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The hormone leptin has a variety of functions. Originally known for its role in satiety and weight loss, leptin more recently has been
shown to augment tumor growth in a variety of cancers. Within gliomas, there is a correlation between tumor grade and tumor
expression of leptin and its receptor. This suggests that autocrine signaling within the tumor microenvironment may promote
the growth of high-grade gliomas. Leptin does this through stimulation of cellular pathways that are also advantageous for tumor
growth and recurrence: antiapoptosis, proliferation, angiogenesis, and migration. Conversely, a loss of leptin expression attenuates
tumor growth. In animal models of colon cancer and melanoma, a decline in the expression and secretion of leptin resulted in
a reduction of tumor growth. In these models, positive mental stimulation through environmental enrichment decreased leptin
secretion and improved tumor outcome. This review explores the link between leptin and glioblastoma.

1. Introduction

Leptin is the product of the obese gene, located on chromo-
some 7 in humans. Mice with mutation in the obese gene
are obese and insatiable [1]. When exogenous leptin is in-
jected into leptin-deficient obese mice (ob/ob mice), the
protein promotes satiety and weight loss [2–5]. The effects
of leptin on these obese mice sparked a leptin intense
focus in obesity research over the past 15 years. Unlike
the ob/ob mice, obese humans are not leptin deficient.
Obese humans have high circulating leptin levels which are
directly correlated to the total amount of adipose tissue [6].
Leptin helps regulate bodyweight in humans by negative
feedback promoting satiety when energy stores are elevated
[7]. The current model suggests that obesity in humans
is due to a desensitization to leptin. Obese subjects have
a diminished response to leptin, and in some subjects the
diminished response is due to a mutation in the leptin
receptor gene [8]. The high prevalence of obesity in the
USA is strongly correlated with the risk of multiple diseases,
including cancer [9]. The association between cancer and
obesity may, in part, be explained by elevated circulating
leptin.

2. Leptin in Cancer

Leptin has been classified as a growth factor because it stim-
ulates three key pathways well known for their roles in cell
growth: proliferation, survival, and motility and migration
(Figure 1). It is well documented that the binding of leptin to
the leptin receptor (ObR) activates the Janus kinase-signal
transducer and activator of transcription (JAK-STAT), the
mitogen-activated protein kinase (MAPK), and the phos-
phatidylinositol 3-kinase (PI3K) pathways in both normal
[10–22] and malignant cells [20, 23–41]. Supporting a role of
leptin in cancer pathogenesis are reports that DNA poly-
morphisms in the leptin and ObR genes are associated with
increased risk and progression of breast [42], prostate [43],
and oral cancer [44].

Evidence generally supports leptin as a growth factor,
promoting cell division and evasion of cell death [45]. Nu-
merous reports indicate that leptin has both antiapoptotic
[28, 33, 34, 36, 46–54] and proliferative effects [24, 25, 27,
29–31, 33, 34, 36, 41, 47, 49, 50, 52, 53, 55–59] (Table 1). It
appears that leptin-mediated proliferation of these cancers
occurs through the activation of the JAK-STAT [25, 27, 29–
31, 34, 41], PI3K [24, 31, 33, 36], and MAPK [24, 31]
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Figure 1: Cellular pathways activated through leptin receptor (ObR) stimulation.

Table 1: Summary of the Literature: leptin’s role in cancer promotion∗.

Cancer type Antiapoptosis Proliferation Migration Angiogenesis

Bone 24

Breast 28, 46 27, 56 23, 65 38, 69

Cartilage 32

Colon 48 57, 58 20, 62, 64 58

Endometrial 34 30, 31, 34

Esophageal 51

Gallbladder 53 53

Gastric 25, 59

Glioma 77 74

Kidney 29

Large B-cell lymphoma 33

Leukemia 47 47 71

Liver 52 41, 52 26 70

Lung 53

Neuroblastoma 49 49

Ovarian 55

Prostate 50 50 37, 39, 40

Thyroid 36 36 63 37

Uterine 68
∗

Numbers correspond to works cited.

pathways, whereas apoptosis avoidance is promoted by leptin
via the JAK-STAT [28, 34] and PI3K [33, 36] pathways
(Figure 1).

Migration is enhanced by leptin in several normal [10,
20–22, 60, 61] and cancerous tissues [20, 23, 26, 32, 35,
37, 39, 40, 62–64] (Table 1). Leptin treatment increases the
growth and migration of cholangiocarcinoma cells in vitro
and cholangiocarcinoma is inducible in obese fa/fa Zucker
(faulty ObR) rats [53]. In metastatic colon cancer cells,
leptin provokes the formation of lamellipodia and augments
invasion through the MAPK and PI3K pathways [62]. It has
since been confirmed that leptin increases migration through

the MAPK and PI3K pathways in prostate [37, 39, 40],
liver [26], cartilage [32], and breast [23, 40, 64] cancers,
as well as the JAK-STAT pathway in colon [35], prostate
[39], liver [26], and breast [23] cancers. Compounding the
complexity of leptin’s role in carcinogenesis is that leptin
may have differential responses in closely related cells; leptin
induces migration in papillary thyroid cancer cells but not in
anaplastic and follicular thyroid cancer cells [63].

In addition to its role in cellular proliferation, apoptosis
avoidance, and migration, leptin is a potent angiogenic fac-
tor. Using an in vitro angiogenesis assay, leptin enhances the
formation of capillary-like tubes by human umbilical venous
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endothelial cells [65]. In 5- to 6-week-old C57BL/6J mice,
leptin induces fenestrated blood vessel growth [66]. This
response is synergistic with vascular endothelial growth fac-
tor (VEGF) and fibroblast growth factor-2 [66]. Myometrial
cells and the blood-vessel walls of uterine myomas contain
leptin, though the surrounding normal tissue does not. This
suggests that leptin may be involved in angiogenesis and
the development of uterine cancer [67]. VEGF levels are
augmented by leptin in various cancers [37, 38, 58, 68]. It has
been reported that the leptin-induced upregulation of VEGF
may be due to activation of the IL-1 system [38]. This leptin-
mediated IL-1 up-regulation appears to be accomplished
by activation of the MAPK and PI3K pathways, among
others [37, 38]. Leptin and ObR expression are correlated
with the grade of the tumor, differentiation, and microvessel
density [58, 69]. VEGF expression is also correlated to these
variables [58]. It is noteworthy to mention that Per Ole
Iverson and coworkers blocked the ObR which suppressed
rat leukemia cell growth by inhibiting angiogenesis [70].
Interestingly, hypoxia can induce VEGF production in cells,
and it has been demonstrated that leptin expression is also
augmented under similar conditions [71].

3. The Leptin GBM Connection

It was once thought that adipocytes were the sole producers
of leptin. However, leptin expression and secretion has since
been demonstrated in several tissues of the body (cancer-
ous and noncancerous) including the pituitary gland and
hypothalamus [72]. Barbara Morash and colleagues provided
the first report of leptin expression in glioma following detec-
tion of leptin expression in the rat C6 glioma cell line [72]. It
was later shown that C6 cells express more leptin and ObR
than normal glial tissue [73]. Leptin and ObR expression
subsequently has been confirmed in human primary GBM
tissue as well as established human GBM cells lines [74].
Leptin and ObR are overexpressed in human primary brain
tumors when compared to normal glial tissue [74]. Further-
more, the expression of the leptin-ObR system correlates
with histological grade: GBM has the greatest levels of
leptin and ObR while low-grade gliomas have the least [74].
This suggests that leptin/ObR autocrine/paracrine signaling
increases the malignant characteristics of gliomas.

Leptin/ObR overexpression in glioma [74], coupled with
recent evidence that the release of leptin from adipose tissue
promotes melanoma and colon cancer [75], provides strong
evidence that leptin plays a role in cancer pathogenesis. In the
rat C6 cell line, leptin knockdown using RNA interference
produced a reduction of both leptin mRNA and leptin pro-
tein. This knockdown caused a twofold increase in cell death
suggesting that endogenous leptin promotes cell survival
[76]. Furthermore, exogenous leptin enhances migration and
invasion of the rat C6 cells through increased levels of matrix
metalloproteinase-13 (MMP-13) [73]. The leptin-mediated
up-regulation of MMP-13 occurs through the MAPK path-
way [73].

While there is increasing evidence of leptin’s role in an-
giogenesis [37, 38, 58, 68], no studies (to our knowledge)
have indicated how leptin might affect angiogenesis in GBM.

However, hypoxia, which is a characteristic of solid tumors,
is more pronounced with higher grades of glioma [77] and
may explain the increased expression of leptin and ObR in
GBM compared to lower-grade glioma [74].

4. Environmental Enrichment Modulates
Leptin Levels

It is increasingly evident that the enhanced mental stim-
ulation from environmental enrichment (EE) delays the
advancement of neurodegenerative disorders such as Hunt-
ington’s, Parkinson’s, and Alzheimer’s [78], slows the pro-
gression of cancer [75, 79–81], and increases the activity of
natural killer cells [82]. Environmental enrichment refers to
the living conditions of the subject. In the context of the
rodent, EE is achieved through conditions that allow the
rodent to roam more freely, engage with the surroundings,
be housed with other rodents, and have better access to exer-
cise equipment. For humans, increased social and physical
activity leads to EE. Interestingly, EE can reduce peripheral
leptin expression and release [75].

The response to EE is related to the type of stress the
subject experiences: EE increases eustress and decreases dis-
tress. Eustress is the result of positive stressors like exercise
and social interaction whereas distress is the result of neg-
ative stressors like mental stress and social isolation. The
augmentation of eustress and the reduction of distress are
associated with longer survival and slower tumor growth [75,
79, 81]. Probably the most significant human data to date are
those reported by Barbara Andersen and her colleagues who
showed that distress reduction through psychological inter-
vention resulted in a 45% decrease in the risk of breast cancer
recurrence [79] and a 59% reduction in the risk of dying
following breast cancer recurrence [81]. The physiological
basis for this finding is an active area of investigation. Using
mouse models for melanoma and colon cancer, Cao et al.
demonstrated that EE enhances brain-derived neurotrophic
factor (BDNF) expression [75]. BDNF in turn activates
sympathetic nerve fibers innervating white adipose tissue.
This beta-adrenergic stimulation suppresses leptin secretion
resulting in cancer inhibition and remission [75].

5. Environmental Enrichment and GBM

A study has yet to be designed that blocks ObR or alters leptin
levels in GBM subjects or animal models. One viable option
for GBM treatment may be through EE. Recall that EE-
induced activation of the brain-adipocyte BDNF/leptin axis
causes cancer remission and inhibition in mice [75], and dis-
tress reduction lowers the rate of recurrence in breast cancer
patients [79]. Environmental enrichment and psychological
treatment increase BDNF and thereby reduce systemic lep-
tin via sympathetic activation of beta-adrenergic receptors
in adipose tissue. This hypothalamic-sympathoneuronal-
adipocyte axis does not address the potential leptin-ObR
autocrine signaling loop of GBM. Factors that influence the
transcriptional regulation of the leptin gene in the rat C6
cells are different than those in adipose tissue [83, 84], and
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therefore successful treatments may need to be more specific
to GBM. Therapies that are successful at crossing the blood-
brain barrier and reducing the leptin-ObR signaling loop in
GBM are needed and should be a focus of future research.

6. Summary

Leptin, which may be controlled by specific stimulation of
the brain via EE or psychological intervention, has significant
influence on tumor growth. In GBM and other cancer cells,
leptin promotes cancer by stimulating cellular pathways that
are advantageous for proliferation, angiogenesis, and evasion
of death. Unfortunately, most of what is known about leptin
and glioma stems from the rat C6 cell line. Future studies
should focus on established human GBM cell lines and
primary GBM neurosphere cultures both in vitro and in vivo.
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