90% Wolbachia depletion [25]. While we saw the expected reduction in Wolbachia at

early timepoints, the reduction was not sustained, and Wolbachia rebounded. Comparison of

the genetic profiles of Wolbachia genomes from the early and late timepoints revealed that

despite the population bottleneck and recovery, no genetic changes occurred in Wolbachia
that could account for the rebound.

The significance of the rebound in this bacteria/worm symbiosis was evident when low

titers of Wolbachia, which initially led to the reduction of late-stage embryos and microfilariae

at 1- and 6- weeks, was later followed by the return of developing embryos and microfilariae

released by female worms. This recovery back to control levels was commensurate withWolba-
chia rebound, in line with evidence showing the dependence of female worms on Wolbachia
to maintain their reproductive output [21,32,49,53–55].

Direct visualization of worm ovaries using fluorescence confocal microscopy revealed two

distinct populations of Wolbachia: “clusters” of Wolbachia that were found within the female

ovaries and “peripheral” Wolbachia that were found surrounding the clusters. For the Wolba-
chia within clusters, we found no significant differences in bacterial cluster amount, size, or

density between rifampicin and control treatments, suggesting that these clusters do not

respond to antibiotics, at least at the dosages used in this study. In contrast, we found that

rifampicin significantly reduced the peripheral Wolbachia surrounding the clusters at 6 weeks.

To our knowledge, these clusters have never before been identified in any Wolbachia-nema-

tode system, and we believe that the clusters could serve as a reservoir of bacteria that can

repopulate the germline tissue after antibiotic treatment.

Since genome sequencing of the rebounded Wolbachia showed there were no gene changes

that could account for the persistence, we postulate that the clusters are privileged sites in

which Wolbachia persist in a low or inactive metabolic state, similar to what occurs with intra-

cellular Toxoplasma gondii bradyzoites [56,57] and pathogenic intracellular bacteria including

Mycobacterium tuberculosis, Treponema pallidum, Chlamydia spp. and Salmonella enterica
which can cause persistent and latent infections [58–66]. Interestingly, bacterial toxin-anti-

toxin (TA) genes of the RelEB family thought to cause persister cell formation in insect-associ-

ated Wolbachia, were absent in Wolbachia from filarial nematodes, suggesting that TAs may

not be involved in persister formation of Wolbachia within the clusters and that other mecha-

nisms are likely at play [67–70].

Although the molecular mechanisms of persister formation is not known in the Wolbachia-

worm relationship, Wolbachia may respond in some manner to their low numbers and repop-

ulate the ovarian tissues by moving from the clusters to the peripheral areas within the ovaries

or by migrating into the worm’s pseudocoelom [46,71] and back into the ovaries, thereby

ensuring their vertical transmission for future generations of microfilariae.

Further studies to define the nature of these clusters and wolbachial persistence will yield

new information on the cell biology of this bacteria-worm symbiosis and may reveal similar

strategies used by various pathogens that allow them to persist and remain latent within their

hosts.
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Conclusion

We describe the effects of rifampicin treatment on the Wolbachia-Brugia pahangi relationship

over an 8-month period in a rodent model. Wolbachia numbers were significantly reduced

after initial treatment but subsequently rebounded along with a corresponding return of

embryogenesis and fecundity in female worms. This in vivo B. pahangi/jird model serves as a

useful tool to evaluate the long-term effects of antibiotics on Wolbachia depletion and female

worm fecundity and provides information that may impact the clinical use of antibiotics to

treat filarial diseases.

This study also provides insight into the Wolbachia-worm relationship with the discovery

of two different populations of Wolbachia within the ovaries of these filarial worms: clusters of

Wolbachia and peripheral Wolbachia, the former of which may account for the rebound of

Wolbachia following antibiotic treatment. To our knowledge, clusters of Wolbachia have

never before been identified in any Wolbachia-nematode system and may represent seques-

tered populations of this endosymbiont within Brugia pahangi ovaries.

Methods

Ethics statement

All animal studies were performed under the University of California, San Francisco Institu-

tional Animal Care and Use Committee (IACUC) approvals AN109629-03 and AN173847-02

and adhered to the guidelines set forth in the NIH Guide for the Care and Use of Laboratory

Animals and the USDA Animal Care Policies.

Animal infections

For dosing studies on adult worms, male Mongolian jirds 50–60 grams, 5–7 weeks in age (Mer-
iones unguiculatus, Charles River Laboratories International, Inc., Wilmington, MA) were

injected intraperitoneally (IP) with third-larval stage Brugia pahangi (University of Missouri-

Columbia) and treated 3 months later when larvae developed into adult worms.

Drug dosages

Rifampicin (Research Products International Corp., Prospect, IL) was dissolved in 55% polyethyl-

ene glycol 400 (Sigma), 25% propylene glycol (Sigma), 20% water at a concentration of 5 mg/mL,

and animals were given oral doses of 25 mg/kg twice a day for 7 days. We selected the dosage 25

mg/kg BID for 7 days based on findings from Aljayyoussi et al, 2017 which reported rifampicin

dosages of 15 mg/kg QD for 7 days, 35 mg/kg QD for 7 days, or 25 mg/kg BID for 7 days resulted

in reductions inWolbachia of 97.7%, 98.2% and 99.5%, respectively [25]. They found 25 mg/kg

BID x 7 days to be superior to doxycycline 25 mg/kg BID treatment for four weeks (P>0.0001)

and not significantly inferior from doxycycline 25 mg/kg BID treatment for six weeks [25].

PK analyses

To determine the level of exposure of rifampicin in treated animals, blood was collected from

the saphenous vein in Am-heparinized tubes and centrifuged at 2,000 x g for 15 min at 4˚C.

Blood was collected 0.5 hour, 1 hour, 3 hours and 6 hours post-first dose. The second dose was

given 8 hours post-first dose and blood was collected 24 hours post-first dose. Plasma was col-

lected and stored at -80˚C prior to shipment to Integrated Analytical Solutions (Berkeley, CA)

for plasma analysis (S2 Fig). Calibration standards, QC samples and study samples were pro-

cessed for LC/MS/MS analysis by precipitating 10 μL of each sample with 3 volumes of ice cold

Internal Standard Solution (acetonitrile containing 50 ng/mL dextromethorphan). The
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precipitated samples were centrifuged at 6100g for 30 min and an aliquot of each supernatant

was transferred to an auto sampler plate and diluted in water with 2 volumes of 0.2% formic

acid.

Necropsies

Vehicle and rifampicin treated jirds were necropsied 1 week, 6 weeks, 17 weeks and 8 months

post-first dose. Animals were dissected and peritoneal cavities were washed with 100 mL of

PBS to collect adult worms and mf that had been released from female worms. Adult worms

were separated by sex, counted and processed for subsequent analyses. Mf from the peritoneal

cavity were quantified by mixing peritoneal wash 9:1 (v/v) with 0.04% methylene blue:water

and counted using an inverted microscope. Data from each timepoint are from three replicate

studies, except for the 17-week timepoint, in which the data are from one set. All animals were

euthanized at their intended timepoints and no adverse events were observed. However, one

animal had ascites, but was otherwise healthy at the 8-month timepoint.

qPCR analysis of Wolbachia in adult Brugia pahangi
Adult worms collected during necropsies were snap-frozen in a dry-ice and ethanol bath prior

to storage at -80˚ C. gDNA was extracted from individual female worms or from 4–25 male

worms using a DNEasy Blood & Tissue Kit (QIAGEN) according to the manufacturer’s

instructions. Genomic DNA was quantified using a NanoDrop Onec (Thermo Fisher Scien-

tific) and qPCR was performed using a Geneoecopia 2x All-in-One Master Mix (Cat #QP001-

01) in a Bio-Rad CFX Connect RT-PCR thermocycler. The single copy gene, Wolbachia sur-

face protein (wsp), was used to quantify Wolbachia titers and the single copy gene, glutathi-

one-S-transferase (gst), was used to quantify Brugia titers following the protocol of McGarry

et al. [37]. Primers used for qPCR were based on wsp forward: 5’-CCCTGCAAAGGCACAA

GTTATTG-3’; wsp reverse: 5’-CGAGCTCCAGCAAAGAGTTTAATTT-3’; gst foward: 5’-GA

GACACCTTGCTCGCAAAC-3’; gst reverse: 5’-ATCACGGACGCCTTCACAG-3’. For gst
amplification the following cycles were used: 95˚C for 15 minutes, followed by 36 cycles of

denaturation at 94˚C for 15 seconds, annealing at 55˚ C for 30 seconds and elongation at 72˚ C

for 30 seconds. Melting curve analysis was conducted by heating to 95˚C for 1 minute, anneal-

ing at 55˚C for 30 seconds and heating to 97˚C. For wsp amplification: samples were heated at

95˚ C for 15 minutes, followed by 40 cycles of denaturation at 94˚C for 10 seconds, annealing

at 55˚C for 20 seconds and elongation at 72˚C for 15 seconds. Melting curve analysis was con-

ducted by heating to 95˚C for 1 minute, annealing at 55˚C for 30 seconds and heating to 97˚C.

Wolbachia genome sequencing

Total genomic DNA was extracted from Brugia pahangi worms recovered from 1-week and

8-month timepoints using DNeasy Blood & Tissue Kit (QIAGEN) following the manufactur-

er’s protocol and quantified using Qubit (Invitrogen). Genomic DNA was subjected to hybrid-

ization probe-capture (adaptation of the protocol of Geniez et al. and protocol of Lefoulon

et al.) to enrich for Wolbachia DNA using biotinylated probe-baits and magnetic streptavidin

beads [41,72]. Prior to capture, genomic DNA was sheared using NEBNext FSII for 30 min at

37˚ and ligated to NimbleGen SeqCap adapters (NEBNext Ultra II kit), followed by AMPure

bead purification (0.9X), PCR amplification and purification through AMPure beads (0.9X).

The barcoded samples were then pooled (~400 ng per sample) and hybridization of DNA with

Wolbachia specific EZ library probes was performed according to SeqCap EZ HyperCap pro-

tocol v1.0 (NimbleGen). The captured DNA library was amplified by PCR, purified using

AMPure bead (0.9X), and subjected to PacBio circular consensus sequencing (CCS). A
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reference wBp genome was assembled with Canu v1.9 [73] from the control sample (1-week

vehicle group) after the CCS reads were trimmed to remove residual adapter sequences using

seqtk. To minimize assembly errors due to the presence of B. pahangi sequences derived from

nuclear Wolbachia transfers (nuwts), a draft assembly was first generated using all available

reads, and then reads (longer than 3 kb) that mapped to the assembly without clipping were

collected using minimap v2.17 [74] and assembled to produce a second draft assembly, which

was then circularized using Circlator [75]. Assembly errors were further corrected through

manual curation and Pilon v1.23 [76]. Genome annotation was performed using PGAP [77]

and DFAST v1.2.4 [78]. Genetic variants (SNPs and indels) were called across samples by

DeepVariant [79] after non-clipped CCS reads were aligned to the wBp reference genome

using minimap2. The depth-of-coverage patterns of clipped reads (that span the junctions

between nuwts and B. pahangi DNA) along the Wolbachia genome were exploited to infer the

location of regions that show sequence similarity to nuwts using samtools [80] and sequana_-

coverage v0.7.1 [81]. Using VCFtools v0.1.17 [82], false-positive variants occurring within

these putative nuwts regions were filtered and excluded from further analyses. Finally, SnpEff

v4.3 [83] was used to annotate and predict the effects of the remaining variants. The statistical

significance of allele frequency differences was determined with Fisher’s exact test.

Embryograms and microfilariae overnight shed

Individual adult female worms (n = 12–24 females per treatment group) from vehicle and rifam-

picin treated jirds were maintained overnight in 24-well plates with 500 μL of RPMI-1640, 25mM

HEPES, 5% heat inactivated-FBS, and 1x Antibiotic/Antimycotic. Mf that were released from

individual females after 18 hours were removed from the wells and counted. For the embryogram

analyses, individual adult female worms previously frozen in 0.5mL of 0.1% PBS-Triton X-100

(Sigma) were homogenized using a glass pestle to disrupt the cuticle and expose the reproductive

structures. Developing stages from the ovaries and uteri (oocyte, early morula, late morula, pre-

mf, pretzel mf and stretched mf, degenerated embryos) were assessed in a blinded fashion for

their developmental stages using an inverted microscope and hemocytometer. A minimum of 100

developmental stages were counted from each female and relative proportions were used to deter-

mine the means and standard deviations. n = 6–9 females per treatment group per timepoint [45].

Fluorescence imaging of female worm ovaries

Female B. pahangi worms removed from jirds from each group were frozen and shipped to

UC Santa Cruz for fluorescence analysis. Frozen worms were thawed at room temperature,

immediately fixed in 3.2% paraformaldehyde for 25 minutes and rinsed twice in PBST (PBS

plus 0.1% Triton-X100). Individual female uteri/ovaries were dissected from fixed tissue and

incubated overnight in RNAse A (10mg/mL) in PBST following similar protocols described by

Landmann et al., Serbus et al. and Foray et al. [45–49]. Tissues were then stained with propi-

dium iodide (PI) (1mg/mL diluted 100X in PBST) for 30 seconds, rinsed twice in PBST and

then mounted in DAPI Vectashield mounting medium (Vector Labs). The distal tips of the

ovarian tissue were imaged on a Leica SP5 confocal microscope and single images were taken

at the mid-plane of the ovarian tissue for each distal tip. To measure the average Wolbachia
titer of each distal tip, Wolbachia puncta were counted by hand using the Cell Counter tool in

FIJI; the number of puncta was divided by the area of the tissue in each image (puncta/μm2).

Statistical analyses

Data were first tested for normality using the Shapiro-Wilk test of normality. When data did

not pass the normality test, a Mann-Whitney U test was conducted and when data did pass the
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normality test, a Student’s t-test was used. All significance levels were determined as compared

to the vehicle worms at the same timepoint. Individual percent reductions of Wolbachia were

calculated for each worm using the wsp copy number normalized to the Brugia gst copy num-

ber [28,29,38–40]. Wsp/gst ratios were calculated for each timepoint by subtracting the wsp/gst
ratios of treated worms from the mean wsp/gst ratio of vehicle worms and then dividing by the

mean wsp/gst ratio of vehicle worms for each respective timepoint. The means were then calcu-

lated to determine the average percent reduction. All statistical analyses were determined

using Prism 8 version 8.2.0 (272).

Supporting information

S1 Fig. Rifampicin treatment of Brugia pahangi-infected jirds does not reduce worm bur-

den significantly at any timepoint. (A) Number of total worms recovered from the peritoneal

cavity of B. pahangi-infected jirds 1-week, 6-weeks, 17-weeks and 8-months post-first dose.

(B) Number of female worms recovered from the peritoneal cavity of B. pahangi-infected jirds

1-week, 6-weeks, 17-weeks and 8-months post-first dose. (C) Number of male worms recov-

ered from the peritoneal cavity of B. pahangi-infected jirds 1-week, 6-weeks, 17-weeks and

8-months post-first dose. Data is presented as median ± 95% CI. n = 2–9 jirds per treatment

group per timepoint.

(PDF)

S2 Fig. Plasma concentrations peak 3 hours post-rifampicin treatment of Brugia pahangi-
infected jirds. Plasma samples were collected at 0.5, 1, 3, 6 and 24 hours post-first dose from

B. pahangi infected jirds treated with oral doses of rifampicin 25 mg/kg twice a day for 7 days.

Analyses showed that plasma concentrations peaked at 3 hours post-first dose with a Cmax of

5.17x103 ng/mL. n = 3 jirds for all timepoints except n = 2 at 6 hours and n = 4 at 24 hours.

(PDF)

S1 Table. Results of Wolbachia titers from 3 experimental replicates after rifampicin treat-

ment. qPCR analyses used worms from 3 separate cohorts of animals with data from two repli-

cate experiments for each timepoint, except for the 17-week timepoint. Data are presented as

mean percent reductions based on control worms.

(PDF)

S2 Table. PacBio sequencing of Wolbachia using hybridization probe-capture.

(PDF)

S3 Table. Genetic variants identified in Wolbachia after rifampicin treatment.

(PDF)

S4 Table. Female worms recovered from jirds treated 6 weeks post-first dose had signifi-

cantly higher numbers of degenerated embryos compared to those from the vehicle group.

The number in each cell is the mean of each embryonic stage ± the standard deviation.

(PDF)
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